
ETRAX FS

Designer’s Reference

Axis Communications AB

21st August 2007

2

While every care has been taken in the preparation of this manual, Axis
Communications AB cannot be held responsible for any technical or typographical
errors, and reserves the right to make changes to this manual and to the product
without prior notice. If you do detect any inaccuracies or omissions, please inform us
at:

E-mail: technology@axis.com

WWW: http://developer.axis.com

Axis Communications AB Emdalavägen 14 S-223 69 Lund, Sweden

Phone: +46 46 272 18 00

Fax: +46 46 13 61 30

Copyright c©Axis Communications AB

Contents

1 Introduction 43
1.1 Functional Block Diagram. 43
1.2 Overview of the AXIS ETRAX FS 43
1.3 Technical Specifications for the ETRAX FS. 44

2 CPU 47
2.1 Architectural description. 47

2.1.1 References. 47
2.1.2 Registers. 47

2.1.2.1 Support function registers. 48
2.1.3 Flags and condition codes. 50
2.1.4 Data organization in memory. 52
2.1.5 General instruction format. 53

2.1.5.1 The Opcode field. 53
2.1.5.2 The Operand1 field. 53
2.1.5.3 The Operand2 field. 53
2.1.5.4 The Mode field. 53
2.1.5.5 The size field. 54

2.1.6 Addressing modes. 54
2.1.6.1 General. 54
2.1.6.2 Quick immediate addressing mode. 55
2.1.6.3 Register addressing mode. 55

2.1.6.3.1 General register addressing mode. 55
2.1.6.3.2 Special register addressing mode. 55
2.1.6.3.3 Support function register addressing mode55

2.1.6.4 Indirect addressing mode. 56
2.1.6.4.1 Autoincrement addressing mode. 56
2.1.6.4.2 Immediate addressing mode. 57

2.1.7 Branches jumps and subroutines. 57
2.1.7.1 Conditional branch. 57
2.1.7.2 Unconditional branch. 58
2.1.7.3 Jump instructions. 59
2.1.7.4 Jump and branch with context. 60
2.1.7.5 Return instructions. 61
2.1.7.6 Switches and table jumps. 61
2.1.7.7 Subroutines. 64

2.1.8 Address calculation instructions. 65
2.1.9 PC Relative addressing. 66
2.1.10 Exceptions. 66

3

4 CONTENTS

2.1.10.1 Exception examples. 67
2.1.10.2 Exception vectors. 68
2.1.10.3 Exception priority. 69
2.1.10.4 Exception status registers. 70

2.1.10.4.1 ERP - Exception return pointer. 70
2.1.10.4.2 EXS - Exception status. 70
2.1.10.4.3 EDA - Exception data address. 71
2.1.10.4.4 SPC - Single Step PC. 71

2.1.10.5 Non Maskable Interrupts (NMI). 71
2.1.10.6 Guru mode. 72

2.1.10.6.1 Entering guru mode. 72
2.1.10.6.2 Leaving guru mode. 73
2.1.10.6.3 Protected resources in guru mode. 73

2.1.11 MMU support . 73
2.1.11.1 Overview . 73
2.1.11.2 Protected resources. 74
2.1.11.3 Transitions between operation modes. 75
2.1.11.4 MMU registers. 75

2.1.12 Multiply and divide . 76
2.1.12.1 General. 76
2.1.12.2 Multiply . 76
2.1.12.3 Divide. 76

2.1.13 Extended arithmetic. 77
2.1.14 Integral read-write operations. 80
2.1.15 Single step. 81

2.1.15.1 Single step examples. 81
2.1.16 Hardware breakpoints and watchpoints. 82

2.1.16.1 Support function registers. 83
2.1.16.2 Triggering condition. 85
2.1.16.3 Exceptions . 86
2.1.16.4 Examples. 86

2.1.17 Version identification . 87
2.1.18 Reset. 88

2.2 Instruction set description. 89
2.2.1 General. 89

2.2.1.1 Definitions . 89
2.2.1.2 Size modifiers. 90
2.2.1.3 Addressing modes. 90

2.2.2 Instruction function summary. 90
2.2.2.1 Address calculation instructions. 90
2.2.2.2 Arithmetic instructions. 91
2.2.2.3 Bit test instructions. 91
2.2.2.4 Cache manipulation instructions. 92
2.2.2.5 Condition code manipulation instructions. . . . 92
2.2.2.6 Data transfers. 93
2.2.2.7 Jump and Branch Instructions. 94
2.2.2.8 Logical Instructions. 95
2.2.2.9 Miscellaneous data operations. 95
2.2.2.10 Shift instructions. 95

2.2.3 Instruction format summary. 96

CONTENTS 5

2.2.3.1 Quick immediate mode instructions. 96
2.2.3.2 Register instructions with variable size. 96
2.2.3.3 Summary of register instructions with fixed size. 97
2.2.3.4 Summary of indirect instructions with variable size98
2.2.3.5 Summary of indirect instructions with fixed size. 99

2.3 Instructions in alphabetical order. 99
2.3.1 Introduction . 99
2.3.2 ABS - Absolute Value. 101
2.3.3 ADD - Add. 102
2.3.4 ADDC - Add with Carry. 104
2.3.5 ADDI - Add Index. 105
2.3.6 ADDI - Add Index (to ACR) 106
2.3.7 ADDO - Add Offset . 107
2.3.8 ADDOQ - Add Offset Quick 109
2.3.9 ADDQ - Add Quick . 110
2.3.10 ADDS - Add with Sign Extend. 111
2.3.11 ADDU - Add with Zero Extend. 112
2.3.12 AND - Logical AND. 113
2.3.13 ANDQ - Logical AND Quick 115
2.3.14 ASR - Arithmetic Shift Right. 116
2.3.15 ASRQ - Arithmetic Shift Right Quick. 117
2.3.16 AX - Arithmetic Extension 118
2.3.17 BA - Branch Always. 119
2.3.18 BAS - Branch And Save. 120
2.3.19 BASC - Branch And Save with Context Information. . . . 122
2.3.20 Bcc - Branch Conditionally. 123
2.3.21 BOUND - Adjust Index to Bound. 125
2.3.22 BREAK - Software Breakpoint. 126
2.3.23 BSR - Branch to Subroutine. 127
2.3.24 BSRC - Branch to Subroutine with Context Information. . 128
2.3.25 BTST - Bit Test . 129
2.3.26 BTSTQ - Bit Test Quick. 130
2.3.27 CLEAR - Clear . 131
2.3.28 CLEARF - Clear Flags. 132
2.3.29 CMP - Compare. 133
2.3.30 CMPQ - Compare Quick. 135
2.3.31 CMPS - Compare with Sign Extend. 136
2.3.32 CMPU - Compare with Zero Extend. 137
2.3.33 DI - Disable Interrupts. 138
2.3.34 DSTEP - Divide Step. 139
2.3.35 EI - Enable Interrupt. 140
2.3.36 FIDXD - Flush Data Cache Line by Index. 141
2.3.37 FIDXI - Flush Instruction Cache Line by Index. 142
2.3.38 FTAGD - Flush Data Cache Line by Address. 143
2.3.39 FTAGI - Flush Instruction Cache Line by Address. 144
2.3.40 HALT - Stop and Wait for Exceptions. 145
2.3.41 JAS - Jump and Save. 146
2.3.42 JASC - Jump and Save with Context Information. 148
2.3.43 JSR - Jump to Subroutine. 150
2.3.44 JSRC - Jump to Subroutine with Context Information. . . 151

6 CONTENTS

2.3.45 JUMP - Jump to Absolute Address. 152
2.3.46 JUMP - Jump to Special Register. 153
2.3.47 LAPC - Load PC Relative Address. 154
2.3.48 LAPCQ - Load PC Relative Address Quick. 155
2.3.49 LSL - Logical Shift Left. 156
2.3.50 LSLQ - Logical Shift Left Quick 157
2.3.51 LSR - Logical Shift Right. 158
2.3.52 LSRQ - Logical Shift Right Quick. 159
2.3.53 LZ - Leading Zeros. 160
2.3.54 MCP - Multiply Carry Propagation. 161
2.3.55 MOVE - Move to General Register. 162
2.3.56 MOVE - Move from General Register to Memory. 164
2.3.57 MOVE - Move to Special Register. 165
2.3.58 MOVE - Move from Special Register to General Register. 167
2.3.59 MOVE - Move from Special Register to Memory. 168
2.3.60 MOVE - Move to Support Function Register. 169
2.3.61 MOVE - Move from Support Function Register. 170
2.3.62 MOVEM - Move Multiple Registers to Memory. 171
2.3.63 MOVEM - Move Multiple register from Memory. 172
2.3.64 MOVEQ - Move Quick 173
2.3.65 MOVS - Move to General Register with Sign Extend. . . . 174
2.3.66 MOVU - Move to General Register with Zero Extend. . . 175
2.3.67 MULS - Signed Multiply 176
2.3.68 MULU - Unsigned Multiply. 177
2.3.69 NEG - Negate. 178
2.3.70 NOP - No Operation. 179
2.3.71 NOT - Logical Complement. 180
2.3.72 OR - Logical OR. 181
2.3.73 ORQ - Logical OR Quick. 183
2.3.74 RET - Return From Subroutine. 184
2.3.75 RETE - Return From Exception. 185
2.3.76 RETN - Return from NMI Exception. 186
2.3.77 RFE - Restore from Exception. 187
2.3.78 RFG - Restore from Guru Mode Exception. 188
2.3.79 RFN - Restore from NMI Exception. 189
2.3.80 Scc - Set Conditional. 190
2.3.81 SETF - Set Flags. 191
2.3.82 SFE - Save for Exception. 192
2.3.83 SUB - Subtract. 193
2.3.84 SUBQ - Subtract Quick. 195
2.3.85 SUBS - Subtract with Sign Extend. 196
2.3.86 SUBU - Subtract with Zero Extend. 197
2.3.87 SWAP - Swap Bits. 198
2.3.88 TEST - Compare with Zero. 199
2.3.89 XOR - Logical Exclusive OR. 200

2.4 CRIS CPU Cycle behavior. 200
2.4.1 References. 200
2.4.2 Pipeline Overview. 200

2.4.2.1 Prefetch Unit. 201
2.4.2.2 Branch Prediction Unit. 201

CONTENTS 7

2.4.2.3 Memory Unit 202
2.4.2.4 Pipelined Multiplier Unit. 202

2.4.3 Pipeline Hazards. 202
2.4.3.1 Addresses. 203
2.4.3.2 Multiplication. 203
2.4.3.3 Jump with Register Operand. 203
2.4.3.4 Unaligned Data Accesses. 204
2.4.3.5 Restarting After Data Cache Stalls. 204
2.4.3.6 MOVEM . 204
2.4.3.7 Jump Targets. 207

2.4.4 Self modifying code in the pipeline. 207
2.5 Assembly language syntax. 208

2.5.1 Assembly language syntax. 208
2.6 CRIS v32 Compiler specifics. 208

2.6.1 GCC Compiler options. 208
2.6.2 C Preprocessor macros. 209
2.6.3 The ABI . 210

2.6.3.1 Introduction. 210
2.6.3.2 Fundamental C data types. 210
2.6.3.3 C Object memory layout. 211
2.6.3.4 C Calling conventions. 212
2.6.3.5 Stack frame layout. 212

2.7 ETRAX FS and ETRAX 100LX CPU comparison. 213
2.7.1 Introduction . 213
2.7.2 Registers. 214

2.7.2.1 General registers. 214
2.7.2.2 Special registers. 214

2.7.2.2.1 Removed special registers. 214
2.7.2.2.2 New special registers. 214
2.7.2.2.3 Renamed or modified special registers. . 215

2.7.2.3 Support function registers. 215
2.7.3 Addressing modes (Prefixes). 215
2.7.4 Instructions. 215

2.7.4.1 Removed instructions. 215
2.7.4.2 Modified instructions. 216
2.7.4.3 New instructions. 216
2.7.4.4 Address mode prefix replacements. 217

2.7.5 Exception handling. 217

3 Cache 219
3.1 References. 219
3.2 Overview . 219
3.3 Functional description. 220

3.3.1 Cache organization. 220
3.3.2 Cache coherence. 220
3.3.3 Cache hits. 221
3.3.4 Cache misses. 221
3.3.5 Non-cached accesses. 221
3.3.6 Conditional write operation. 222
3.3.7 Flush operations. 222

8 CONTENTS

3.3.7.1 Flush index. 223
3.3.7.2 Flush tag . 223
3.3.7.3 Flushing other caches. 223

3.3.8 Enable/disable the cache. 224
3.3.8.1 Initialization. 224
3.3.8.2 Disabling the cache. 224

3.4 Software examples. 224
3.4.1 Initialize instruction cache (while disabled). 224
3.4.2 Flush whole data cache. 225
3.4.3 Flush specific address region in data cache. 225
3.4.4 Flush specific address in data cache. 225

4 Bus interface 227
4.1 References. 227
4.2 Overview . 227

4.2.1 Master mode. 228
4.2.2 Slave mode. 228

4.3 Functional description. 228
4.3.1 General. 228
4.3.2 Data bus. 228
4.3.3 Address and chip selects. 228

4.3.3.1 Gated chip select. 230
4.3.4 Internal priority in master mode. 230
4.3.5 Bus width . 231
4.3.6 Bus states . 231

4.3.6.1 Early wait state (ew). 232
4.3.6.2 Late wait state (lw). 232
4.3.6.3 Turn-off wait state (zw). 232
4.3.6.4 Address recovery wait state (aw). 232
4.3.6.5 Data setup wait state (dw). 232
4.3.6.6 Early wait state burst (ewb). 233
4.3.6.7 External wait input. 233

4.3.7 SRAM/Flash/peripheral timing. 233
4.3.8 Read and write modes. 234

4.3.8.1 Common write enable and bytewise write enable
modes . 234

4.3.8.2 Normal and extended write modes. 235
4.3.8.3 Normal and early read complete modes. 235

4.3.9 NAND flash . 235
4.3.10 SDRAM interface. 237

4.3.10.1 Connecting the SDRAM. 237
4.3.10.1.1 Address shift in 16-bit mode. 238

4.3.10.2 SDRAM timing parameters. 239
4.3.10.3 SDRAM configuration. 240

4.3.10.3.1 16-bit mode. 241
4.3.10.4 SDRAM Power up and initialization commands. 241
4.3.10.5 Power up and initialization. 242
4.3.10.6 SDRAM self refresh mode. 242
4.3.10.7 PLL bypass mode. 243

4.3.11 SDRAM timing . 243

CONTENTS 9

4.3.12 Bus arbitration interface. 244
4.3.12.1 Overview . 244
4.3.12.2 Bus arbitration interface mode registers. 245
4.3.12.3 Arbitration signals 245
4.3.12.4 Arbitration protocol. 246

4.3.12.4.1 Bus request. 246
4.3.12.4.2 Bus grant. 246
4.3.12.4.3 Start-up. 246
4.3.12.4.4 Bus release timing. 246
4.3.12.4.5 Bus acquirement timing. 247
4.3.12.4.6 Request forward timing. 248
4.3.12.4.7 Initial master start up timing. 249

4.3.12.5 Bus release modes. 249
4.3.12.6 Arbitration settle time and bus acquirement time. 249
4.3.12.7 Bus acquirement modes. 250
4.3.12.8 SDRAM control in slave mode. 250
4.3.12.9 Bus release and acquirement detection. 250

4.3.13 External DMA. 250
4.3.13.1 General. 250
4.3.13.2 External DMA bus width. 251
4.3.13.3 External DMA burst length. 251
4.3.13.4 External DMA handshake signals. 251
4.3.13.5 External DMA address. 252
4.3.13.6 Transfer counter. 252
4.3.13.7 Bus burst behavior in 8-cycle burst mode. . . . 253
4.3.13.8 Start and stop of external DMA transfers. 253
4.3.13.9 Continuous transfer mode. 254
4.3.13.10 Interrupts. 254
4.3.13.11 Priority between external DMA channels. . . . 255
4.3.13.12 Rate control. 255

4.3.14 Slave mode operation. 255
4.3.14.1 Overview . 255
4.3.14.2 Slave channels. 255
4.3.14.3 External slave mode registers. 256
4.3.14.4 Internal slave mode registers. 257
4.3.14.5 Slave chip selects. 257
4.3.14.6 Address register mode. 258
4.3.14.7 DMA mode. 258
4.3.14.8 External handshake pins. 259
4.3.14.9 Slave identification. 259
4.3.14.10 Boot methods. 260
4.3.14.11 Loop back mode and slave mode disable. 260

4.4 Hardware interface. 260
4.4.1 Interface signals. 260

4.4.1.1 Data bus. 261
4.4.1.2 Address bus. 261
4.4.1.3 Chip selects signals. 261
4.4.1.4 Read signal. 262
4.4.1.5 Write signals 262
4.4.1.6 SDRAM signals. 262

10 CONTENTS

4.4.1.7 Handshake signals. 263
4.4.1.8 Wait signal . 264
4.4.1.9 Bus arbitration signals. 264

4.4.2 Reset behavior. 264
4.4.3 Detailed timing . 265

4.4.3.1 SRAM/Flash/peripheral timing. 265
4.4.3.1.1 Read cycle. 265
4.4.3.1.2 Write cycle 266
4.4.3.1.3 Extended write cycle. 267
4.4.3.1.4 External wait input timing. 268

4.4.3.2 SDRAM timing. 269
4.4.3.2.1 SDRAM read timing. 269
4.4.3.2.2 SDRAM write timing. 270

4.4.3.3 External DMA timing. 271
4.4.3.3.1 External DMA read timing. 271
4.4.3.3.2 External DMA write timing. 272
4.4.3.3.3 External DMA tcout timing 273

4.4.3.4 Slave mode timing. 274
4.4.3.4.1 Slave mode read timing. 274
4.4.3.4.2 Slave mode write timing. 275

4.5 Software interface. 275
4.5.1 Bus interface general registers. 275
4.5.2 External DMA. 276
4.5.3 Slave mode and master/slave arbitration. 276

4.5.3.1 Internal mode registers. 276
4.5.3.2 External slave mode registers. 276

4.5.4 Programming considerations. 276
4.5.4.1 Race avoidance between mode registers and ex-

ternal bus cycles. 276

5 DMA 277
5.1 References. 277
5.2 Definitions . 277
5.3 Overview . 278
5.4 Functional Description. 279

5.4.1 Data Level. 279
5.4.1.1 Out Channel. 281
5.4.1.2 In Channel . 281

5.4.2 Context Level . 281
5.4.3 Group Level . 282

5.4.3.1 A USB Example 283
5.5 Software Interface. 284

5.5.1 Pointer Registers and Descriptors. 284
5.5.2 DMA List Pointers. 285

5.5.2.1 DMA List Pointer Registers. 285
5.5.2.2 DMA List Pointer Configuration. 286

5.5.3 General DMA Operation. 286
5.5.3.1 General DMA Operation Registers. 286

5.5.3.1.1 rwcmd 286
5.5.3.1.2 rwcfg 286

CONTENTS 11

5.5.3.1.3 rwstat 287
5.5.3.1.4 Setup and Start a Data Level DMA List. 287

5.5.4 Interrupt . 288
5.5.4.1 Interrupt Registers. 288
5.5.4.2 Interrupt Signals. 288

5.5.5 Stream Commands Controlling the DMA List Operation. . 288
5.5.5.1 rwstreamcmd 289
5.5.5.2 Summary of Stream Commands. 289
5.5.5.3 Stream Command Option Descriptions. 289
5.5.5.4 General Stream Commands. 291

5.5.5.4.1 Pointer registers. 292
5.5.5.5 Group Level Stream Commands. 292
5.5.5.6 Context Level Stream Commands. 293
5.5.5.7 Data Level Stream Commands. 293
5.5.5.8 Stream command ready. 294

5.5.5.8.1 ackpkt and mdv. 296
5.5.5.9 rwstreamcmd MACRO 296

5.5.6 Descriptor Format. 296
5.5.6.1 Data Descriptor. 296
5.5.6.2 Context Descriptor. 298
5.5.6.3 Group Descriptor. 299
5.5.6.4 Examples. 301

5.5.6.4.1 Data Level List Setup. 301
5.5.6.4.2 Data List Modification. 303
5.5.6.4.3 Data List Modification and Multiple Con-

texts . 304
5.5.6.4.4 Context Level List Setup. 304
5.5.6.4.5 Context List Modification. 305
5.5.6.4.6 Group Level List Setup. 306
5.5.6.4.7 Group List Modification 308

6 Boot Methods 311
6.1 Bootstrap Methods. 311
6.2 Initialization . 311
6.3 Flash . 312

6.3.1 Empty flash . 312
6.3.2 NOR flash . 312

6.3.2.1 Bus width. 312
6.3.3 NAND flash . 312

6.3.3.1 NAND flash connection. 312
6.3.3.2 Address burst length. 313
6.3.3.3 Read command end. 313

6.4 Network . 313
6.4.1 Initialization . 313
6.4.2 Network rx. 314
6.4.3 Network tx/rx . 314
6.4.4 Duplex . 314

6.5 Serial . 315
6.6 Master chip boots slave. 315
6.7 Slave chip boots master. 315

12 CONTENTS

6.8 No boot and JTAG boot. 316
6.9 PLL mode . 316

7 MMU 317
7.1 References. 317
7.2 Overview . 317
7.3 Functional description. 318

7.3.1 Non-protected mode. 318
7.3.2 Physical memory. 318
7.3.3 Virtual memory . 318

7.3.3.1 Kernel/User area. 319
7.3.3.2 Kernel area. 320

7.3.4 Translation lookaside buffer. 321
7.3.4.1 TLB Memory sets. 321
7.3.4.2 TLB Entries. 322
7.3.4.3 TLB Lookup mechanism. 323
7.3.4.4 MMU exceptions. 324

7.4 Software interface. 325
7.4.1 Support function registers. 325
7.4.2 Example of virtual memory configuration. 326

7.5 Differences compared to the ETRAX 100LX MMU. 327

8 Clock generation and reset 329
8.1 References. 329
8.2 Overview . 329
8.3 Functional description. 329

8.3.1 Clock generation. 329
8.3.1.1 Input clock . 329
8.3.1.2 PLL . 330
8.3.1.3 PLL bypass mode. 330
8.3.1.4 Internal clock distribution and configuration. . . 330
8.3.1.5 Turning off clocks. 331

8.3.2 Reset. 331
8.3.2.1 Reset input. 331
8.3.2.2 Boot mode selection. 331
8.3.2.3 External reset output. 332
8.3.2.4 USB transceiver suspend. 332

8.4 Hardware interface. 332
8.4.1 Clock and reset pins. 332
8.4.2 Clock and reset timing. 333

8.5 Software interface. 333

9 Crypto Accelerator 335
9.1 References. 335
9.2 Definitions . 335
9.3 Overview . 336
9.4 Functional description. 337

9.4.1 Byte order, memory layout and block sizes. 338
9.4.2 ECB/CBC modes and IV’s. 339
9.4.3 DES/3DES specific usage. 340

CONTENTS 13

9.4.4 AES specific usage. 340
9.4.5 SHA-1 specific usage. 340
9.4.6 MD-5 specific usage. 341
9.4.7 Hash IV’s . 341
9.4.8 IP-checksum specific usage. 341

9.5 Software interface. 342
9.5.1 DMA descriptor controlled configuration. 342

9.5.1.1 DMA out channel meta data. 342
9.5.1.2 DMA in channel meta data. 343

9.5.2 Register controlled configuration. 343
9.5.3 Downloading keys into the keystore. 344

9.6 Configuration examples. 344
9.6.1 Data descriptor definitions. 345
9.6.2 Downloading a key . 346
9.6.3 DES CBC encryption. 347
9.6.4 SHA-1 hashing. 348
9.6.5 AES-192 ECB encryption with SHA-1 hashing of the ci-

phertext . 349
9.6.6 AES-192 CBC decryption with SHA-1 hashing of the ci-

phertext . 350
9.6.7 AES-256 CBC encryption with MD-5 hashing of the plaintext351
9.6.8 Memory-to-memory copying with parallel IP checksumming352
9.6.9 3DES ECB decryption in DED mode. 353

9.7 Performance Issues. 354

10 DMA Connection 355
10.1 References. 355
10.2 Functional description. 355
10.3 Software interface. 356

11 Internal Memory 357
11.1 References. 357
11.2 Definitions . 357
11.3 Functional Description. 357

11.3.1 General. 357
11.3.2 ROM content. 358

12 Interrupts 359
12.1 References. 359
12.2 Overview. 359
12.3 Functional Description. 359

12.3.1 Interrupt masks. 359
12.3.2 Interrupt status. 361

12.3.2.1 Individual interrupts 361
12.3.2.2 Interrupt vectors. 361
12.3.2.3 Non maskable interrupts. 361
12.3.2.4 Guru mode exceptions. 361

12.3.3 Vector generation. 361
12.3.4 Interrupt vector numbers. 361
12.3.5 Interrupt acknowledge. 362

14 CONTENTS

12.3.6 Non maskable interrupts. 362
12.3.7 Guru mode exceptions. 363

13 I/O Processor 365
13.1 References. 365
13.2 Definitions . 366
13.3 Overview. 366

13.3.1 The concept of ownership. 367
13.3.2 MPU Characteristics. 367
13.3.3 SPU Characteristics. 367
13.3.4 The Memory Controller (MC). 368
13.3.5 The Switch. 368
13.3.6 SAP . 369
13.3.7 Trigger. 369
13.3.8 Timer. 369
13.3.9 The parallel data path. 369

13.4 Master Processing Unit. 370
13.4.1 Architectural description. 371

13.4.1.1 Registers. 371
13.4.1.2 Data organization in memory. 372
13.4.1.3 Branches, jumps and subroutines. 372
13.4.1.4 Interrupts. 374
13.4.1.5 The MPU executes instructions from the CPU. . 374
13.4.1.6 Register write and read. 375
13.4.1.7 Memory instructions. 375
13.4.1.8 Threads. 375

13.4.2 Instruction set description. 377
13.4.2.1 Definitions . 377
13.4.2.2 Instructions in alphabetical order. 378

13.4.2.2.1 ADD - Add 378
13.4.2.2.2 ADDQ - ADD Quick 379
13.4.2.2.3 ADDX - ADD Extended. 380
13.4.2.2.4 AND - Logical AND 381
13.4.2.2.5 ANDQ - Logical AND Quick. 382
13.4.2.2.6 ANDX - Logical AND Extended. 383
13.4.2.2.7 BA - Branch Always. 384
13.4.2.2.8 BAR - Branch Always Register. 385
13.4.2.2.9 BBC - Branch Bit Clear. 386
13.4.2.2.10 BBS - Branch Bit Set. 387
13.4.2.2.11 BMI - Branch Minus. 388
13.4.2.2.12 BNZ - Branch Not Zero. 389
13.4.2.2.13 BPL - Branch Plus. 390
13.4.2.2.14 BZ - Branch Zero. 391
13.4.2.2.15 DI - Disable Interrupts. 392
13.4.2.2.16 EI - Enable Interrupts. 393
13.4.2.2.17 HALT - Halt the MPU 394
13.4.2.2.18 JIR - Jump to Interrupt Routine (Address

is an immediate). 395
13.4.2.2.19 JIR - Jump to Interrupt Routine (Address

is a register). 396

CONTENTS 15

13.4.2.2.20 JNT - Jump Next Thread. 397
13.4.2.2.21 JSR - Jump to Subroutine (Address is an

immediate) 398
13.4.2.2.22 JSR - Jump to Subroutine (Address is a

register) 399
13.4.2.2.23 LSL - Logical Shift Left 400
13.4.2.2.24 LSLQ - Logical Shift Left Quick. 401
13.4.2.2.25 LSR - Logical Shift Right. 402
13.4.2.2.26 LSRQ - Logical Shift Right Quick. . . . 403
13.4.2.2.27 LW - Load 32-bit data to register (Address

is an immediate). 404
13.4.2.2.28 LW - Load 32-bit data to register (Address

is a register). 405
13.4.2.2.29 MOVE - Move to Register. 406
13.4.2.2.30 MOVEQ - Move Quick. 407
13.4.2.2.31 MOVEX - Move Extended. 408
13.4.2.2.32 NOP - No Operation. 409
13.4.2.2.33 NOT - Logical Complement. 410
13.4.2.2.34 OR - Logical OR. 411
13.4.2.2.35 ORQ - Logical OR Quick. 412
13.4.2.2.36 ORX - Logical OR Extended. 413
13.4.2.2.37 RET - Return from Subroutine. 414
13.4.2.2.38 RETI - Return from Interrupt. 415
13.4.2.2.39 RR - Register Read (Address is an imme-

diate) 416
13.4.2.2.40 RR - Register Read (Address is a register)417
13.4.2.2.41 RW - Register Write (Address is an imme-

diate) 418
13.4.2.2.42 RW - Register Write (Address is a register)419
13.4.2.2.43 RWQ - Register Write Quick (Address is

an immediate). 420
13.4.2.2.44 RWQ - Register Write Quick (Address is a

register) 421
13.4.2.2.45 RWX - Register Write Extended (Address

is an immediate). 422
13.4.2.2.46 RWX - Register Write Extended (Address

is a register). 423
13.4.2.2.47 SUB - Subtract. 424
13.4.2.2.48 SUBQ - Subtract Quick. 425
13.4.2.2.49 SUBX - Subtract Extended. 426
13.4.2.2.50 SW - Store 32-bit data to memory (Ad-

dress is an immediate). 427
13.4.2.2.51 SW - Store 32-bit data to memory (Ad-

dress is a register). 428
13.4.2.2.52 SWX - Store 32-bit data to memory (Ad-

dress is an immediate). 429
13.4.2.2.53 SWX - Store 32-bit data to memory (Ad-

dress is a register). 430
13.4.2.2.54 XOR - Logical Exclusive OR. 431
13.4.2.2.55 XOR - Register Exclusive OR. 432

16 CONTENTS

13.4.2.2.56 XORQ - Logical Exclusive OR Quick. . 433
13.4.2.2.57 XORX - Logical Exclusive OR Extended434

13.5 Slave Processing Unit. 435
13.5.1 Architectural description. 435

13.5.1.1 Enabling and disabling SPU modes from owner. 435
13.5.1.2 Registers. 436

13.5.1.2.1 General registers. 436
13.5.1.2.2 Special registers. 436
13.5.1.2.3 Event registers. 437

13.5.1.3 Instruction formats. 438
13.5.1.4 Branches. 438
13.5.1.5 Switching between SEQ and FSM mode. 439

13.5.1.5.1 From Sequential mode to FSM mode. . . 439
13.5.1.5.2 From FSM mode to Sequential mode. . . 440

13.5.1.6 Register operations. 440
13.5.1.7 32 bit ALU operations using IMMHI. 441
13.5.1.8 ALU mask operations. 442
13.5.1.9 ALU flags. 442
13.5.1.10 Inputs. 443
13.5.1.11 Outputs. 443
13.5.1.12 State transitions. 443
13.5.1.13 FSM mode inputs. 444
13.5.1.14 FSM events. 445

13.5.1.14.1 Configuring an event. 445
13.5.1.15 Breakpoints. 446
13.5.1.16 Trace registers. 446

13.5.2 Instruction set description. 446
13.5.2.1 Definitions . 446
13.5.2.2 ALU mask fields 447
13.5.2.3 Sequential instructions in alphabetical order. . . 448

13.5.2.3.1 ADD - Add 449
13.5.2.3.2 ADDQ - Add Quick. 450
13.5.2.3.3 AND - Logical AND 451
13.5.2.3.4 ANDQ - Logical AND Quick. 452
13.5.2.3.5 ANDQH - Logical AND Quick High. . . 453
13.5.2.3.6 BA - Branch Always. 454
13.5.2.3.7 BAR - Branch Always Register. 455
13.5.2.3.8 BBC - Branch Bit Clear. 456
13.5.2.3.9 BBS - Branch Bit Set. 457
13.5.2.3.10 BMI - Branch Minus. 458
13.5.2.3.11 BNZ - Branch Not Zero. 459
13.5.2.3.12 BPL - Branch Plus. 460
13.5.2.3.13 BZ - Branch Zero. 461
13.5.2.3.14 FSM - Start FSM mode. 462
13.5.2.3.15 FSMQ - Start FSM mode Quick. 463
13.5.2.3.16 HALT - Halt the SPU. 464
13.5.2.3.17 LSL - Logical Shift Left 465
13.5.2.3.18 LSLQ - Logical Shift Left Quick. 466
13.5.2.3.19 LSR - Logical Shift Right. 467
13.5.2.3.20 LSRQ - Logical Shift Right Quick. . . . 468

CONTENTS 17

13.5.2.3.21 MOVE - Move to Register. 469
13.5.2.3.22 MOVE - Move from Event Register. . . 470
13.5.2.3.23 MOVE - Move to Event Register. 471
13.5.2.3.24 MOVEH - Move High 472
13.5.2.3.25 MOVEL - Move Low. 473
13.5.2.3.26 MOVEQ - Move Quick. 474
13.5.2.3.27 NOP - No Operation. 475
13.5.2.3.28 NOT - Logical Complement. 476
13.5.2.3.29 OR - Logical OR. 477
13.5.2.3.30 ORQ - Logical OR Quick. 478
13.5.2.3.31 RR - Register Read (Address is an imme-

diate) 479
13.5.2.3.32 RR - Register Read (Address in REGA reg-

ister) . 480
13.5.2.3.33 RRM - Register Read with Mask (Address

is an immediate). 481
13.5.2.3.34 RRM - Register Read with Mask (Address

in REGA register). 482
13.5.2.3.35 RRMH - Register Read with Mask High

(Address is an immediate). 483
13.5.2.3.36 RRMH - Register Read with Mask High

(Address in REGA register). 484
13.5.2.3.37 RRMQ - Register Read with Mask Quick

(Address is an immediate). 485
13.5.2.3.38 RRMQ - Register Read with Mask Quick

(Address in REGA register). 486
13.5.2.3.39 RW - Register Write (Address is an imme-

diate) 487
13.5.2.3.40 RW - Register Write (Address in REGA

register) 488
13.5.2.3.41 RWQ - Register Write Quick (Address is

an immediate). 489
13.5.2.3.42 RWQ - Register Write Quick (Address in

REGA register) 490
13.5.2.3.43 SSL - Set Shift Left. 491
13.5.2.3.44 SSLQ - Set Shift Left Quick. 492
13.5.2.3.45 SSR - Set Shift Right. 493
13.5.2.3.46 SSRQ - Set Shift Right Quick. 494
13.5.2.3.47 SUB - Subtract. 495
13.5.2.3.48 SUBQ - Subtract Quick. 496
13.5.2.3.49 SWAP - Swap. 497
13.5.2.3.50 SWSRQ - Swap and Shift Right Quick. . 498
13.5.2.3.51 XOR - Logical Exclusive OR. 499
13.5.2.3.52 XOR - Register Exclusive OR. 500
13.5.2.3.53 XORQ - Logical Exclusive OR Quick. . 501

13.5.2.4 FSM instructions. 502
13.5.2.4.1 selinputs description. 503
13.5.2.4.2 seloutputs description 503
13.5.2.4.3 Sequential instruction. 504
13.5.2.4.4 Timer instruction. 505

18 CONTENTS

13.5.2.4.5 Transition instruction. 506
13.5.2.4.6 FSM Instructions, memory use. 507

13.6 Memory Controller. 508
13.6.1 Functional description. 508

13.6.1.1 Ownership. 509
13.6.1.1.1 Request ownership. 509

13.6.1.2 Write data from system memory to I/O Processor
SPU memory 510

13.6.1.3 Read data from system memory to the rmc data
register . 510

13.6.1.4 Write data from the rwmc data register to system
memory . 510

13.6.1.5 Write data from the rwmc data register to I/O
Processor SPU memory. 511

13.7 Switch . 511
13.7.1 Functional description. 511

13.7.1.1 Register access. 512
13.7.1.2 Interrupts to CPU from the I/O Processor. . . . 512
13.7.1.3 Interrupts to MPU. 514

13.7.1.3.1 MPU Interrupts from I/O Processor modules514
13.7.1.3.2 MPU Interrupts from CPU software. . . 516

13.7.1.4 Pin multiplexing 516
13.7.1.4.1 Mapping I/O Processor buses onto the pa

to pe ports. 517
13.7.1.4.2 Controlling I/O Processor buses. 518
13.7.1.4.3 BUS0 out. 519
13.7.1.4.4 BUS1 out. 520
13.7.1.4.5 GIO out bus. 520

13.7.1.5 Connecting I/O Processor modules. 520
13.7.1.5.1 SPU. 520
13.7.1.5.2 Timer Groups. 522
13.7.1.5.3 Trigger Groups. 522
13.7.1.5.4 Parallel Data Path in. 523
13.7.1.5.5 Parallel Data Path out. 524
13.7.1.5.6 Serial CRC in. 525
13.7.1.5.7 Serial CRC out. 525

13.8 Timer group . 525
13.8.1 Functional description. 526

13.8.1.1 Timer . 526
13.8.1.1.1 Toggle or pulse mode. 526
13.8.1.1.2 Run modes. 526
13.8.1.1.3 Enable or disable a Timer. 527

13.8.1.2 Clock Generator. 528
13.8.1.2.1 Configuring the Clock Generator. 529

13.8.1.3 Interrupts. 532
13.9 Trigger group. 532

13.9.1 Functional description. 532
13.9.1.1 Enable and disable a Trigger. 533
13.9.1.2 Trigger configuration. 533

13.9.1.2.1 Edge detection. 533

CONTENTS 19

13.9.1.2.2 Output strobe configuration. 533
13.9.1.3 Interrupts. 534

13.10 DMA Communicator In . 534
13.10.1 Functional description. 534

13.10.1.1 Interrupts. 535
13.11 DMA Communicator Out . 535

13.11.1 Functional description. 535
13.11.1.1 Interrupts. 536

13.12 FIFO . 537
13.12.1 Functional description. 537

13.12.1.1 The FIFO byte order. 538
13.12.1.2 FIFO Output bus mode. 539
13.12.1.3 Software interface. 539
13.12.1.4 Interrupts. 540

13.13 Parallel CRC. 540
13.13.1 Functional description. 541

13.13.1.1 Data interfaces. 541
13.13.1.2 CRC Configuration. 542
13.13.1.3 Error detection. 542

13.14 Serial CRC In. 542
13.14.1 Functional description. 543

13.14.1.1 Configuration. 543
13.14.1.2 CRC Validation. 543

13.15 Serial CRC Out. 543
13.15.1 Functional description. 543

13.15.1.1 Configuration. 544
13.15.1.2 Data interface. 544

13.16 Synchronization and Asynchronous Paths. 544
13.16.1 SAPin Functional description. 544

13.16.1.1 Buses (in), synchronization. 545
13.16.1.1.1 byte0sel ... byte3sel 545
13.16.1.1.2 byte0ext src ... byte3ext src 546
13.16.1.1.3 byte0edge ... byte3edge 547
13.16.1.1.4 byte0delay ... byte3delay 547

13.16.1.2 GIO:s (in). 547
13.16.1.2.1 Synchronization. 547
13.16.1.2.2 Logic stage. 547

13.16.2 SAPout Functional description. 548
13.16.2.1 Gated clocks. 549
13.16.2.2 Buses (out). 550

13.16.2.2.1 byte0clk sel ... byte3clk sel 550
13.16.2.2.2 byte0gatedclk ... byte3gatedclk 550
13.16.2.2.3 byte0clk inv ... byte3clk inv 550

13.16.2.3 Bus output enables. 551
13.16.2.3.1 byte0clk sel ... byte3clk sel 552
13.16.2.3.2 byte0clk ext ... byte3clk ext 552
13.16.2.3.3 byte0gatedclk ... byte3gatedclk 552
13.16.2.3.4 byte0clk inv ... byte3clk inv 552
13.16.2.3.5 byte0logic ... byte3logic 553

13.16.2.4 GIO:s (out). 553

20 CONTENTS

13.16.2.4.1 outclk sel 553
13.16.2.4.2 outclk ext 554
13.16.2.4.3 outgatedclk 555
13.16.2.4.4 outclk inv 555
13.16.2.4.5 outlogic 555

13.16.2.5 GIO output enables. 555
13.16.2.5.1 oeclk sel 556
13.16.2.5.2 oeclk ext 556
13.16.2.5.3 oegatedclk 556
13.16.2.5.4 oeclk inv 556
13.16.2.5.5 oelogic 557

14 Memory Arbiter 559
14.1 References. 559
14.2 Definitions . 559
14.3 Overview. 559
14.4 Functional description. 560

14.4.1 Memory arbitration scheme. 560
14.4.2 Cache coherence. 561
14.4.3 Breakpoints . 561

14.4.3.1 Setting up breakpoints. 561
14.4.3.2 Breakpoint status. 562
14.4.3.3 Acknowledging a breakpoint. 562
14.4.3.4 Interrupts. 563
14.4.3.5 Stopping clients. 563

14.4.3.5.1 Writes. 563
14.5 Software interface. 563

14.5.1 Allocation of arbitration slots. 563
14.5.1.1 Registers. 563
14.5.1.2 Bandwidth versus latency. 564
14.5.1.3 Examples. 564

14.5.1.3.1 Setting an allocation vector. 564
14.5.2 Breakpoints . 565

14.5.2.1 Setting up a breakpoint. 565
14.5.2.2 To tell if a breakpoint has been triggered. 565
14.5.2.3 Get information from a triggered breakpoint. . . 566
14.5.2.4 Reset a breakpoint. 566
14.5.2.5 Stopping clients. 567

14.5.2.5.1 Examples. 567
14.5.3 Cache coherence. 567

14.5.3.1 Cache coherence considerations. 567
14.5.3.2 Controlling cache coherency. 568
14.5.3.3 Examples. 568

14.5.3.3.1 Telling a client to avoid snooping. 568
14.5.3.3.2 Telling a cache not to snoop. 568

15 Real Time Trace 571
15.1 References. 571
15.2 Definitions . 571
15.3 Overview. 571

CONTENTS 21

15.4 Functional description. 572
15.4.1 Real time tracing. 572

15.4.1.1 Configuration. 572
15.4.1.2 PC tracing. 572

15.4.1.2.1 Overflow situations. 572
15.4.1.3 Watchpoint tracing. 573
15.4.1.4 Ownership tracing. 573
15.4.1.5 Starting and stopping tracing. 573

15.4.2 Real time trace messages. 573
15.4.2.1 Message start and end. 573
15.4.2.2 Message types. 573

15.4.2.2.1 owner - process ownership change. . . . 574
15.4.2.2.2 sjmp - jumps with static target address. . 574
15.4.2.2.3 djmp - jump with dynamic target address. 575
15.4.2.2.4 error. 575
15.4.2.2.5 sync - synchronization. 576
15.4.2.2.6 exception - jump to exception routine. . . 576
15.4.2.2.7 wp - watchpoint trigger. 577

15.4.3 TAP controller interface. 577
15.5 Hardware interface. 577

15.5.1 TAP interface . 577
15.5.2 Real time trace interface. 578

15.5.2.1 Timing . 578
15.6 Software interface. 579

15.6.1 TAP debug data register. 579

16 Pinout and pin multiplexing 581
16.1 References. 581
16.2 Overview. 581
16.3 Pinout. 581

16.3.1 Power and ground pins. 581
16.3.1.1 3.3 V Power pins. 581
16.3.1.2 1.5 V Power pins. 582
16.3.1.3 Ground pins. 582

16.3.2 Miscellaneous pins. 583
16.3.3 Boot select pins. 583
16.3.4 Test access port (TAP). 583
16.3.5 Bus interface pins. 584

16.3.5.1 Data bus pins. 584
16.3.5.2 Address bus pins. 584
16.3.5.3 Chip select pins. 585
16.3.5.4 Bus interface control pins. 585
16.3.5.5 External DMA/slave mode handshake pins. . . . 586
16.3.5.6 Bus arbitration pins. 586

16.3.6 Ethernet interface 0. 586
16.3.7 Asynchronous serial port 0. 587
16.3.8 USB pins. 587
16.3.9 Configurable I/O pins. 587

16.3.9.1 Port pa. 587
16.3.9.2 Port pb . 588

22 CONTENTS

16.3.9.3 Port pc. 588
16.3.9.4 Port pd . 589
16.3.9.5 Port pe. 589

16.4 Multiplexing of configurable I/O pins. 590
16.4.1 Overview. 590
16.4.2 Principles for signal multiplexing. 591

16.4.2.1 Input signals. 591
16.4.2.2 Output signals. 591
16.4.2.3 Reset behavior. 592

16.4.3 Pin mapping. 592
16.4.3.1 Bus interface signals on port pa. 592
16.4.3.2 General I/O. 593
16.4.3.3 I/O processor. 593
16.4.3.4 Fixed protocol I/O blocks. 593

16.4.3.4.1 Asynchronous serial ports. 593
16.4.3.4.2 Synchronous serial ports. 594
16.4.3.4.3 ATA . 595
16.4.3.4.4 Ethernet interface 1. 597
16.4.3.4.5 timer. 598

16.5 USB pin mapping . 598

17 Stubless Debugging 601
17.1 Introduction. 601
17.2 Entering guru mode. 601
17.3 Debug functions. 602

17.3.1 Read/write register. 602
17.3.1.1 Read register. 602
17.3.1.2 Write register. 603

17.3.2 Read/write memory. 603
17.3.2.1 Read. 603
17.3.2.2 Write . 604

17.3.3 Return from guru mode. 604

18 Timers 605
18.1 References. 605
18.2 Overview. 605
18.3 Functional Description. 605

18.3.1 Programmable Timers. 605
18.3.1.1 Timer Operation 606
18.3.1.2 Timer Clock Frequency. 606
18.3.1.3 Timer Output. 606
18.3.1.4 Reset Behavior. 606

18.3.2 Counter. 607
18.3.2.1 Counter Operation. 607
18.3.2.2 Reading the Counter. 607
18.3.2.3 Reset Behavior. 607

18.3.3 Continuous Read-Only Timer. 607
18.3.3.1 Test Mode. 607

18.3.4 Timer Trig Point. 608
18.3.4.1 Trig Point Operation. 608

CONTENTS 23

18.3.4.2 Reset Behavior. 608
18.3.5 Watchdog Timer. 608

18.3.5.1 Watchdog Operation. 608
18.3.5.2 Configuring and reading the Watchdog. 608
18.3.5.3 Reset Behavior. 609

18.3.6 Interrupts. 609
18.4 Hardware Interface. 609

18.4.1 Timer Input Clock. 609
18.4.2 Timer Output. 610

18.5 Software Interface. 610
18.5.1 Timer and counter. 610
18.5.2 Trig point. 611

19 Asynchronous serial port 613
19.1 References. 613
19.2 Overview. 613
19.3 Functional Description. 613

19.3.1 Asynchronous serial port registers. 613
19.3.2 Baud rate selection. 614
19.3.3 Serial protocol operation modes. 615

19.3.3.1 Character format. 615
19.3.3.2 Handshake signals. 615
19.3.3.3 Automatic xoff handling. 616
19.3.3.4 RS 485 operation. 616
19.3.3.5 Stop transmitter. 616
19.3.3.6 Internal loop back. 616

19.3.4 CPU controlled operation. 617
19.3.4.1 Transmitter. 617
19.3.4.2 Receiver. 617

19.3.5 DMA controlled operation. 618
19.3.5.1 DMA channel connections. 618
19.3.5.2 Transmitter. 618
19.3.5.3 Receiver. 618

19.3.6 Interrupts. 619
19.4 Hardware Interface. 620

19.4.1 Input and output signals. 620
19.4.2 Signal timing. 621

19.5 Software Interface. 621
19.5.1 General. 621
19.5.2 DMA operation . 621

20 ATA Interface 623
20.1 References. 623
20.2 Definitions . 623
20.3 Overview. 623
20.4 Functional description. 624

20.4.1 Transfer parameters. 624
20.4.2 Host transfer method. 625
20.4.3 Address counter. 625
20.4.4 Interrupts. 626

24 CONTENTS

20.4.5 Handling timeouts and errors. 626
20.5 Hardware interface. 626
20.6 Software interface. 628

20.6.1 Configuration registers. 628
20.6.2 DMA descriptors. 628
20.6.3 Transfer modes. 629
20.6.4 Software reset. 629

21 Ethernet Interface 631
21.1 References. 631
21.2 Definitions . 631
21.3 Overview. 632
21.4 Functional description. 633

21.4.1 Transmitter. 633
21.4.1.1 Error handling. 634

21.4.2 Receiver. 634
21.4.2.1 Address recognition. 635
21.4.2.2 Received frame length check. 635
21.4.2.3 Error handling. 636

21.4.3 Duplex and flow control. 636
21.4.4 MDIO interface . 636
21.4.5 Error and statistics counters. 637
21.4.6 Interrupts. 638
21.4.7 Loop back mode. 638
21.4.8 Handshake protocol. 639
21.4.9 Phyclk pin . 639

21.4.9.1 25MHz clock output. 639
21.4.9.2 Transmit error. 639
21.4.9.3 Address recognized output. 639

21.5 Hardware Interface. 639
21.5.1 External pin description. 639

21.5.1.1 Transmitter signals. 640
21.5.1.2 Receiver signals. 640
21.5.1.3 Network status signals. 640
21.5.1.4 Transceiver management signals. 640

21.5.2 Reset behavior. 641
21.5.3 Signal timing. 641

21.6 Software Interface. 642
21.6.1 Configuration registers. 642
21.6.2 DMA and pin configuration. 642
21.6.3 DMA descriptors. 642

21.6.3.1 Transmitter. 642
21.6.3.2 Receiver. 643

21.6.4 Software reset. 643
21.6.5 Configuration example. 643

21.6.5.1 rwgenctrl . 643
21.6.5.2 rwrec ctrl . 644
21.6.5.3 rwtr ctrl . 644
21.6.5.4 rwma0 lo . 644
21.6.5.5 rwma0hi . 644

CONTENTS 25

21.6.5.6 rwma1 lo . 644
21.6.5.7 rwma1hi . 644
21.6.5.8 rwga lo . 645
21.6.5.9 rwga hi . 645
21.6.5.10 rwtest ctrl . 645

22 General I/O 647
22.1 References. 647
22.2 Overview. 647
22.3 Functional description. 647

22.3.1 General I/O ports. 647
22.3.2 Interrupts on port pa. 648
22.3.3 Reset behavior. 648

22.4 Hardware interface. 648
22.4.1 General I/O signals. 648
22.4.2 Data output timing. 649
22.4.3 Data input timing . 649
22.4.4 Interrupt input timing . 650

22.5 Software interface. 650
22.5.1 Programming considerations. 651

22.5.1.1 Port read after write. 651
22.5.1.2 Acknowledge of level triggered interrupts. . . . 651

23 Synchronous Serial Interface 653
23.1 References. 653
23.2 Definitions . 653
23.3 Overview. 654
23.4 Functional description. 655

23.4.1 Operating modes. 655
23.4.1.1 Lowspeed mode. 656

23.4.1.1.1 SPI. 657
23.4.1.1.2 OKI MSM7731 microprocessor interface657
23.4.1.1.3 MAX1202 A/D converter interface. . . . 657
23.4.1.1.4 I2C . 657

23.4.1.2 Highspeed mode. 658
23.4.1.2.1 Special output clock gating feature. . . . 658
23.4.1.2.2 Fast SPI master mode. 659

23.4.1.3 Wiresave mode. 659
23.4.1.3.1 Mode of operation. 659
23.4.1.3.2 Metadata use. 660

23.4.1.4 IEC60958 mode. 660
23.4.1.4.1 Data format. 661
23.4.1.4.2 IEC60958 receiver data rate detection. . 662

23.4.2 Frame events and frame signals. 663
23.4.2.1 Frame events and their sources. 664
23.4.2.2 Frame output signal. 664
23.4.2.3 Frame cycle timing. 665

23.4.2.3.1 Isochronous mode with frame output signal665
23.4.2.3.2 Frame input signal. 666
23.4.2.3.3 Transmitter bulk mode and frame output. 667

26 CONTENTS

23.4.2.4 Special cases. 668
23.4.2.4.1 Simultaneous master and slave. 668
23.4.2.4.2 No frame signal. 668
23.4.2.4.3 Frame signals in ’highspeed’ and ’wiresave’

modes 669
23.4.3 Flow control . 669

23.4.3.1 Highspeed and lowspeed modes. 669
23.4.3.2 Flow control in wiresave mode. 670

23.4.4 Clocking . 671
23.4.4.1 Internal clock. 671
23.4.4.2 External clock. 673

23.4.5 Reset behavior. 673
23.4.6 Interrupts. 673

23.5 Hardware Interface. 675
23.5.1 External pins. 675
23.5.2 Reset behavior. 676
23.5.3 Timing . 676

23.6 Software Interface. 677
23.6.1 Data organization in memory. 677

23.6.1.1 Examples. 678
23.6.2 Transferring data. 679

23.6.2.1 Mode register driven mode. 679
23.6.2.1.1 Allowed interrupt latency. 679

23.6.2.2 DMA mode. 680
23.6.3 Starting and stopping. 680

23.6.3.1 Enable procedure. 680
23.6.3.1.1 Continuous clock or internal clock. . . . 680
23.6.3.1.2 Gated external clock. 681

23.6.3.2 Stopping the SSI. 682
23.6.4 Error conditions and recovery. 684
23.6.5 Wiresave mode metadata codes. 685

23.7 Configuration examples. 686
23.7.1 I2S . 686
23.7.2 SPI. 687
23.7.3 MAX1202 . 687

23.7.3.1 Initial configuration. 688
23.7.3.2 Starting communication. 688

23.7.4 I2C . 689
23.7.4.1 Electrical connection. 689
23.7.4.2 Data formatting. 689
23.7.4.3 Initial configuration. 689
23.7.4.4 Communication. 690

23.7.5 Atmel flash memory (fast SPI). 691
23.7.5.1 Hardware connection. 692
23.7.5.2 Initial configuration. 693
23.7.5.3 Communication. 694

24 Electrical and Mechanical Information 695
24.1 DC Electrical specifications. 695

24.1.1 Absolute maximum ratings. 695

CONTENTS 27

24.1.2 ESD protection and latch-up. 695
24.1.3 Recommended operating conditions. 696
24.1.4 DC Electrical characteristics. 696

24.1.4.1 Notes on supply current specifications. 697
24.1.5 PLL loop filter . 697
24.1.6 Power up sequence. 697

24.2 AC Electrical specifications. 697
24.2.1 Conditions. 697

24.3 MTBF . 698
24.4 Pinout. 699
24.5 Mechanical specifications. 700

24.5.1 Physical dimensions. 700
24.5.2 Marking . 701
24.5.3 RoHS conformance. 701

24.6 Soldering. 702
24.6.1 Recommended soldering profile for Pb-free package. . . . 702
24.6.2 Recommended soldering profile for conventional package. 703

24.7 Delivery and storage. 703
24.7.1 Delivery package. 703
24.7.2 Storage time. 704
24.7.3 Factory floor life and rebake procedure. 704

25 Internal Registers 705
25.1 Introduction. 705
25.2 Notation . 705
25.3 ata. 706

25.3.1 rwctrl2 . 706
25.3.2 rsstatdata/rstatdata . 707
25.3.3 rwctrl0 . 708
25.3.4 rwctrl1 . 709
25.3.5 rwtrf cnt . 710
25.3.6 rstatmisc . 711
25.3.7 rwintr mask . 712
25.3.8 rwack intr . 713
25.3.9 rintr . 714
25.3.10 rmaskedintr . 715

25.4 bif core . 716
25.4.1 rwgrp1 cfg . 716
25.4.2 rwgrp2 cfg . 718
25.4.3 rwgrp3 cfg . 719
25.4.4 rwgrp4 cfg . 721
25.4.5 rwsdramcfg grp0 . 723
25.4.6 rwsdramcfg grp1 . 725
25.4.7 rwsdramtiming . 727
25.4.8 rwsdramcmd . 728
25.4.9 rssdramref stat/r sdramref stat 729

25.5 bif dma . 730
25.5.1 rwch0 ctrl . 730
25.5.2 rwch0 addr . 732
25.5.3 rwch0 start . 733

28 CONTENTS

25.5.4 rwch0 cnt . 734
25.5.5 rch0 stat . 735
25.5.6 rwch1 ctrl . 736
25.5.7 rwch1 addr . 738
25.5.8 rwch1 start . 739
25.5.9 rwch1 cnt . 740
25.5.10 rch1 stat . 741
25.5.11 rwch2 ctrl . 742
25.5.12 rwch2 addr . 744
25.5.13 rwch2 start . 745
25.5.14 rwch2 cnt . 746
25.5.15 rch2 stat . 747
25.5.16 rwch3 ctrl . 748
25.5.17 rwch3 addr . 750
25.5.18 rwch3 start . 751
25.5.19 rwch3 cnt . 752
25.5.20 rch3 stat . 753
25.5.21 rwintr mask . 754
25.5.22 rwack intr . 755
25.5.23 rintr . 756
25.5.24 rmaskedintr . 757
25.5.25 rwpin0 cfg . 758
25.5.26 rwpin1 cfg . 759
25.5.27 rwpin2 cfg . 760
25.5.28 rwpin3 cfg . 761
25.5.29 rwpin4 cfg . 762
25.5.30 rwpin5 cfg . 763
25.5.31 rwpin6 cfg . 764
25.5.32 rwpin7 cfg . 765
25.5.33 rpin stat . 766

25.6 bif slave . 767
25.6.1 rwslavecfg . 767
25.6.2 rslavemode . 768
25.6.3 rwch0 cfg . 769
25.6.4 rwch1 cfg . 770
25.6.5 rwch2 cfg . 771
25.6.6 rwch3 cfg . 772
25.6.7 rwarb cfg . 773
25.6.8 rarb stat . 774
25.6.9 rwintr mask . 775
25.6.10 rwack intr . 776
25.6.11 rintr . 777
25.6.12 rmaskedintr . 778

25.7 bif slaveext . 779
25.7.1 rch0 seqdata . 779
25.7.2 rch0 data . 780
25.7.3 rwch0 addr . 781
25.7.4 rch0 stat . 782
25.7.5 rwch0 ctrl . 783
25.7.6 rwch1 seqdata . 784

CONTENTS 29

25.7.7 rwch1 data . 785
25.7.8 rwch1 addr . 786
25.7.9 rwch1 ctrl . 787
25.7.10 rch1 stat . 788
25.7.11 rch2 seqdata . 789
25.7.12 rch2 data . 790
25.7.13 rwch2 addr . 791
25.7.14 rch2 stat . 792
25.7.15 rwch2 ctrl . 793
25.7.16 rwch3 seqdata . 794
25.7.17 rwch3 data . 795
25.7.18 rwch3 addr . 796
25.7.19 rch3 stat . 797
25.7.20 rwch3 ctrl . 798

25.8 config. 799
25.8.1 rbootsel . 799
25.8.2 rwclk ctrl . 800
25.8.3 rwpadctrl . 802

25.9 cris . 803
25.9.1 rwgc cfg . 803
25.9.2 rwgc ccs. 804
25.9.3 rwgc srs . 805
25.9.4 rwgc nrp . 806
25.9.5 rwgc exs . 807
25.9.6 rwgc eda . 808
25.9.7 rwgc r0 . 809
25.9.8 rwgc r1 . 810
25.9.9 rwgc r2 . 811
25.9.10 rwgc r3 . 812

25.10 crisbp . 813
25.10.1 rwbp ctrl . 813
25.10.2 rwbp i0 start . 816
25.10.3 rwbp i0 end . 817
25.10.4 rwbp d0 start . 818
25.10.5 rwbp d0 end . 819
25.10.6 rwbp d1 start . 820
25.10.7 rwbp d1 end . 821
25.10.8 rwbp d2 start . 822
25.10.9 rwbp d2 end . 823
25.10.10 rwbp d3 start . 824
25.10.11 rwbp d3 end . 825
25.10.12 rwbp d4 start . 826
25.10.13 rwbp d4 end . 827
25.10.14 rwbp d5 start . 828
25.10.15 rwbp d5 end . 829

25.11 dma. 830
25.11.1 rwdata . 830
25.11.2 rwdatanext . 831
25.11.3 rwdatabuf . 832
25.11.4 rwdatactrl . 833

30 CONTENTS

25.11.5 rwdatastat . 834
25.11.6 rwdatamd . 835
25.11.7 rwdatamd s . 836
25.11.8 rwdataafter . 837
25.11.9 rwctxt . 838
25.11.10 rwctxt next . 839
25.11.11 rwctxt ctrl . 840
25.11.12 rwctxt stat . 841
25.11.13 rwctxt md0 . 842
25.11.14 rwctxt md0 s . 843
25.11.15 rwctxt md1 . 844
25.11.16 rwctxt md1 s . 845
25.11.17 rwctxt md2 . 846
25.11.18 rwctxt md2 s . 847
25.11.19 rwctxt md3 . 848
25.11.20 rwctxt md3 s . 849
25.11.21 rwctxt md4 . 850
25.11.22 rwctxt md4 s . 851
25.11.23 rwsaveddata . 852
25.11.24 rwsaveddatabuf . 853
25.11.25 rwgroup . 854
25.11.26 rwgroupnext . 855
25.11.27 rwgroupctrl . 856
25.11.28 rwgroupstat. 857
25.11.29 rwgroupmd . 858
25.11.30 rwgroupmd s . 859
25.11.31 rwgroupup . 860
25.11.32 rwgroupdown . 861
25.11.33 rwcmd . 862
25.11.34 rwcfg . 863
25.11.35 rwstat . 864
25.11.36 rwintr mask . 865
25.11.37 rwack intr . 866
25.11.38 rintr . 867
25.11.39 rmaskedintr . 868
25.11.40 rwstreamcmd . 869

25.12 eth . 871
25.12.1 rwma0 lo . 871
25.12.2 rwma0hi . 872
25.12.3 rwma1 lo . 873
25.12.4 rwma1hi . 874
25.12.5 rwga lo . 875
25.12.6 rwga hi . 876
25.12.7 rwgenctrl . 877
25.12.8 rwrec ctrl . 878
25.12.9 rwtr ctrl . 879
25.12.10 rwclr err . 880
25.12.11 rwmgm ctrl . 881
25.12.12 rstat . 882
25.12.13 rsrec cnt/r rec cnt . 883

CONTENTS 31

25.12.14 rstr cnt/r tr cnt . 884
25.12.15 rsphy cnt/r phy cnt . 885
25.12.16 rwtest ctrl . 886
25.12.17 rwintr mask . 887
25.12.18 rwack intr . 889
25.12.19 rintr . 891
25.12.20 rmaskedintr . 893

25.13 gio . 895
25.13.1 rwpa dout . 895
25.13.2 rpa din . 896
25.13.3 rwpa oe . 897
25.13.4 rwintr cfg . 898
25.13.5 rwintr mask . 900
25.13.6 rwack intr . 901
25.13.7 rintr . 902
25.13.8 rmaskedintr . 903
25.13.9 rwpb dout . 904
25.13.10 rpb din . 905
25.13.11 rwpb oe . 906
25.13.12 rwpc dout . 907
25.13.13 rpc din . 908
25.13.14 rwpc oe . 909
25.13.15 rwpd dout . 910
25.13.16 rpd din . 911
25.13.17 rwpd oe . 912
25.13.18 rwpe dout . 913
25.13.19 rpe din . 914
25.13.20 rwpe oe . 915

25.14 intrvect . 916
25.14.1 rwmask . 916
25.14.2 rvect . 919
25.14.3 rmaskedvect . 922
25.14.4 rnmi . 925
25.14.5 rguru . 926

25.15 iopcrc par . 927
25.15.1 rwcfg . 927
25.15.2 rwinit crc . 929
25.15.3 rwcorrectcrc . 930
25.15.4 rwctrl . 931
25.15.5 rwset last . 932
25.15.6 rwwr1byte. 933
25.15.7 rwwr2byte. 934
25.15.8 rwwr3byte. 935
25.15.9 rwwr4byte. 936
25.15.10 rwwr1byte last . 937
25.15.11 rwwr2byte last . 938
25.15.12 rwwr3byte last . 939
25.15.13 rwwr4byte last . 940
25.15.14 rstat . 941
25.15.15 rsh reg . 942

32 CONTENTS

25.15.16 rcrc . 943
25.15.17 rwstrb rec dif in . 944

25.16 iopdmc in . 945
25.16.1 rwcfg . 945
25.16.2 rwctrl . 946
25.16.3 rstat . 947
25.16.4 rwstreamcmd . 948
25.16.5 rwstreamwr data . 950
25.16.6 rwstreamwr datalast 951
25.16.7 rwstreamctrl . 952
25.16.8 rstreamstat . 953
25.16.9 rdatadescr . 954
25.16.10 rctxt descr. 955
25.16.11 rctxt descrmd1 . 956
25.16.12 rctxt descrmd2 . 957
25.16.13 rgroupdescr. 958
25.16.14 rwdatadescr . 959
25.16.15 rwctxt descr. 960
25.16.16 rwctxt descrmd1 . 961
25.16.17 rwctxt descrmd2 . 962
25.16.18 rwgroupdescr. 963
25.16.19 rwintr mask . 964
25.16.20 rwack intr . 965
25.16.21 rintr . 966
25.16.22 rmaskedintr . 967

25.17 iopdmc out . 968
25.17.1 rwcfg . 968
25.17.2 rwctrl . 969
25.17.3 rstat . 970
25.17.4 rwstreamcmd . 971
25.17.5 rsstreamdata/rstreamdata. 973
25.17.6 rstreamstat . 974
25.17.7 rdatadescr . 976
25.17.8 rctxt descr. 977
25.17.9 rctxt descrmd1 . 978
25.17.10 rctxt descrmd2 . 979
25.17.11 rgroupdescr. 980
25.17.12 rwdatadescr . 981
25.17.13 rwctxt descr. 982
25.17.14 rwctxt descrmd1 . 983
25.17.15 rwctxt descrmd2 . 984
25.17.16 rwgroupdescr. 985
25.17.17 rwintr mask . 986
25.17.18 rwack intr . 988
25.17.19 rintr . 989
25.17.20 rmaskedintr . 990

25.18 iopfifo out . 991
25.18.1 rwcfg . 991
25.18.2 rwctrl . 993
25.18.3 rstat . 994

CONTENTS 33

25.18.4 rwwr1byte. 995
25.18.5 rwwr2byte. 996
25.18.6 rwwr3byte. 997
25.18.7 rwwr4byte. 998
25.18.8 rwwr1byte last . 999
25.18.9 rwwr2byte last . 1000
25.18.10 rwwr3byte last . 1001
25.18.11 rwwr4byte last . 1002
25.18.12 rwset last . 1003
25.18.13 rsrd data/rrd data . 1004
25.18.14 rwstrb dif out . 1005
25.18.15 rwintr mask . 1006
25.18.16 rwack intr . 1007
25.18.17 rintr . 1008
25.18.18 rmaskedintr . 1009

25.19 iopfifo in . 1010
25.19.1 rwcfg . 1010
25.19.2 rwctrl . 1011
25.19.3 rstat . 1012
25.19.4 rsrd1byte/rrd1byte . 1013
25.19.5 rsrd2byte/rrd2byte . 1014
25.19.6 rsrd3byte/rrd3byte . 1015
25.19.7 rsrd4byte/rrd4byte . 1016
25.19.8 rwset last . 1017
25.19.9 rwstrb dif in . 1018
25.19.10 rwintr mask . 1019
25.19.11 rwack intr . 1020
25.19.12 rintr . 1021
25.19.13 rmaskedintr . 1022

25.20 iopfifo out extra . 1023
25.20.1 rsrd data/rrd data . 1023
25.20.2 rstat . 1024
25.20.3 rwstrb dif out . 1025
25.20.4 rwintr mask . 1026
25.20.5 rwack intr . 1027
25.20.6 rintr . 1028
25.20.7 rmaskedintr . 1029

25.21 iopfifo in extra . 1030
25.21.1 rwwr data . 1030
25.21.2 rstat . 1031
25.21.3 rwstrb dif in . 1032
25.21.4 rwintr mask . 1033
25.21.5 rwack intr . 1034
25.21.6 rintr . 1035
25.21.7 rmaskedintr . 1036

25.22 iopmpu. 1037
25.22.1 rwr . 1037
25.22.2 rwctrl . 1038
25.22.3 rpc . 1039
25.22.4 rstat . 1040

34 CONTENTS

25.22.5 rwinstr . 1041
25.22.6 rwimmediate . 1042
25.22.7 rtrace . 1043
25.22.8 rwr stat . 1044
25.22.9 rwthread. 1046
25.22.10 rwintr . 1047

25.23 iopsapin . 1048
25.23.1 rwbus0sync. 1048
25.23.2 rwbus1sync. 1053
25.23.3 rwgio . 1058

25.24 iopsapout . 1060
25.24.1 rwgengated. 1060
25.24.2 rwbus0 . 1063
25.24.3 rwbus1 . 1065
25.24.4 rwbus0lo oe . 1067
25.24.5 rwbus0hi oe . 1069
25.24.6 rwbus1lo oe . 1071
25.24.7 rwbus1hi oe . 1073
25.24.8 rwgio . 1075

25.25 iopspu . 1078
25.25.1 rwr . 1078
25.25.2 rwseqpc . 1079
25.25.3 rwfsm pc . 1080
25.25.4 rwctrl . 1081
25.25.5 rwfsm inputs30 . 1082
25.25.6 rwfsm inputs74 . 1087
25.25.7 rwgio out . 1092
25.25.8 rwbus0out . 1093
25.25.9 rwbus1out . 1094
25.25.10 rgio in . 1095
25.25.11 rbus0in . 1096
25.25.12 rbus1in . 1097
25.25.13 rwgio out set . 1098
25.25.14 rwgio out clr . 1099
25.25.15 rswr stat/rwr stat . 1100
25.25.16 rreg indexedby bus0in 1102
25.25.17 rstat in . 1103
25.25.18 rtrigger in . 1105
25.25.19 rspecialstat . 1106
25.25.20 rwreg access . 1107
25.25.21 rweventcfg . 1108
25.25.22 rweventmask . 1109
25.25.23 rweventval . 1110
25.25.24 rweventret . 1111
25.25.25 rtrace . 1112
25.25.26 rfsm trace . 1113
25.25.27 rwbrp . 1114

25.26 iopsw cfg . 1115
25.26.1 rwcrc par0owner . 1115
25.26.2 rwcrc par1owner . 1116

CONTENTS 35

25.26.3 rwdmc in0 owner . 1117
25.26.4 rwdmc in1 owner . 1118
25.26.5 rwdmc out0 owner . 1119
25.26.6 rwdmc out1 owner . 1120
25.26.7 rwfifo in0 owner . 1121
25.26.8 rwfifo in0 extraowner 1122
25.26.9 rwfifo in1 owner . 1123
25.26.10 rwfifo in1 extraowner 1124
25.26.11 rwfifo out0 owner . 1125
25.26.12 rwfifo out0 extraowner 1126
25.26.13 rwfifo out1 owner . 1127
25.26.14 rwfifo out1 extraowner 1128
25.26.15 rwsapin owner . 1129
25.26.16 rwsapout owner . 1130
25.26.17 rwscrc in0 owner . 1131
25.26.18 rwscrc in1 owner . 1132
25.26.19 rwscrcout0 owner . 1133
25.26.20 rwscrcout1 owner . 1134
25.26.21 rwspu0owner . 1135
25.26.22 rwspu1owner . 1136
25.26.23 rwtimer grp0 owner . 1137
25.26.24 rwtimer grp1 owner . 1138
25.26.25 rwtimer grp2 owner . 1139
25.26.26 rwtimer grp3 owner . 1140
25.26.27 rwtrigger grp0 owner . 1141
25.26.28 rwtrigger grp1 owner . 1142
25.26.29 rwtrigger grp2 owner . 1143
25.26.30 rwtrigger grp3 owner . 1144
25.26.31 rwtrigger grp4 owner . 1145
25.26.32 rwtrigger grp5 owner . 1146
25.26.33 rwtrigger grp6 owner . 1147
25.26.34 rwtrigger grp7 owner . 1148
25.26.35 rwbus0mask . 1149
25.26.36 rwbus0oe mask . 1150
25.26.37 rwbus1mask . 1151
25.26.38 rwbus1oe mask . 1152
25.26.39 rwgio mask . 1153
25.26.40 rwgio oe mask . 1154
25.26.41 rwpinmapping. 1155
25.26.42 rwbusout cfg . 1157
25.26.43 rwgio out grp0 cfg . 1160
25.26.44 rwgio out grp1 cfg . 1163
25.26.45 rwgio out grp2 cfg . 1166
25.26.46 rwgio out grp3 cfg . 1169
25.26.47 rwgio out grp4 cfg . 1172
25.26.48 rwgio out grp5 cfg . 1175
25.26.49 rwgio out grp6 cfg . 1178
25.26.50 rwgio out grp7 cfg . 1181
25.26.51 rwspu0cfg . 1184
25.26.52 rwspu1cfg . 1185

36 CONTENTS

25.26.53 rwtimer grp0 cfg . 1186
25.26.54 rwtimer grp1 cfg . 1187
25.26.55 rwtimer grp2 cfg . 1188
25.26.56 rwtimer grp3 cfg . 1189
25.26.57 rwtrigger grpscfg . 1190
25.26.58 rwpdp0cfg . 1192
25.26.59 rwpdp1cfg . 1194
25.26.60 rwsdpcfg . 1196

25.27 iopsw cpu . 1199
25.27.1 rwmc ctrl . 1199
25.27.2 rwmc data. 1200
25.27.3 rwmc addr . 1201
25.27.4 rsmc data/rmc data . 1202
25.27.5 rmc stat . 1203
25.27.6 rwbus0clr mask . 1204
25.27.7 rwbus0setmask . 1205
25.27.8 rwbus0oe clr mask. 1206
25.27.9 rwbus0oe setmask . 1207
25.27.10 rbus0in . 1208
25.27.11 rwbus1clr mask . 1209
25.27.12 rwbus1setmask . 1210
25.27.13 rwbus1oe clr mask. 1211
25.27.14 rwbus1oe setmask . 1212
25.27.15 rbus1in . 1213
25.27.16 rwgio clr mask . 1214
25.27.17 rwgio setmask . 1215
25.27.18 rwgio oe clr mask . 1216
25.27.19 rwgio oe setmask . 1217
25.27.20 rgio in . 1218
25.27.21 rwintr0 mask . 1219
25.27.22 rwack intr0 . 1223
25.27.23 rintr0 . 1226
25.27.24 rmaskedintr0 . 1229
25.27.25 rwintr1 mask . 1232
25.27.26 rwack intr1 . 1236
25.27.27 rintr1 . 1239
25.27.28 rmaskedintr1 . 1242
25.27.29 rwintr2 mask . 1245
25.27.30 rwack intr2 . 1249
25.27.31 rintr2 . 1251
25.27.32 rmaskedintr2 . 1254
25.27.33 rwintr3 mask . 1257
25.27.34 rwack intr3 . 1261
25.27.35 rintr3 . 1263
25.27.36 rmaskedintr3 . 1266

25.28 iopsw mpu . 1269
25.28.1 rwsw cfg owner. 1269
25.28.2 rwmc ctrl . 1270
25.28.3 rwmc data. 1271
25.28.4 rwmc addr . 1272

CONTENTS 37

25.28.5 rsmc data/rmc data . 1273
25.28.6 rmc stat . 1274
25.28.7 rwbus0clr mask . 1275
25.28.8 rwbus0setmask . 1276
25.28.9 rwbus0oe clr mask. 1277
25.28.10 rwbus0oe setmask . 1278
25.28.11 rbus0in . 1279
25.28.12 rwbus1clr mask . 1280
25.28.13 rwbus1setmask . 1281
25.28.14 rwbus1oe clr mask. 1282
25.28.15 rwbus1oe setmask . 1283
25.28.16 rbus1in . 1284
25.28.17 rwgio clr mask . 1285
25.28.18 rwgio setmask . 1286
25.28.19 rwgio oe clr mask . 1287
25.28.20 rwgio oe setmask . 1288
25.28.21 rgio in . 1289
25.28.22 rwcpu intr . 1290
25.28.23 rcpu intr . 1293
25.28.24 rwintr grp0 mask . 1296
25.28.25 rwack intr grp0 . 1300
25.28.26 rintr grp0 . 1301
25.28.27 rmaskedintr grp0 . 1304
25.28.28 rwintr grp1 mask . 1307
25.28.29 rwack intr grp1 . 1311
25.28.30 rintr grp1 . 1312
25.28.31 rmaskedintr grp1 . 1315
25.28.32 rwintr grp2 mask . 1318
25.28.33 rwack intr grp2 . 1322
25.28.34 rintr grp2 . 1323
25.28.35 rmaskedintr grp2 . 1326
25.28.36 rwintr grp3 mask . 1329
25.28.37 rwack intr grp3 . 1333
25.28.38 rintr grp3 . 1334
25.28.39 rmaskedintr grp3 . 1337

25.29 iopsw spu . 1340
25.29.1 rwmc ctrl . 1340
25.29.2 rwmc data. 1341
25.29.3 rwmc addr . 1342
25.29.4 rsmc data/rmc data . 1343
25.29.5 rmc stat . 1344
25.29.6 rwbus0clr mask . 1345
25.29.7 rwbus0setmask . 1346
25.29.8 rwbus0oe clr mask. 1347
25.29.9 rwbus0oe setmask . 1348
25.29.10 rbus0in . 1349
25.29.11 rwbus1clr mask . 1350
25.29.12 rwbus1setmask . 1351
25.29.13 rwbus1oe clr mask. 1352
25.29.14 rwbus1oe setmask . 1353

38 CONTENTS

25.29.15 rbus1in . 1354
25.29.16 rwgio clr mask . 1355
25.29.17 rwgio setmask . 1356
25.29.18 rwgio oe clr mask . 1357
25.29.19 rwgio oe setmask . 1358
25.29.20 rgio in . 1359
25.29.21 rwbus0clr masklo . 1360
25.29.22 rwbus0clr maskhi . 1361
25.29.23 rwbus0setmasklo . 1362
25.29.24 rwbus0setmaskhi . 1363
25.29.25 rwbus1clr masklo . 1364
25.29.26 rwbus1clr maskhi . 1365
25.29.27 rwbus1setmasklo . 1366
25.29.28 rwbus1setmaskhi . 1367
25.29.29 rwgio clr masklo . 1368
25.29.30 rwgio clr maskhi . 1369
25.29.31 rwgio setmasklo . 1370
25.29.32 rwgio setmaskhi . 1371
25.29.33 rwgio oe clr masklo . 1372
25.29.34 rwgio oe clr maskhi . 1373
25.29.35 rwgio oe setmasklo . 1374
25.29.36 rwgio oe setmaskhi . 1375
25.29.37 rwcpu intr . 1376
25.29.38 rcpu intr . 1378
25.29.39 rhw intr . 1380
25.29.40 rwmpu intr . 1382
25.29.41 rmpu intr . 1384

25.30 ioptimer grp . 1387
25.30.1 rwcfg . 1387
25.30.2 rwhalf period . 1388
25.30.3 rwhalf period len . 1389
25.30.4 rwtmr cfg . 1390
25.30.5 rwtmr len . 1393
25.30.6 rwcmd . 1394
25.30.7 rclk gencnt . 1395
25.30.8 rstmr cnt/r tmr cnt . 1396
25.30.9 rwintr mask . 1397
25.30.10 rwack intr . 1398
25.30.11 rintr . 1399
25.30.12 rmaskedintr . 1400

25.31 ioptrigger grp . 1401
25.31.1 rwcfg . 1401
25.31.2 rwcmd . 1403
25.31.3 rwintr mask . 1404
25.31.4 rwack intr . 1405
25.31.5 rintr . 1406
25.31.6 rmaskedintr . 1407

25.32 iopscrc in . 1408
25.32.1 rwcfg . 1408
25.32.2 rwctrl . 1409

CONTENTS 39

25.32.3 rstat . 1410
25.32.4 rwinit crc . 1411
25.32.5 rscomputedcrc/r computedcrc 1412
25.32.6 rwcrc . 1413
25.32.7 rwcorrectcrc . 1414
25.32.8 rwwr1bit . 1415

25.33 iopscrcout . 1416
25.33.1 rwcfg . 1416
25.33.2 rwctrl . 1417
25.33.3 rwinit crc . 1418
25.33.4 rwcrc . 1419
25.33.5 rwdata . 1420
25.33.6 rcomputedcrc . 1421

25.34 iopversion . 1422
25.34.1 rversion . 1422

25.35 marbbp . 1423
25.35.1 rwfirst addr . 1423
25.35.2 rwlast addr . 1424
25.35.3 rwop . 1425
25.35.4 rwclients . 1426
25.35.5 rwoptions . 1428
25.35.6 rbrk addr . 1429
25.35.7 rbrk op . 1430
25.35.8 rbrk clients . 1431
25.35.9 rbrk first client . 1433
25.35.10 rbrk size. 1435
25.35.11 rwack . 1436

25.36 marb . 1437
25.36.1 rwint slots . 1437
25.36.2 rwext slots . 1438
25.36.3 rwregsslots . 1439
25.36.4 rwintr mask . 1440
25.36.5 rwack intr . 1441
25.36.6 rintr . 1442
25.36.7 rmaskedintr . 1443
25.36.8 rwstopmask . 1444
25.36.9 rstopped. 1447
25.36.10 rwno snoop . 1449
25.36.11 rwno snooprq . 1451

25.37 mmu . 1452
25.37.1 rwmm cfg . 1452
25.37.2 rwmm kbaselo . 1454
25.37.3 rwmm kbasehi . 1455
25.37.4 rmm cause . 1456
25.37.5 rwmm tlb sel . 1457
25.37.6 rwmm tlb lo . 1458
25.37.7 rwmm tlb hi . 1459

25.38 pinmux . 1460
25.38.1 rwpa . 1460
25.38.2 rwhwprot . 1462

40 CONTENTS

25.38.3 rwpb gio . 1464
25.38.4 rwpb iop . 1466
25.38.5 rwpc gio . 1468
25.38.6 rwpc iop . 1470
25.38.7 rwpd gio . 1472
25.38.8 rwpd iop . 1474
25.38.9 rwpe gio . 1476
25.38.10 rwpe iop . 1478
25.38.11 rwusbphy . 1480

25.39 rt trace . 1481
25.39.1 rwcfg . 1481
25.39.2 rwtap ctrl . 1483
25.39.3 rtap stat . 1484
25.39.4 rwtap data. 1485
25.39.5 rwtap hdata . 1486
25.39.6 rredir . 1487

25.40 ser. 1488
25.40.1 rwtr ctrl . 1488
25.40.2 rwtr dmaen . 1490
25.40.3 rwrec ctrl . 1491
25.40.4 rwtr bauddiv . 1493
25.40.5 rwrec bauddiv . 1494
25.40.6 rwxoff . 1495
25.40.7 rwxoff clr . 1496
25.40.8 rwdout . 1497
25.40.9 rsstatdin/r statdin . 1498
25.40.10 rwrec eop . 1500
25.40.11 rwintr mask . 1501
25.40.12 rwack intr . 1502
25.40.13 rintr . 1503
25.40.14 rmaskedintr . 1504

25.41 sser. 1505
25.41.1 rwcfg . 1505
25.41.2 rwfrm cfg . 1507
25.41.3 rwtr cfg . 1510
25.41.4 rwrec cfg . 1513
25.41.5 rwtr data . 1517
25.41.6 rrec data. 1518
25.41.7 rwextra . 1519
25.41.8 rwintr mask . 1520
25.41.9 rwack intr . 1521
25.41.10 rintr . 1522
25.41.11 rmaskedintr . 1523

25.42 strcop. 1524
25.42.1 rwcfg . 1524

25.43 strmux . 1525
25.43.1 rwcfg . 1525

25.44 timer . 1527
25.44.1 rwtmr0 div . 1527
25.44.2 rtmr0 data. 1528

CONTENTS 41

25.44.3 rwtmr0 ctrl . 1529
25.44.4 rwtmr1 div . 1530
25.44.5 rtmr1 data. 1531
25.44.6 rwtmr1 ctrl . 1532
25.44.7 rscnt data/rcnt data . 1533
25.44.8 rwcnt cfg . 1534
25.44.9 rwtrig . 1535
25.44.10 rwtrig cfg . 1536
25.44.11 rtime . 1537
25.44.12 rwout . 1538
25.44.13 rwwd ctrl . 1539
25.44.14 rwd stat . 1540
25.44.15 rwintr mask . 1541
25.44.16 rwack intr . 1542
25.44.17 rintr . 1543
25.44.18 rmaskedintr . 1544
25.44.19 rwtest . 1545

25.45 Register addresses. 1546

42 CONTENTS

0Auto generated by axw2tex on the 21st August 2007.

Chapter 1

Introduction

1.1 Functional Block Diagram

Central Arbiter

Bus Interface

Flash
NAND Flash

SDRAM
(100MHz) SRAM Peripherals

DMA
10 Channels

CPU
(200 MHz)

RAM
(128Kbyte)

ROM
(8Kbyte)

I/O
Processor
(200MHz)

Serial Ports
ATA

Crypto
Accelerator

10/100 Base-T

256-bit 256-bit

2
5
6
-b

it

JTAG

USB 1.1

72 I/O

I-MMU

D-MMU

I-cache
(16Kbyte)

D-cache
(16Kbyte)

RT
traceTrace ports

General I/O

MII

Transciever

Ethernet
0

Ethernet
1

8 I/O

256-bit

2
5
6
-b

it

Figure 1.1:ETRAX FS interface

1.2 Overview of the AXIS ETRAX FS

Designed for Embedded Linux Powerful 200 MHz CPU with MMU for real Linux
support.

43

44 CHAPTER 1. INTRODUCTION

High Performance with Low Power Consumption The 200 MHz 32-bit RISC ISA
enables compact code and exceptional price/performance with low power con-
sumption. On-chip 16 KB I-cache and 16 KB D-cache, and 128 KB on-chip
RAM take full advantage of the CPU performance.

I/O Protocol Processor for Flexible Device AttachmentPatented micro-code programmable
I/O processor consisting of three 200 MHz 32-bit processors with local memory
and hardware accelerators for real-time performance. The I/0 processor is capa-
ble of running at least two I/O protocols simultaneously.

Built in Memory Controllers for Low Product Cost The ETRAX FS has 4 GB of
address space. It supports SDRAM, SRAM, EPROM, EEPROM, and NOR/NAND
Flash PROM without external logic for fewer components and lower cost.

Crypto Accelerator Hardware accelerated wire-speed cryptography allowing efficient
implementation of protocols and applications.

Designed for Networking Dual 10/100 Mbit/s full duplex Ethernet MAC and hard-
ware support for IP checksum calculation makes the ETRAX FS ideal for net-
working high performance devices.

Integrated I/O There are several integrated DMA-driven I/O ports: 2 synchronous
serial ports, 4 asynchronous serial ports and ATA.

Linux Kernel Source Code and Development EnvironmentAll necessary software,
source code, tools, and documentation can be downloaded for free from the Axis
developer site:http://developer.axis.com/.

Partnership Development Axis is committed to open-source development. Refer-
ence designs and advanced technical support enable development teams to quickly
get to market with competitive products.

1.3 Technical Specifications for the ETRAX FS

32-Bit RISC CPU 200 MHz RISC CPU with a 32-bit data and address width. 16-bit
instruction set optimized for compact code. Instruction pre-fetch and dynamic
branch prediction. A 256-bit wide system bus. 5-stage pipeline. 1-cycle multi-
plication. User and kernel mode for protected memory access.

Direct Memory Access (DMA) 10 DMA channels each with 64 bytes FIFO for low
latency and high throughput data transfers to and from internal and external
units. 400 MB/s peak bandwidth per DMA channel. Support for real time clients
through multiple virtual channels concept with fast channel switching.

Timers and Watchdog Two programmable 32-bit timers with selectable input clock
frequencies. 8-bit counter able to count wraps for the 32-bit counters. One fixed
32-bit read only counter. Watchdog timer.

General Purpose Ports80 read/write configurable I/O pins (multiplexed with other
I/O functions). 8 pins can be configured as inputs for interrupts.

http://developer.axis.com/

1.3. TECHNICAL SPECIFICATIONS FOR THE ETRAX FS 45

Memory Management Unit (MMU) Separate instruction and data MMU featuring
4 GB of virtual uniform address space for each user process. Address space
protection. Supports zero-copy shared memory schemes and includes two 64-
entry Translation Lookaside buffers.

Dual Ethernet Controller’s Dual 10/100 Mbit/s Ethernet MAC (compatible with IEEE
802.3 and Fast Ethernet standards).

4 Asynchronous Serial PortsFull buffering and parity control. One handshake signal
in each direction. Supports polled, interrupt driven and DMA controlled opera-
tion. Independent RX and TX operation. Support baud rates from 56.25 baud to
12.5 Mbaud.

Clock Generator Internal 200 MHz operating frequency, generated by a PLL from an
external 12 MHz clock signal.

Cache Memory Multi-processor enabled I-and D-cache. Each cache is 16 KB and 2-
way set associative and has a 256-bit interface to the system bus for high internal
bandwidth. Snooping cache coherence mechanism (MESI protocol).

Interrupt Control Vectorized interrupt: Internal (I/O ports, network interface, DMA,
and timer), and external (IRQ and NMI).

2 Synchronous Serial PortsI2S master and slave mode with internal and external
clock. Universal SPI interface up to 16.67 MHz, some modes up to 50 MHz.
Partial I2C support. Compatible with many generic synchronous serial proto-
cols. Supports IEC 60958 mode. Up to 50 MHz internal clock generator. Up to
100 Mbit/s transmission and 300 Mbit/s reception in chip-to-chip mode.

Central Arbiter Memory arbitration providing non-blocking access to internal mem-
ory during external memory accesses. 1.6 GB/s peak internal throughput.

On-chip Debug In circuit debug with JTAG interface requiring no functional SW on
the target. Hardware watchpoints, breakpoints and single step. Real-time execu-
tion path tracing via dedicated high-speed I/O.

Internal RAM 128-KB and 256-bit wide RAM with 20 ns cycle time.

ATA Single ATA controller. Support for PIO mode 4 (8 MB/s), Multiword DMA mode
2 (16 MB/s), and UltraDMA mode 2 (33 MB/s). Configuration of up to 4 ATA
ports for up to 8 IDE drives.

Software and Development ToolsLinux kernel and device drivers, GNU tool chain
including compiler, debugger and other tools, and documentation are available
free of charge from:http://developer.axis.com.

I/O Processor One master and two slave 32-bit processors running at 200 MHz. Ac-
cess to internal system bus and DMA. Local memory. Function blocks also avail-
able to main CPU are clock generators, timers, trigger logic, hardware acceler-
ation of CRC. Capable of micro code based implementation of at least two I/O
protocols simultaneously. Controls 72 100 MHz I/O pins. Can be programmed
to support parallel and serial ports, PC-Card/CardBus/PCI, USB 2.0 FS/HS host
and device, SCSI-2/SCSI-3, ATA PIO mode 4(8 MB/s)/Multiword DMA mode
2(16 MB/s)/UltraDMA mode 2 and 5(33 and 100 MB/s), and proprietary inter-
faces.

http://developer.axis.com

46 CHAPTER 1. INTRODUCTION

USB PHY Port One FS/LS USB phy port accessible from the I/O processor. Support
for host and device mode.

Bootstrap Program Download Supports initial loading to internal RAM from NOR/NAND
flash PROM, serial port, and network. Code loaded to internal RAM can be de-
signed to enable download of program to initially empty Flash PROM, or other
external memory.

External Bus Interface and Memory Controllers Memory controllers for SDRAM
(100 MHz), SRAM, EPROM, parallel EEPROM, NOR/NAND flash PROM. Bus
width configurable to 16 or 32 bits. Support for 64-bit SDRAM DIMM and SO-
DIMM modules.

Package 256 pin Plastic Ball Grid Array. 27x27 mm.

Crypto Accelerator Configurable, hardware accelerated DES, 3DES, AES, MD5, SHA-
1, and IP checksum calculation for data cryptography, 2*100 Mbit/s. Equally
efficient serial or parallel configuration of up to three algorithms.

Slave Mode Support for allowing an external chip (bus master) to read and write mode
registers and internal memory. While in slave mode, the chip looks like an I/O
device to the external bus master.

Operating Conditions Supply voltage core: 1.4 - 1.6 V

Supply voltage I/O: 3.0 - 3.6 V

Ambient temperature range: -40 - +85◦C

Power consumption: 465 mW (typical)

Chapter 2

CPU

2.1 Architectural description

2.1.1 References

Reference Description

[DEFS] CRIS v32 support function register constants and data types,25.9

[GAS] Free Software Foundation, Inc., GNU Assembler Manual, Free
Software Foundation, Inc., 1999.http://sourceware.org/binutils

[GCC] Free Software Foundation, Inc., Using the GNU Compiler Collection
(GCC), Free Software Foundation, Inc., 2003.http://gcc.gnu.org

[MACROS] CRIS v32 support function register access macros,
http://developer.axis.com

Table 2.1:CPU references

2.1.2 Registers

The processor contains fourteen 32-bit general registers (R0 - R13), one 32-bit stack
pointer (R14 or SP), one 32-bit address calculation register (R15 or ACR), and one
32-bit Program Counter (PC). Bit 0 in PC cannot be set and is ignored when PC is set.
For example, bit 0 cannot be set through jump instructions and is always assumed to
be 0.

Register R15 is a general register but it is intended to be used as a temporary register
(e.g., for address calculations). The special features of register R15 are described in
section2.1.8.

The processor architecture also defines 16 special registers (P0 - P15) listed in the table
below.

Mnemonic Reg.No. Description Size(bits)

BZ P0 Zero Byte Constant Register 8

VR P1 Version Register 8

47

http://sourceware.org/binutils
http://gcc.gnu.org
http://developer.axis.com

48 CHAPTER 2. CPU

PID P2 Process ID 32

SRS P3 Support Register Select 8

WZ P4 Zero Word Constant Register 16

EXS P5 Exception Status 32

EDA P6 Exception Data Address 32

MOF P7 Multiply Overflow Register 32

DZ P8 Zero Dword Constant Register 32

EBP P9 Exception Base Pointer 32

ERP P10 Exception Return Pointer 32

SRP P11 Subroutine Return Pointer 32

NRP P12 NMI Return Pointer 32

CCS P13 Condition Code Stack 32

USP P14 User Mode Stack Pointer 32

SPC P15 Single Step PC 32

Table 2.2:Special registers

Three of the special registers (P0, P4 and P8) are reserved as zero registers. A read from
one of these registers returns zero. A write to them has no effect. The zero registers
are used implicitly by some instructions (e.g., CLEAR). The programmer never needs
to explicitly use the zero registers.

31 16 15 0

R0 - R13 General Registers

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

SP or R14: Stack Pointer

ACR or R15: Address Calculation Register

8 7

Figure 2.1:General registers

2.1.2.1 Support function registers

These registers are used to control support functions such as the MMU. There may be
several banks of such registers, and each bank may consist of up to 16 registers. The

2.1. ARCHITECTURAL DESCRIPTION 49

031

BZ

VR

PID

SRS

WZ

EXS

EDA

MOF

DZ

EBP

ERP

SRP

NRP

CCS

USP

SPC

(P0)

(P1)

(P2)

(P3)

(P4)

(P5)

(P6)

(P7)

(P8)

(P9)

(P10)

(P11)

(P12)

(P13)

(P14)

(P15)

Byte Zero Register

Version Register

Process ID

Support Register Select

Word Zero Register

Exception Status

Exception Data Address

Multiply Overflow Register

Dword Zero Register

Exception Base Pointer

Exception Return Pointer

Subroutine Return Pointer

NMI Return Pointer

Condition Code Stack

User Stack Pointer

Single Step PC

8 716 15

Figure 2.2:Special registers

special register Support Register Select (SRS) is used to select which register bank to
access.

The banks which are currently available are listed in table2.3below.

Bank Name Description

0 B GC General configuration and Guru mode registers

1 B IM Instruction MMU registers

2 B DM Data MMU registers

3 B BP Breakpoint registers

255 B Z All support registers are always zero

Table 2.3:Available support function register banks

Reads or writes to other register banks will give an undefined result and should be
avoided. Support function registers are accessed through two instructions, MOVE
Rs,Sd and MOVE Ss,Rd that move data between the current bank of support function
registers and the general registers.

Writes to Support Function Registers (i.e. MOVE Rs,Sd) have a delayed effect. A
minimum of three CPU cycles are required for the value to be written in the register.
Additional rules for accessing each bank of registers may be documented in each sup-
port function block.

The same delayed effect is also valid for writes to the SRS register. A minimum of three
CPU cycles is required between a write to SRS and a following access to a support
function register for the correct bank to be selected.

The layout and semantics of each support function register bank is defined by each
support function.

The general configuration and Guru mode registers (Bank 0) are described in25.9. To
access the registers, fields and register constants from a C program, a set of macros and
data types are defined in [MACROS] and25.9.

50 CHAPTER 2. CPU

2.1.3 Flags and condition codes

The Condition Code Stack (CCS) register contains three levels of ten different flags
each, plus two separate flags.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Q M S2 R2 P2 U2 I2 X2 N2 Z2 V2 C2 S1 R1 P1 U1 I1 X1 N1 Z1 V1 C1 S R P U I X N Z V C

Figure 2.3:Condition Code Stack

Code Description

C Carry

V Overflow

Z Zero

N Negative

X Extend

I Interrupt enable

U User mode

P Sequence broken flag

R Restore P flag (instead of setting it to one) on RFE. Also used as carry
flag by the MCP instruction.

S Cause single step exception on instruction following the one where
(SPC==PC). Also enables hardware breakpoints.

M NMI enable flag. Cleared at reset. Once set it can only be cleared by
servicing an NMI exception.

Q Pending single step. Set when serving another exception before the
single step exception.

S1-C1 First level of hardware stack for flags, used by exceptions

S2-C2 Second level of hardware stack for flags, may be used by NMI

Table 2.4:Condition Code Stack

When an exception occurs, the flags are shifted left into the next higher level:

{S2,R2,P2,U2,I2,X2,N2,Z2,V2,C2} = {S1,R1,P1,U1,I1,X1,N1,Z1,V1,C1};
{S1,R1,P1,U1,I1,X1,N1,Z1,V1,C1} = {S,R,P,U,I,X,N,Z,V,C};

{S,R,P,U,I,X,N,Z,V,C} = 0;

When returning from an exception with the RFE instruction the flags are restored by
shifting right:

{S,R,P,U,I,X,N,Z,V,C} = {S1,R1,R ? P1:1,U1,I1,X1,N1,Z1,V1,C1};
{S1,R1,P1,U1,I1,X1,N1,Z1,V1,C1} = {S2,R2,P2,U2,I2,X2,N2,Z2,V2,C2};
{S2,R2,P2,U2,I2,X2,N2,Z2,V2,C2} = 0;

This is effectively a hardware stack for the flags. Only exception service routines that
may cause new exceptions (e.g., routines that turns on interrupts) need to save and
restore the CCS.

2.1. ARCHITECTURAL DESCRIPTION 51

The flags can be tested using one of the 16 condition codes specified in the condition
codes table2.5 below. The boolean function descriptions of the condition codes and
flag behavior rules are described using C syntax.

Code Alt Condition Encoding Boolean Function

CC HS Carry Clear 0000 !C

CS LO Carry Set 0001 C

NE Not Equal 0010 !Z

EQ Equal 0011 Z

VC Overflow Clear 0100 !V

VS Overflow Set 0101 V

PL Plus 0110 !N

MI Minus 0111 N

LS Low or Same 1000 C || Z

HI High 1001 !C && !Z

GE Greater or Equal 1010 N && V || !N && !V

LT Less Than 1011 N && !V || !N && V

GT Greater Than 1100 N && V && !Z || !N && !V && !Z

LE Less or Equal 1101 Z || N && !V || !N && V

A Always True 1110 1

SB Sequence Broken 1111 P

Table 2.5:Condition codes

Flag behavior for different instructions is described in chapter2.3. In those cases where
the new value of the flag is not explicitly specified, apply the rules listed in the table
below.

General case:

N = Rmsb

Z = !Rmsb&& ... && !R lsb && (Z || !X)

Addition: (ADD, ADDQ, ADDS, ADDU, ADDC)

N = Rmsb

Z = !Rmsb&& ... && !R lsb && (Z || !X)

V = Smsb&& D msb&& !R msb || !Smsb&& !D msb&& R msb

C = Smsb&& D msb || Dmsb&& !R msb || Smsb&& !R msb

Subtraction: (CMP, CMPQ, CMPS, CMPU, NEG, SUB, SUBQ, SUBS, SUBU)

N = Rmsb

Z = !Rmsb&& ... && !R lsb && (Z || !X)

V = !Smsb&& D msb&& !R msb || Smsb&& !D msb&& R msb

C = Smsb&& !D msb || !Dmsb&& R msb || Smsb&& R msb

Multiply: (MULS and MULU)

N = Mmsb

Z = !Mmsb&& ... && !M lsb && !R msb&& ... && !R lsb && (Z || !X)

MULS: V = ((Mmsb || .. || M lsb) && !R msb) || ((!Mmsb || .. || !M lsb) && R msb)

MULU: V = M msb || ... || M lsb

Bit test: (BTST, BTSTQ)

N = Dn

Z = !Dn && ... && !D lsb && (Z || !X)

Move to memory:

52 CHAPTER 2. CPU

The P flag is set when returning from an exception by the instruction Restore From
Exception (RFE/RFN) or if there is a cache miss on a conditional write. The C flag is set if
a conditional write fails, and cleared if it succeeds. For normal writes the C flag is
unaffected.
P = RFE|| (X && cache miss)
C = X && P || !X && C

Move to CCS: (MOVE s,CCS and RFG)

All bits set according to source data except in User Mode where the I, U and S flags are
not affected.

Condition Code Manipulation: (SETF, CLEARF)

CCS set or cleared according to mask bits in the instruction. If X is not in the list, it is
cleared. U, I and S are not affected in User mode.

Condition Code Stack Manipulation: (RFE, RFN, SFE)

CCS is shifted or restored according to the instruction. The P flag is set by RFE and RFN.
M is set by RFN, but Q is not affected. U, I and S are not affected in User mode.

Table 2.6:Flag behavior

Explanation of terms used in table2.6above:

Smsb Most significant bit of source operand.

Dmsb Most significant bit of destination operand.

Dn Selected bit in the destination operand.

Dlsb Least significant bit of destination operand.

Rmsb Most significant bit of result operand.

Rlsb Least significant bit of result operand.

Mmsb Most significant bit of Multiply Overflow register (MOF).

M lsb Least significant bit of Multiply Overflow register (MOF).

2.1.4 Data organization in memory

Data types supported by the CRIS v32 CPU are shown in the table below.

Name Description Size modifier

Byte 8-bit integer .B

Word 16-bit integer .W

Dword 32-bit integer .D

Table 2.7:Data types supported by the CRIS v32 CPU

Each address location contains one byte of data. Data is stored in memory with the
least significant byte at the lowest address (i.e., little endian). The CRIS v32 CPU
has a 256-bit wide data bus. However, most instructions only use the three normal
data types. The full width is only used during MOVEM instructions. A conversion is
performed by the bus interface when narrower external memory is accessed.

2.1. ARCHITECTURAL DESCRIPTION 53

Data can be aligned to any address. If the data crosses a 32-byte cache line boundary,
the CPU will split the data access into two separate accesses. So, the use of unaligned
word and dword data will normally not degrade performance significantly.

Maximum data size for MOVEM instructions is 64 bytes while a maximum of 32 bytes
is transferred on the data bus in each cycle. If the data is aligned to a 32-byte cache
line boundary, the CPU will split a full 64-byte data access into two and if not aligned
into three separate accesses.

2.1.5 General instruction format

The basic instruction word is 16 bits long and instructions must be word (16 bit)
aligned. The most common instructions follow the same general instruction format:

15 12 11 10 6 5 4 3 09

Operand2 Opcode Operand1SizeMode

Figure 2.4:General instruction format

Some deviations from this format are specified in chapter2.3.

2.1.5.1 The Opcode field

This field selects which instruction should be executed. For some opcodes, the meaning
of the opcode is different depending on the Size and/or Mode field.

2.1.5.2 The Operand1 field

For most instructions, the Operand1 field selects the register for the source operand. For
some instructions such as MOVE from register to memory, this field instead selects the
register for the address of the destination. The meaning of this field is affected by the
Mode field.

2.1.5.3 The Operand2 field

For most instructions, the Operand2 field selects which register will be the destination
for the operation. For some instructions such as MOVE register to memory, this field
selects instead the register that will be the data source. This field always specifies a
register directly and is not affected by the Mode field.

2.1.5.4 The Mode field

The Mode field specifies the addressing mode of the instruction. The mode field affects
only the operand of the Operand1 field. The following addressing modes are available:

54 CHAPTER 2. CPU

Code Mode Description

00 Quick immediate mode The Size and Operand1 fields are used as a 6 bit
immediate value, extended to 32 bits. The choice
of zero-extend or sign- extend depends on the
instruction.

01 Register mode The operand is contained in the register specified
by the Operand1 field.

10 Indirect mode The operand is contained in the memory location
pointed to by the register specified by the
Operand1 field.

11 Autoincrement mode
(Operand1 != 15)

Same as Indirect mode, but the register specified
by the Operand1 field is incremented after the
operation. The size of the increment depends on
the operand size. Using ACR (R15) as address
register in Autoincrement mode is not possible.
It actually results in using the PC as the address
register to allow immediate constants. So R15
can thus not be used as the address register in the
Autoincrement mode.

11 Immediate mode
(Operand1 == 15)

The operand is contained directly after the
instruction word in memory. For word and
dword sized operands the PC is incremented by
the size of the operand. For byte sized operands
the PC is incremented by two to maintain word
alignment of instructions.

Table 2.8:The mode field of the general instruction format

2.1.5.5 The size field

The Size field selects the size of the operation. For most instructions, The rest of the
register is unaffected by the operation. Three different sizes are available as shown in
the table below.

Code Size

00 Byte (8 bits)

01 Word (16 bits)

10 Dword (32 bits)

Table 2.9:The size field of the general instruction format

The size code 11 is used in conjunction with the Opcode field to encode special in-
structions that do not need different sizes.

2.1.6 Addressing modes

2.1.6.1 General

The CRIS v32 CPU has five basic addressing modes, which are encoded in the Mode
field of the instruction word. The basic addressing modes are:

· Quick immediate

2.1. ARCHITECTURAL DESCRIPTION 55

· Register

· Indirect

· Autoincrement

· Immediate

2.1.6.2 Quick immediate addressing mode

In the quick immediate addressing mode, the Size and Operand1 fields of the instruc-
tion are combined into a 6-bit immediate value, extended to 32 bits, or interpreted as
a 5-bit shift count. The 6-bit value may be sign- or zero-extended depending on the
instruction.

15 12 11 10 6 5 09

Operand2 Opcode Immediate valueMode

Figure 2.5:Quick immediate addressing mode instruction format

Assembler syntax: <expression>
Example: 12

2.1.6.3 Register addressing mode

In the register addressing mode, the operand is contained in the register specified by the
Operand1 or Operand2 field. The register can be a general register, a special register,
or a support function register depending on the instruction.

2.1.6.3.1 General register addressing mode

Assembler syntax: Rn
Example: R6

2.1.6.3.2 Special register addressing mode

Assembler syntax: Pn
Example: SRP

2.1.6.3.3 Support function register addressing mode

Assembler syntax: Sn
Example: S6

56 CHAPTER 2. CPU

2.1.6.4 Indirect addressing mode

In the indirect addressing mode, the operand is contained in the memory location
pointed to by the register specified by the Operand1 field.

Assembler syntax: [Rn]
Example: [R6]

Memory address

OperandMemory address

General register Rn

Figure 2.6:Indirect addressing mode

2.1.6.4.1 Autoincrement addressing mode

In the autoincrement addressing mode, the operand is contained in the memory location
pointed to by the register specified by the Operand1 field. After the operand address is
used, the specified register is incremented by 1, 2 or 4, depending upon the size of the
operand.

Assembler syntax: [Rn+]
Example: [R6+]

Memory address

OperandMemory address

General register Rn

Operand size (1, 2 or 4)

Figure 2.7:Autoincrement addressing mode

Note that ACR (R15) can not be used in autoincrement mode as this coding is used for
immediate addressing mode. See section2.1.6.4.2.

2.1. ARCHITECTURAL DESCRIPTION 57

2.1.6.4.2 Immediate addressing mode

The immediate addressing mode is a special case of the autoincrement addressing
mode, with PC as the address register. The immediate value follows directly after the
instruction word. When the immediate data size is one byte, PC will be incremented
by 2 to maintain word alignment of instructions. Immediate data to special registers
is always 32 bits in size, regardless of the size of the special register. Surplus bits are
ignored.

Assembler syntax: <expression>
Example: 325

2.1.7 Branches jumps and subroutines

2.1.7.1 Conditional branch

The Bcc instruction (where cc represents one of the 16 condition codes described in
the section2.1.3, is a conditional relative branch instruction. If the condition is true, a
signed immediate offset is added to the PC. The PC to which the offset is added is the
PC of the branch instruction itself.

The Bcc instruction exists in two forms, one with an 8-bit offset contained within the
basic instruction word, and one with a 16-bit immediate offset following directly after
the instruction word. The assembler automatically selects between the 8-bit offset and
the 16-bit offset form.

The Bcc instruction is a delayed branch instruction. This means that the instruction
following directly after the Bcc instruction will always be executed, even if the branch
is taken. The instruction position following the Bcc instruction is called a delay slot.

· Example:

; The branch to LOOP will be taken 4 times, and register R0
; decremented by 1 after each turn. After leaving the loop,
; R0 will have the value -1.

:
MOVEQ 4,R0

LOOP:
BNE LOOP
SUBQ 1,R0 ; Delay slot instruction, executed

; even if the branch is taken.
:

There are some restrictions as to which instructions can be placed in the delay slot.
Valid instructions for the delay slot are all instructions except:

· Bcc

58 CHAPTER 2. CPU

· JAS, BAS, JASC, BASC, JUMP, HALT, FIDXI, FTAGI

· Immediate addressing other than quick immediate.

The maximum offset range that can be reached by the Bcc instruction directly is -32768
to +32766. If a larger offset is needed, the branch must be combined with a jump to
reach the branch target. The assembler resolves this situation automatically and inserts
the necessary code. The assembler can optionally give a warning message each time
it makes this adjustment. There is also a 32 bit version of BA (Branch Always), see
2.1.7.2for details.

2.1.7.2 Unconditional branch

The BAS (Branch And Save) instruction is an unconditional relative branch instruction.
The current value of PC is first saved in a special register, and then a signed 32-bit
immediate offset is added to PC. The BAS instruction is a delayed branch instruction.
This means that the instruction following directly after the BAS instruction will always
be executed.

The instruction position following the BAS instruction is called a delay slot. As a result,
the value saved in the special register is the address of the instruction following the
BAS instruction plus 6. The BAS instruction takes a 32-bit immediate offset following
directly after the instruction word.

· Examples:

BAS lab,SRP ; Jump to ’lab’ using the offset (lab - PC).
; (lab - PC) is added to PC. Return address
; is saved in SRP.

BAS .+124,BZ ; Jump to address PC + 124. Return address is
; saved in BZ (i.e. not saved).

The BAS instruction can be used for both regular branches and subroutine branches.
Regular branches are made by using BZ (P0) as the destination special register. Branches
to subroutines are made by using SRP as the destination special register. There are two
aliases for the BAS instructions that are supported by the assembler:

1. BA offset - Alias for BAS offset, BZ

2. BSR offset - Alias for BAS offset, SRP

The BA alias is useful for longer branches than the normal Bcc with 16-bit offset can
handle. The BSR alias is useful in e.g., dynamically loaded shared libraries for efficient
calling of subroutines when the position relative to the executing code is known, but
the absolute address varies.

· Example:

2.1. ARCHITECTURAL DESCRIPTION 59

(save SRP)
:
SUBQ 4,SP
BSR sub ; Branch and save return address in SRP
MOVE.D R1,[SP] ; Delay slot instruction, always executed
MOVE.D [SP+],R1 ; Return point
:
(restore SRP)

2.1.7.3 Jump instructions

The JAS (Jump And Save) instruction is an unconditional absolute jump instruction.
The current value of PC is first saved in a special register and then a 32-bit absolute
value is loaded into PC.

The JAS instruction is a delayed jump instruction. This means that the instruction
following directly after the JAS instruction will always be executed. The instruction
position following the JAS instruction is called a delay slot. Because of the delayed
jump the value saved in the special register is the address of the instruction following
the JAS instruction plus 2.

The JAS instruction exists in two forms, one with the absolute value contained in a
general register, and one with a 32-bit immediate value following directly after the
instruction word.

For the register form of JAS, it is harmless for the instruction in the delay slot to modify
the register holding the address. JAS will use the value before it has been modified.

· Examples:

(save SRP)
:
JAS R3,SRP ; Jump target is the address contained
ADDQ 1,R3 ; in register R3. Return address is

; saved in SRP. R3 is incremented _after_
; JAS has used the value.

JAS 124,BZ ; Jump to address 124. Return address is
NOP ; saved in BZ (i.e. not saved).
:
(restore SRP)

The JAS instruction can be used for both regular jumps and subroutine jumps. Regular
jumps are made by using BZ (P0) as the destination special register. Jumps to subrou-
tines are made by using SRP as the destination special register. There are two aliases
for the JAS instructions that are supported by the assembler:

1. JUMP Rs - Alias for JAS Rs, BZ

(JUMP address) Alias for JAS address, BZ

60 CHAPTER 2. CPU

2. JSR Rs - Alias for JAS Rs, SRP

(JSR address) Alias for JAS address, SRP

· Example:

(save SRP)
:
SUBQ 4,SP
JSR R6 ; Jump and save return address in SRP
MOVE.D R1,[SP] ; Delay slot instruction, always executed
MOVE.D [SP+],R1 ; Return point
:
(restore SRP)

2.1.7.4 Jump and branch with context

The JASC (Jump And Save with Context) and BASC (Branch And Save with Context)
instructions work like the regular JAS and BAS instructions except that the address
saved in the special register is the address of the instruction following the JASC or
BASC instruction plus 6. This leaves four bytes unused between the JASC or BASC
instruction and the return point. These four bytes can, for example, be used for C++
exception handling information.

In case of the register addressing form, the unused bytes are placed directly after the
delay slot instruction.

JAS

Delay Slot

Return Point

A

A + 2

A + 4

Unused

Return Point

Unused

Delay Slot

JASC A

A + 2

A + 4

A + 6

A + 8

Figure 2.8:Register form of the JASC instruction

In case of immediate addressing form, the unused bytes are placed after the immediate
value and the delay slot instruction.

There are three aliases for the JASC and BASC instructions that are supported by the
assembler.

1. JSRC Rs - Alias for JASC Rs,SRP

2. JSRC address - Alias for JASC address,SRP

3. BSRC offset - Alias for BASC offset,SRP

· Example:

2.1. ARCHITECTURAL DESCRIPTION 61

A

A + 2

A + 4

A

A + 2

A + 4

A + 6

A + 8

Delay slot

Unused

Value

Immediate

JASC/BASC

Unused

Return Point

A + 6

A + 8

A + 10

A + 12

JAS/BAS

Immediate

Value

Delay slot

Return point

Figure 2.9:Immediate form of the JAS/BAS and JASC/BASC instructions

(save SRP)
:
SUBQ 4,SP
JSRC R6 ; Jump and save return address in SRP
MOVE.D R1,[SP] ; Delay slot instruction, always executed
.WORD 0 ; Unused
.WORD 0 ; Unused
MOVE.D [SP+],R1 ; Return point
:
(restore SRP)

2.1.7.5 Return instructions

The JUMP instruction is an unconditional absolute jump instruction. The JUMP in-
struction exists only in one form with the absolute value contained in a special register.
It is intended to be used to return from subroutines and exceptions. There are three
aliases for the JUMP instruction that are supported by the assembler for this purpose:

1. RET - Alias for JUMP SRP

2. RETE - Alias for JUMP ERP

3. RETN - Alias for JUMP NRP

The return instructions are delayed jump instructions. This means that the instruction
following directly after the return instruction will always be executed. The instruction
position following the return instruction is called a delay slot.

2.1.7.6 Switches and table jumps

A common element in many high level languages is the switch statement. A typical
switch construct in C can look like this:

switch (sel_val) {

62 CHAPTER 2. CPU

case 6:
a = b + c;
break;

case 7:
a = b * (c + d);
break;

case 8:
a = b + c + d;
break;

default:
a = b + c;
break;

}

A switch construct in the CRIS v32 assembler can be implemented in several different
ways. Three examples based on jump tables are shown below. The first example uses
a table of absolute addresses. The second example uses relative addressing, while the
third example uses a table of branch instructions.

· Example: A switch construct with a table of absolute addresses

MOVE [sel_val],R0 ; Load selector value to R0.
SUBQ 6,R0 ; Adjust table index by subtracting

; the lowest selector value.
BOUND.B 3,R0 ; Adjust index to point to default

; case if it is out of range.
LAPCQ L_TAB,ACR ; Calculate address of table base.
ADDI R0.D,ACR,ACR ; Add dword index to base.
MOVE.D [ACR], R0 ; Load jump address.
JUMP R0 ; Table jump.
NOP ; Delay slot.

L_TAB: .DWORD L6 ; Address to case 6.
.DWORD L7 ; Address to case 7.
.DWORD L8 ; Address to case 8.
.DWORD L_DEF ; Address to default case.

L6:
:
(Perform case 6)
:
BA L_END ; Break
Op or NOP ; Delay slot

L7:
:
(Perform case 7)
:
BA L_END ; Break
Op or NOP ; Delay slot

L8:
:
(Perform case 8)
:
BA L_END ; Break

2.1. ARCHITECTURAL DESCRIPTION 63

Op or NOP ; Delay slot
L_DEF:

:
(Perform default case)
:

L_END:

· Example: A switch construct with a table of relative addresses

MOVE [sel_val],R0 ; Load selector value to R0.
SUBQ 6,R0 ; Adjust table index by subtracting

; the lowest selector value.
BOUND.B 3,R0 ; Adjust index to point to default

; case if it is out of range.
LAPCQ L_TAB,ACR ; Calculate address to table base.
ADDI R0.W,ACR,ACR ; Add word index to base.
ADDS.W [ACR], ACR ; Add PC-relative word offset

; to "case" to address of the entry.
JUMP ACR ; Table jump.
NOP ; Delay slot.

L_TAB: .WORD L6 - . ; Relative address to case 6.
.WORD L7 - . ; Relative address to case 7.
.WORD L8 - . ; Relative address to case 8.
.WORD L_DEF - . ; Relative address to default case.

L6:
:
(Perform case 6)
:
BA L_END ; Break
Op or NOP ; Delay slot

L7:
:
(Perform case 7)
:
BA L_END ; Break
Op or NOP ; Delay slot

L8:
:
(Perform case 8)
:
BA L_END ; Break
Op or NOP ; Delay slot

L_DEF:
:
(Perform default case)
:

L_END:

· Example: A switch construct with a table of branch instructions

MOVE [sel_val],R0 ; Load selector value to R0.

64 CHAPTER 2. CPU

SUBQ 5,R0 ; Adjust table index so the lowest
; value is 1.

BOUND.B 4,R0 ; Adjust index to point to default
; case if it is out of range.

LSLQ 2,R0 ; Adjust to dword index.
LAPCQ L_TAB,ACR ; Calculate address to table base.
ADD.D ACR,R0 ; Calculate address of the "case".
JUMP R0 ; Table jump.
NOP ; Delay slot.

L_TAB: BA L6 ; Relative address to case 6
NOP ; Delay slot.
BA L7 ; Relative address to case 7
NOP ; Delay slot.
BA L8 ; Relative address to case 8
NOP ; Delay slot.
BA L_DEF ; Relative address to case L_DEF
NOP ; Delay slot.

L6:
:
(Perform case 6)
:
BA L_END ; Break
Op or NOP ; Delay slot

L7:
:
(Perform case 7)
:
BA L_END ; Break
Op or NOP ; Delay slot

L8:
:
(Perform case 8)
:
BA L_END ; Break
Op or NOP ; Delay slot

L_DEF:
:
(Perform default case)
:

L_END:

2.1.7.7 Subroutines

The JSR and BSR instructions of the CRIS v32 CPU do not automatically push the
return address for a subroutine on the stack. Instead, the return address is stored in a
special register called the Subroutine Return Pointer (SRP).

For terminal subroutines (subroutines that do not call other subroutines), the return
address can be kept in the SRP throughout the subroutine. In this way, the overhead for
a subroutine call can be reduced to two single-cycle instructions.

For non-terminal subroutines, the contents of the SRP must be explicitly pushed on the
stack. It is preferred that this is done as the first instruction of the subroutine.

2.1. ARCHITECTURAL DESCRIPTION 65

Terminal subroutine:

SUB_ENTRY:
: ; No pushing of SRP needed.
:

(Perform desired function)
:
:

RET ; Return, take address from SRP.
(op or NOP) ; Delay slot after return.

Non-terminal subroutine:

SUB_ENTRY:
SUBQ 4, SP

: ; Insert instruction(s) to hide
: ; latency (optional).

MOVE SRP,[SP] ; Push SRP on the stack.
:
:

(Perform desired function)
:

MOVE [SP+], SRP
: ; Insert instruction(s) to hide
: ; latency (optional).

RET ; Return, take address from SRP.
(op or NOP) ; Delay slot after return.

2.1.8 Address calculation instructions

The address calculation instructions, ADDO, ADDOQ, ADDI, LAPC and LAPCQ,
are primarily intended to be used to calculate addresses used by other instructions. The
address calculation instructions are often used with ACR (R15) as destination. The
instruction using the address can then simply use indirect addressing with ACR as the
address register.

· Example:

ADDOQ -4,R5,ACR
MOVE.D R3,[ACR]

The N, Z, V and C flags are not affected by the address calculation instructions to make
it possible to place them between instructions modifying the flags and instructions
using the flags.

66 CHAPTER 2. CPU

2.1.9 PC Relative addressing

PC relative addressing is performed by the instructions LAPC and LAPCQ. They store
the sum of PC and an immediate offset in a general register. LAPC takes a 32 bit
immediate signed offset while LAPCQ contains a 4 bit unsigned offset for PC offsets
smaller than 32. This is useful in e.g., dynamically loaded shared libraries where local
variables needs to be accessed in an efficient way.

· Example:

LAPC .+34,R1 ; Add 34 and the current value
; of PC, store in R1.

MOVE.D R3,[R1]
LAPCQ .+4,R1 ; R1 = PC+4

2.1.10 Exceptions

The CRIS v32 CPU uses vectorized exceptions. The term exception is used as a com-
mon name for interrupts, Non Maskable Interrupts (NMIs), and bus faults. The fol-
lowing steps describes the exception sequence for all types of exceptions (except Guru
Mode exceptions, which are described in section2.1.10.6):

1. Store the contents of PC to either the NMI Return Pointer (NRP) for NMIs, and
for all other exceptions to the Exception Return Pointer (ERP). Set the D field
(of ERP or NRP) if the instruction interrupted was in a delay slot. See section
2.1.10.4.1for details on the D bit. NRP uses the same format as ERP. Note that
the return address is not automatically pushed on the stack.

2. Shift the CCS:

{S2,R2,P2,U2,I2,X2,N2,Z2,V2,C2} = {S1,R1,P1,U1,I1,X1,N1,Z1,V1,C1};
{S1,R1,P1,U1,I1,X1,N1,Z1,V1,C1} = {S,R,P,U,I,X,N,Z,V,C};
{S,R,P,U,I,X,N,Z,V,C} = 0;

3. Enter kernel mode. If it is not an NMI, update EXS and EDA registers. If it is an
NMI, clear the NMI enable flag (M).

4. Fetch the exception handler address [EBP + vector index]. This address is
translated by the MMU if it is enabled. The MMU must not cause exceptions
during this access. If it does the behavior is undefined.

5. Jump to the fetched address

Only bits 10 to 31 of the Exception Base Pointer (EBP) are used when fetching the
jump address. The remaining bits are ignored.

Unlike many other microprocessors, the CRIS v32 CPU does not automatically push
the condition codes and the return address on the stack. The exception return address

2.1. ARCHITECTURAL DESCRIPTION 67

31

7

9 010

0

031

0 0

0000000000

0 0

EBP

EBP

Vector Number

Vector Number

Exception base pointer

Exception vector address

Figure 2.10:Exception vector address calculation

is stored in the Exception Return Pointer (ERP). If nested exceptions are used, the ERP
must be pushed on the stack before interrupts are reenabled in the exception routine.
The Condition Code Register must also be saved when nested exceptions are used.
At the end of the exception routine the saved ERP and CCS must be restored before
returning.

The Interrupt Enable flag is automatically set to zero by the CCS shift.

Returning from interrupt and bus fault exceptions can be done in a uniform way by
the Return From Exception (RETE) instruction. When returning from an NMI or Guru
mode exception the Return From NMI (RETN) instruction is used instead.

The Restore From Exception (RFE) instruction is used to restore (un-shift) the CCS
content when returning from an exception. The RFE instruction is intended to be used
in the delay slot of the RETE instruction. In the same way, the RFN and RFG instruc-
tions are intended to be used in the delay slot of the RETN instruction.

2.1.10.1 Exception examples

· Example: Single level exception

ENTRY: SUBQ sizeof(regs),SP ; Reserve stack for used registers
MOVEM Rn,[SP] ; Save used registers

:
:

(Perform desired function)
:
:

MOVEM [SP+],Rn ; Restore registers
RETE ; Return, take address from ERP
RFE ; Restore CCS in delay slot

· Example: Nested exceptions

68 CHAPTER 2. CPU

ENTRY: SUBQ 4,SP
MOVE CCS,[SP] ; Save CCS
SUBQ 4,SP
MOVE ERP,[SP] ; Save ERP
<save other status
if necessary>

EI ; Enable Interrupts
SUBQ sizeof(regs),SP ; Reserve stack for used registers
MOVEM Rn,[SP] ; Save registers

:
:

(Perform desired function)
:
:

MOVEM [SP+],Rn ; Restore registers
MOVE [SP+],CCS ; Restore CCS

; <-- Interrupts are disabled
MOVE [SP+],ERP ; Restore ERP
RETE ; Return, take address from ERP
RFE ; Restore CCS in delay slot

Note that the sequences described above will restore the state also if the exception
routine is called by software (using the instruction sequence JAS ENTRY, ERP; SFR).
If, for example, the interrupts were disabled at the time of the JAS instruction, the
interrupts will also be disabled after return from the exception routine.

2.1.10.2 Exception vectors

The vector numbers are defined in table2.10below:

Index(hex) Function

0 NMI

1 (Reserved)

2 (Reserved)

3 Single step

4 Instruction TLB refill

5 Instruction TLB invalid address

6 Instruction TLB access violation

7 Instruction TLB execute violation

8 Data TLB refill

9 Data TLB invalid address

a Data TLB access violation

b Data TLB write error

c Hardware Breakpoint

d (Reserved)

e (Reserved)

f (Reserved)

10 Break 0

11 Break 1

12 Break 2

2.1. ARCHITECTURAL DESCRIPTION 69

13 Break 3

14 Break 4

15 Break 5

16 Break 6

17 Break 7

18 Break 8

19 Break 9

1a Break 10

1b Break 11

1c Break 12

1d Break 13

1e Break 14

1f Break 15

20 Interrupts

.. -”-

ff -”-

Table 2.10:Defined vector numbers

2.1.10.3 Exception priority

In case of multiple simultaneous exceptions the following priority order applies (for
any given instruction):

1. Guru mode exception

2. NMI

3. Hardware breakpoint

4. Instruction TLB refill

5. Instruction TLB invalid address

6. Instruction TLB access violation

7. Instruction TLB execute violation

8. Data TLB refill

9. Data TLB invalid address

10. Data TLB access violation

11. Data TLB write error

12. Interrupts (priority between interrupts is decided by interrupt controller)

13. Break instruction

14. Single step

70 CHAPTER 2. CPU

Note that the low priority of the break instruction and single step exceptions comes
from fact that these exceptions are given after the instruction has been executed (but
before the next instruction is executed). As all other exception related to an instruction
will come before it is executed they will have higher priority.

2.1.10.4 Exception status registers

These registers are loaded when an exception (except NMI) is triggered.

2.1.10.4.1 ERP - Exception return pointer

The exception return pointer has the following format.

031

DRA - Return Address

Figure 2.11:Exception return pointer format

The ERP contains two fields:

ERP Fields Description

RA Bits 31 to 1 of the address of the instruction is where execution should
resume after the exception has been serviced (bit 0 of the address is
always zero for instruction addresses). This is either the address of the
instruction that was interrupted when the exception was triggered, or the
address of the instruction preceding this instruction if the interrupted
instruction was in a delay slot. If the interrupted instruction was in a
delay slot, the D bit is set. Note that an interrupted instruction is counted
as being in a delay-slot even for a non-taken branch.

D The D field is set when the interrupted instruction was in a delay slot. If
set, the address of the interrupted instruction is RA+2 for register
addressing forms, and RA+4 or RA+6 for the immediate addressing
forms of the jump or branch instruction.

Table 2.11:ERP fields

2.1.10.4.2 EXS - Exception status

The Exception status has the following format.

031

OPS

12781516

0 0 0 0 0 0IDX

Figure 2.12:Exception status format

The EXS contains the following fields:

2.1. ARCHITECTURAL DESCRIPTION 71

EXS Fields Description

OP Contains the memory operation performed by the interrupted instruction
when an instruction was interrupted, otherwise undefined. The contents
of this field depends only on the type of the interrupted instruction, not
on the type of exception. The memory operation is coded as follows:

00 No memory operation

01 Read

10 Write

11 Flush

IDX Contains the exception vector index, the vector number for the exception
service routine.

S The 16 bit status field can be used by support function exceptions, e.g.,
breakpoint exceptions. The contents of this field depends on the unit
causing the exception. For interrupt and NMI exceptions this field is
undefined.

Table 2.12:EXS fields

Bits 7 to 2 in EXS are always loaded with zero when an exception is triggered.

2.1.10.4.3 EDA - Exception data address

The exception data address (EDA) is the base address of the memory access performed
by the interrupted instruction. If no memory operation was performed, the value of this
register is undefined.

Observe that, in the case of accesses that are sequenced due to a crossed data cache
line border, the EDA may contain the base address of any of the sequenced accesses
depending on when the instruction was interrupted.

2.1.10.4.4 SPC - Single Step PC

When a single step or breakpoint exception is taken, the address of the interrupted
instruction is saved in the SPC. This makes it easy to start/continue single stepping
after the exception routine.

2.1.10.5 Non Maskable Interrupts (NMI)

NMI exceptions may come at any time, even when other exceptions are in progress.
The differences from a normal exception are:

· NMIs are disabled M=0 when entering the NMI service routine.

· The return address is stored in NRP instead of ERP.

· The NMI service routine should exit with the sequence:

RETN
RFN

72 CHAPTER 2. CPU

· NMI service routines must not modify the S and R bits in the CCS.

The M flag is cleared at reset. Once set it is can only be cleared by an NMI exception as
described above. The M flag can be set by a MOVE to CCS or by RFN, which always
sets the M flag.

2.1.10.6 Guru mode

Guru mode is a totally unmaskable exception level. Unlike other exceptions, it fetches
its jump vector at a hardwired address (i.e. it does not use EBP). When in guru mode,
all new exceptions are ignored. The Guru mode is intended to be used in combination
with on chip ROM to implement a stub-less debugging mode.

Guru mode is always entered when requested by external logic. The CPU can also be
configured to enter Guru mode at breakpoint and/or single step or break 15 exceptions.
This is configured in therw gc cfg support function register in bank 0.

2.1.10.6.1 Entering guru mode

When Guru mode is entered the following actions take place:

· CCS is saved in support function register S1 (rw gc ccs) in bank 0.

· CCS is set to 0.

· NRP is saved in support function register S3 (rw gc nrp) in bank 0.

· The restart PC is stored in NRP.

· SRS is saved in support function register S2 (rw gc srs) in bank 0.

· SRS is set to 0 (bank 0).

· Exceptions status is saved in S4 (rw gc exs). The registerrw gc exs has the
same layout as special register EXS. The IDX field ofrw gc exsis set to zero if
guru mode was entered due to an external request. Otherwise it is set according
to 2.1.10.2.

· Exception data address is saved in S5 (rw gc eda). The registerrw gc edahas
the same function as EDA in standard exceptions.

· The hidden guru mode flag (g-flag) is set.

· The jump vector is fetched at a fixed address (0x3c0000f0).

· Execution is started at the fetched address.

Support function registers S8 through S11 (rw gc r0 throughrw gc r3) in bank 0 are
available for storing a couple of general registers when in guru mode. The start of the
guru mode exception handler thus typically starts like this:

2.1. ARCHITECTURAL DESCRIPTION 73

guru_handler: MOVE R0,S8
MOVE R1,S9
MOVE R2,S10
MOVE R3,S11
...

Detailed information about the guru mode support function registers (Bank 0) can be
found in25.9.

2.1.10.6.2 Leaving guru mode

When leaving guru mode the state of the CPU has to be restored. This is done with the
RETN and RFG instructions:

RETN
RFG

RFG restores the CCS, NRP and SRS saved when guru mode was entered, and clears
the g-flag. A typical guru mode exception handler epilogue looks like this:

MOVE S11,R3
MOVE S10,R2
MOVE S9,R1
MOVE S8,R0
RETN
RFG

2.1.10.6.3 Protected resources in guru mode

If the gb bit in rw gc cfg is set, the following registers may only be written from guru
mode:

· SPC

· All hardware breakpoint registers

2.1.11 MMU support

2.1.11.1 Overview

There are two separate memory management units attached to the CPU, one for the
instruction fetch mechanism and one for data accesses. To support the memory man-
agement units a number of features are available:

74 CHAPTER 2. CPU

· The CPU can be in one of two different operation modes: User mode and Kernel
mode. The MMUs use the operation mode to select the appropriate mapping
between logical and physical addresses. Which mode the CPU operates in is
decided by the U flag in the Condition Code Stack (CCS).

· A set of MMU-Fault exceptions that triggers when the MMU fails to translate a
logical address. There are eight such exceptions:

1. Instruction TLB refill - The translation is not in the TLB.

2. Instruction TLB invalid address - The translated address is invalid.

3. Instruction TLB access violation - User mode access to kernel area.

4. Instruction TLB execute violation - Execute access to execute protected
area.

5. Data TLB refill - The translation is not in the TLB.

6. Data TLB invalid address - The translated address is invalid.

7. Data TLB access violation - User mode request to kernel area.

8. Data TLB write error - Write request to write protected area.

The S field of the EXS register is not used by the MMUs and will be set to zero when
an MMU exception is triggered.

The User and Kernel modes have different stack pointers. In both modes the user
mode stack pointer can be referenced as USP, while the currently active stack pointer
is referenced as SP (or R14). Thus, in User mode, SP and USP refer to the same
register, while in Kernel mode they are separate registers.

Observe that, when modifying USP in User mode, the modified value is not available
as SP the three following cycles. In the same way, when modifying SP in User mode,
the modified value is not available as USP the three following cycles.

Once User mode is entered (by setting the U flag), Kernel mode can only be reentered
by triggering an exception. Explicitly entering Kernel mode for e.g., operating system
calls are typically made through the BREAK instruction.

2.1.11.2 Protected resources

A few registers, flags and instructions need to be protected from being modified while
the CPU is in User mode. The protected resources are:

· The Q, M, S, U and I flags in the CCS

· EBP (Exception Base Pointer)

· PID (Process/Page ID)

· SRS (Support Register Select)

· SPC (Single step PC)

· Any Support function register (through MOVE Rs,Sd)

2.1. ARCHITECTURAL DESCRIPTION 75

· FIDXI, FIDXD, FTAGI and FTAGD instructions

· HALT instruction

Any attempt to modify a protected register or flag in User mode will just be silently
denied. It will not cause any exception. The protected registers and flags are readable
in both User and Kernel modes.

2.1.11.3 Transitions between operation modes

A transition between the User and Kernel modes can take place for the following rea-
sons:

· Transition to User mode:

- SETF U

- RFE when U1 is set

· Transitions to Kernel mode:

- System Reset

- Any exception

The stack pointers will be automatically exchanged at a transition between the two
operation modes.

The following example shows how User mode can be entered for the first time in an
application:

· Example:

MOVE user_stack_pointer,USP
JUMP user_mode_program_entry
SETF U ; set U flag in delay slot

2.1.11.4 MMU registers

Registers for controlling the MMUs are available as support function registers. The
MMU registers are located in support register banks 1 and 2 for instruction and data
MMU respectively. These can be accessed in Kernel mode through the MOVE Rs,Sd
or MOVE Ss,Rd instructions. More information about support function registers is
found in section2.1.2.1.

The specific layout and semantics of these registers is specified in the MMU Module
documentation.

76 CHAPTER 2. CPU

2.1.12 Multiply and divide

2.1.12.1 General

The CRIS v32 CPU has two multiply instructions, Signed Multiply (MULS) and Un-
signed multiply (MULU).

There are no divide instructions, so divide operations are performed by a sequence of
Divide Step (DSTEP) instructions.

2.1.12.2 Multiply

The MULU and MULS are fast (one cycle) multiply operations. The multiply is per-
formed on 32 by 32 bits, giving a 64-bit result. The lower 32 bits are stored to the
destination register specified with the instruction, while the upper 32 bits are stored in
the Multiply Overflow (MOF) register.

For multiply with byte or word sized operands, the operands are extended to 32 bits
before the multiply. sign-extend is used with Signed Multiply (MULS), while zero-
extend is used with Unsigned Multiply (MULU).

2.1.12.3 Divide

Divide operation can be performed using the DSTEP instruction. The DSTEP instruc-
tion does the following:

1. Shifts the destination register one step to the left.

2. If the destination register is unsigned-greater-than or equal to the source operand,
the source operand is subtracted from the destination register.

· Example: 16-bit by 16-bit unsigned divide

DIV_BEGIN:
MOVE.W [num],R1 ; Move numerator to a register,

; and clear the upper 16 bits.
MOVE.W [denom],R0 ; Move denominator to a register.
LSLQ 16,R0 ; Shift left, clear the lower 16 bits

; of the denominator register.
SUBQ 1,R0 ; Subtract one from the denominator.
DSTEP R0,R1 ; Perform 16 iterations of DSTEP
DSTEP R0,R1 ; instructions.
DSTEP R0,R1
DSTEP R0,R1
DSTEP R0,R1
DSTEP R0,R1
DSTEP R0,R1
DSTEP R0,R1
DSTEP R0,R1

2.1. ARCHITECTURAL DESCRIPTION 77

DSTEP R0,R1
DSTEP R0,R1
DSTEP R0,R1
DSTEP R0,R1
DSTEP R0,R1
DSTEP R0,R1
DSTEP R0,R1 ; The last iteration. The quotient is

; in the lower half of R1, and the
; remainder is in the upper half of R1.

2.1.13 Extended arithmetic

Extended arithmetic (arithmetic with more than 32 bits) is supported by either using
the X flag or using instructions that always use carry propagation. The X flag is set by
the AX (SETF X) instruction, and cleared by all other instructions.

When the X flag is set, instructions involving an addition or subtraction are modified
in the following ways, which is also the behavior of instructions that always use carry
propagation:

1. The C flag is added to the result of an addition, and subtracted from the result of
a subtraction. This is valid even if the addition/subtraction result is not the result
operand of the instruction.

2. If the result operand is zero, the Z flag will maintain its old value, instead of
being set.

The change of the Z flag behavior applies to all instructions that affect the Z flag except
CLEARF, MOVE s,CCS, and SETF.

The addition/subtraction of the C flag affects the following instructions:

ADD, ADDI, ADDQ, ADDS, ADDU, ADDO, ADDOQ, CMP, CMPQ, CMPS, CMPU,
NEG, SUB, SUBQ, SUBS, and SUBU.

The addition/subtraction of the C flag has an undefined effect on the following instruc-
tions:

BOUND, ABS, DSTEP.

Below are 2 examples of extended arithmetic using the X flag:

· Example: Add a 48-bit signed value contained in R4:R3 to a 64 bit value stored
in R2:R1

EXT_ADD:
ADD.D R3,R1 ; Add the low dwords.
AX ; Set X flag.
ADDS.W R4,R2 ; Add the upper 16 bits of source

· Example: Test if a 40-bit value contained in memory pointed to by R1 is zero

78 CHAPTER 2. CPU

EXT_TEST:
TEST.D [R1+] ; Test low 32 bits.
AX
TEST.B [R1] ; Test upper 8 bits.

The instruction ADDC always uses the C flag as input and output for carry propagation.
Similarly, the instruction MCP uses the R flag as input and output carry. ADDC and
MCP use these flags for more efficient handling of large number add and multiply
operations rather than using the X flag.

The ADDC instruction adds two dword operands using the C flag as carry input. This
is the same behavior as a normal ADD.D with the X flag set. ADDC can be used to
pack several add with carry together without the need for setting the X flag in between.

Below is an example of how to summarize a vector of four dword elements in memory
using the ADDC instruction.

· Example:

CLEAR.D R1 ; Clear result register.
MOVE [vec_base],R0 ; Load vector base address to R0.
ADD.D [R0+],R1 ; Add without carry
ADDC [R0+],R1 ; Use input carry
ADDC [R0+],R1 ; Use input carry
ADDC [R0+],R1 ; Use input carry

The MCP instruction can be used to propagate the carry during large number multiply.
The inner loop of a large number multiplication looks something like this:

mof = 0;
R = 0;
for (j = 0; j < size; j++) {

{R,r[j]} = r[j] + mof + R // mcp
{mof,x} = w * b[j]; // mulu
{C,r[j]} = r[j] + x + C; // addc

}

2.1. ARCHITECTURAL DESCRIPTION 79

· Example: Inner loop of multiplication of two large numbers using the MCP
instruction

;;; Multiply R9 with 8 long vector at address in R10,
;;; add result to vector at address in R11

mul_p: MOVEM [R11],R8 ; load vector at R11 to R0-R8

MOVE.D [R10+],R12 ; index 0
MOVE 0,CCS ; clear R and C flags
MULU.D R9,R12
ADD.D R12,R0

MOVE.D [R10+],R12 ; index 1
MCP MOF,R1
MULU.D R9,R12
ADDC R12,R1

MOVE.D [R10+],R12 ; index 2
MCP MOF,R2
MULU.D R9,R12
ADDC R12,R2

MOVE.D [R10+],R12 ; index 3
MCP MOF,R3
MULU.D R9,R12
ADDC R12,R3

MOVE.D [R10+],R12 ; index 4
MCP MOF,R4
MULU.D R9,R12
ADDC R12,R4

MOVE.D [R10+],R12 ; index 5
MCP MOF,R5
MULU.D R9,R12
ADDC R12,R5

MOVE.D [R10+],R12 ; index 6
MCP MOF,R6
MULU.D R9,R12
ADDC R12,R6

MOVE.D [R10+],R12 ; index 7
MCP MOF,R7
MULU.D R9,R12
ADDC R12,R7

MCP MOF,R8
ADDC 0,R8 ; index 8

MOVEM R8,[R11] ; write back result vector

80 CHAPTER 2. CPU

RET
NOP

2.1.14 Integral read-write operations

Since some exceptions, like MMU-faults and breakpoints can interrupt the CPU in
almost any cycle, it is not possible to ensure the integrity of a piece of code just by
disabling the interrupts. Instead integral read-write operations can be implemented by
using the Load-Locked, Store-Conditional principle:

Start:
Initialize the lock;
Read variable;
Modify variable;
Write back variable if and only if the sequence hasn’t been interrupted;
Go to Start if write failed;

The P flag in the CCS and the instruction Branch on Carry Cleared BCC, are used to
accomplish this. The P flag is set when returning from an exception by the instruction
Restore From Exception (RFE) or Restore From NMI (RFN). To make this mechanism
useful in a multi-processor environment with a cache coherence protocol in action, the
P flag is also set if there is a cache miss on a conditional write.

A conditional write is accomplished by setting the X flag with the instruction before an
instruction that writes to memory. Only normal write instructions can result in condi-
tional writes, the MOVEM instruction can not be used for this purpose. A conditional
write is only carried out if the P flag hasn’t been set (i.e. is zero) and the cache doesn’t
miss on the write. The Carry flag is set if the write failed, cleared if it succeeded. The
conditional write must be aligned within one single 32-byte cache line for the mecha-
nism to work. Otherwise, parts of the data might be incorrectly written to the cache.
This can be avoided by e.g using only byte sized conditional writes.

Pseudo code for the conditional write to memory:

if (!P) {
write conditionally to cache;
if (cache misses) {

C = 1;
} else {

C = 0;
}

} else {
C = 1;

}

The conditional write to cache operation only takes effect if the cache has a valid copy
of the requested memory.

A code example of how the feature can be used to implement a spin-lock:

2.1. ARCHITECTURAL DESCRIPTION 81

· Example:

start_lock: CLEARF P ; start "unbreakable"
lock_loop: MOVE.B [memory_location], r1 ; sequence read

BEQ start_lock ; if zero, the lock is taken
NOP ; by someone else, retry
AX
CLEAR.B [memory_location] ; write conditional
BCS lock_loop ; try again if failed
CLEARF P

2.1.15 Single step

Single stepping of instructions means that a single step exception is generated after
every executed instruction in a program. A feature useful in debuggers. Single stepping
is enabled by setting the S flag and giving SPC (Single step PC) a suitable value.

A single step exception is generated whenever either of the following conditions are
true:

· The S flag is set and the PC of the instruction that was just executed is equal to
SPC.

· The S flag and the Q flag are both set.

When a single step exception is taken, SPC is updated with the PC of the instruction
that was just to be executed. This means that the next single step exception will be
generated after the next instruction has been executed (if the S flag is still set). The
exception routine itself is of course not single stepped as the S flag will be cleared
when the CCS is shifted.

The Q flag means ”pending single step exception” and is set if a single step exception
can’t be taken immediately due to a break instruction exception (see section2.1.10.3
for exception priorities). Thus the single step exception will be taken when the higher
priority break exception has finished. The Q flag is cleared when the single step ex-
ception is finally taken. There is in general no need for software to consider the Q
flag.

2.1.15.1 Single step examples

· Example: Initiating single step

This is typically done from an exception routine, e.g., a break n handler.

This code will generate the first single step exception after the instruction restarted
after returning from this exception has been executed:

...
enable_sstep: MOVE CCS,R0

82 CHAPTER 2. CPU

OR.D 1<<19,R0 ;; Set S1 flag (S1 will be copied
;; to S by RFE)

MOVE R0,CCS
MOVE ERP,R0
MOVE R0,SPC

<restore state>

RETE
RFE

This code will generate the first single step exception immediately on return from
this exception handling routine:

...
enable_sstep: MOVE CCS,R0

OR.D 1<<19 | 1<<31,R0 ;; Set Q and S1 flag (S1 will
;; be copied to S by RFE)

MOVE R0,CCS

<restore state>

RETE
RFE

· Example: Single step exception handler

Simplest possible single step exception handler:

sstep_handler: RETE
RFE

Single step exception handler that does something useful may look something
like this:

sstep_handler:
<save state>

<do useful stuff like displaying the instruction
just executed in the single stepped program>

<restore state>

RETE
RFE

2.1.16 Hardware breakpoints and watchpoints

Hardware breakpoints and or watchpoints consist of dedicated hardware that detects
when certain virtual memory addresses are accessed or when code from certain virtual
addresses is executed by the CPU.

2.1. ARCHITECTURAL DESCRIPTION 83

The difference between a breakpoint and a watchpoint is that a breakpoint generates
an exception while a watchpoint just notifies hardware outside the CPU (e.g., real time
program trace hardware) when the specified criterion is detected. Observe that this
definition differs from the one often used in debugging tools where the term watchpoint
is used for a breakpoint on data accesses.

The same hardware is used for breakpoints and watchpoints and each breakpoint and/or
watchpoint may be used as either a breakpoint, a watchpoint or both at once. There
is one breakpoint and/or watchpoint for instruction fetches and six for data memory
accesses.

To enable hardware breakpoints the following must be done:

· Provide a hardware breakpoint exception handler.

· Specify for which virtual addresses and access types the breakpoints shall trigger.
This is done via registers in support function register bank 3.

· Set the S flag for the program(s) where the breakpoints are valid. As the S flag is
also used for enabling single stepping, make sure SPC is set to a value that will
not trigger single stepping (unless single stepping is actually wanted). This can
be done by setting bit 0 of SPC to one. See section2.1.18for details on single
stepping.

To enable the hardware watchpoints, just specify the virtual addresses and access types
in the registers in support function registers bank 3.

2.1.16.1 Support function registers

The following support function registers are used to control the hardware breakpoints
and/or watchpoints. They are located in support register bank 3, i.e. SRS shall be set
to 3 when accessing these registers.

Reg.No. Name Description

0 BP CTRL Specifies for which access types each breakpoint shall
trigger

1 BP I0 START Instruction break/watch-point 0 start address

2 BP I0 END Instruction break/watch-point 0 end address

3 BP D0 START Data break/watch-point 0 start address

4 BP D0 END Data break/watch-point 0 end address

5 BP D1 START Data break/watch-point 1 start address

6 BP D1 END Data break/watch-point 1 end address

7 BP D2 START Data break/watch-point 2 start address

8 BP D2 END Data break/watch-point 2 end address

9 BP D3 START Data break/watch-point 3 start address

10 BP D3 END Data break/watch-point 3 end address

11 BP D4 START Data break/watch-point 4 start address

12 BP D4 END Data break/watch-point 4 end address

13 BP D5 START Data break/watch-point 5 start address

14 BP D5 END Data break/watch-point 5 end address

15 Reserved

Table 2.13:Hardware breakpoint support function registers

84 CHAPTER 2. CPU

The control register (BPCTRL) has the following layout:

Bit.No. Name Description

0 I0 BP When set, enables instruction breakpoint 0

1 I0 WP When set, enables instruction watchpoint 0

2 D0 BPRD When set, data breakpoint 0 will trigger on read
accesses.

3 D0 BPWR When set, data breakpoint 0 will trigger on write
accesses.

4 D0 WPRD When set, data watchpoint 0 will trigger on read
accesses.

5 D0 WPWR When set, data watchpoint 0 will trigger on write
accesses.

6 D1 BPRD When set, data breakpoint 1 will trigger on read
accesses.

7 D1 BPWR When set, data breakpoint 1 will trigger on write
accesses.

8 D1 WPRD When set, data watchpoint 1 will trigger on read
accesses.

9 D1 WPWR When set, data watchpoint 1 will trigger on write
accesses.

10 D2 BPRD When set, data breakpoint 2 will trigger on read
accesses.

11 D2 BPWR When set, data breakpoint 2 will trigger on write
accesses.

12 D2 WPRD When set, data watchpoint 2 will trigger on read
accesses.

13 D2 WPWR When set, data watchpoint 2 will trigger on write
accesses.

14 D3 BPRD When set, data breakpoint 3 will trigger on read
accesses.

15 D3 BPWR When set, data breakpoint 3 will trigger on write
accesses.

16 D3 WPRD When set, data watchpoint 3 will trigger on read
accesses.

17 D3 WPWR When set, data watchpoint 3 will trigger on write
accesses.

18 D4 BPRD When set, data breakpoint 4 will trigger on read
accesses.

19 D4 BPWR When set, data breakpoint 4 will trigger on write
accesses.

20 D4 WPRD When set, data watchpoint 4 will trigger on read
accesses.

21 D4 WPWR When set, data watchpoint 4 will trigger on write
accesses.

22 D5 BPRD When set, data breakpoint 5 will trigger on read
accesses.

23 D5 BPWR When set, data breakpoint 5 will trigger on write
accesses.

24 D5 WPRD When set, data watchpoint 5 will trigger on read
accesses.

25 D5 WPWR When set, data watchpoint 5 will trigger on write
accesses.

26-31 Reserved

Table 2.14:BP CTRL register layout

2.1. ARCHITECTURAL DESCRIPTION 85

2.1.16.2 Triggering condition

When an access falls within the specified criterion of an enabled breakpoint and/or
watchpoint it is said to trigger. Below is specified under which condition a breakpoint
and/or watchpoint triggers.

An instruction breakpoint triggers when all of the following are true:

· The breakpoint is enabled. Bit InBP in the BPCTRL register is set to one.

· The address and size of the instruction to be executed conforms to:

address + size > BP_In_START &&
address <= BP_In_END

A data breakpoint triggers when all of the following is true:

· The data access is either a:

- Read and DnBPRD is set in the BPCTRL register, or

- Write and DnBPWR is set in the BPCTRL register

· The address and size of the access conforms to:

address + size > BP_In_START &&
address <= BP_In_END

An instruction watchpoint triggers when all of the following is true:

· The watchpoint is enabled. Bit InWP in the BPCTRL register is set to one.

· The address and size of the instruction to be executed conforms to:

address + size > BP_In_START &&
address <= BP_In_END

A data watchpoint triggers when all of the following is true:

· The data access is either a:

- Read and DnWPRD is set in the BPCTRL register, or

- Write and DnWPWR is set in the BPCTRL register

· The address and size of the access conforms to:

address + size > BP_In_START &&
address <= BP_In_END

86 CHAPTER 2. CPU

2.1.16.3 Exceptions

When a hardware breakpoint triggers, a hardware breakpoint exception is generated.
When this exception in taken, the following also happens:

· SPC is updated with the PC of the instruction that was interrupted.

· The S field of EXS is set according to the table below.

Bit.No. Name Description

0 I0 Set if instruction breakpoint 0 has triggered

1 D0 RD Set if data breakpoint 0 has triggered on a read

2 D0 WR Set if data breakpoint 0 has triggered on a write

3 D1 RD Set if data breakpoint 1 has triggered on a read

4 D1 WR Set if data breakpoint 1 has triggered on a write

5 D2 RD Set if data breakpoint 2 has triggered on a read

6 D2 WR Set if data breakpoint 2 has triggered on a write

7 D3 RD Set if data breakpoint 3 has triggered on a read

8 D3 WR Set if data breakpoint 3 has triggered on a write

9 D4 RD Set if data breakpoint 4 has triggered on a read

10 D4 WR Set if data breakpoint 4 has triggered on a write

11 D5 RD Set if data breakpoint 5 has triggered on a read

12 D5 WR Set if data breakpoint 5 has triggered on a write

13-15 Reserved, shall be ignored

· For data breakpoints, EDA is set to the address causing the breakpoint to trigger.

After a breakpoint exception has been handled and the execution of the interrupted
program is to be resumed, some care must be taken. If the breakpoint(s) that triggered
remains enabled and the state of the resumed program is unaltered, the breakpoint(s)
will trigger immediately again when the program is resumed. This is generally not a
desirable behavior.

One way to avoid this is to disable the breakpoint(s) and single step past the triggering
instruction and then turn the breakpoint(s) on again (as described in an example below).

2.1.16.4 Examples

· Example: Setting up an instruction breakpoint

MOVE 3,SRS
NOP ; let update of SRS propagate
NOP
NOP
MOVE.D start_addr,R0
MOVE R0,S1 ; instr bp 0 start addr
MOVE.D end_addr,R0
MOVE R0,S2 ; instr bp 0 end addr
MOVE.D 0x1,R0
MOVE R0,S0 ; enable instr breakpoint 0

2.1. ARCHITECTURAL DESCRIPTION 87

· Example: Setting up a data read/write breakpoint

MOVE 3,SRS
NOP ; let update of SRS propagate
NOP
NOP
MOVE.D start_addr,R0
MOVE R0,S3 ; data bp 0 start addr
MOVE.D end_addr,R0
MOVE R0,S4 ; data bp 0 end addr
MOVE.D 0xC,R0
MOVE R0,S0 ; enable data breakpoint 0

; for reads and writes

· Example: Hardware breakpoint exception handler

Example of how single step can be used to step past a triggering breakpoint after
it has been handled.

As SPC is set when hwbphandler is entered, the single step exception sstephandler
will be called after the instruction that triggered the breakpoint has been restarted
and executed. The single step handler then turns the breakpoint back on.

hwbp_handler:
<save state>

<do useful stuff with breakpoint status>

<disable triggering breakpoint>

<restore state>

RETE
RFE

sstep_handler:
<save state>

MOVE R0,CCS
MOVE [SP+],R0

<re-enable breakpoint>

MOVE 1,SPC ; disable single step

RETE
RFE

2.1.17 Version identification

Different versions of the CRIS CPU architecture can be identified by reading the Ver-
sion Register (VR). The version register is an 8-bit read-only register that contains the

88 CHAPTER 2. CPU

CPU version number.

In older chip implementations the VR register has been used to identify the chip version
(i.e. not only the CPU version). Starting with the CRIS v32 architecture the content of
the VR register belongs to the CRIS CPU only. The CPU version number may therefore
stay the same through several chip implementations. The chip version is identified by
reading a chip version number outside the CPU.

The content of the VR register for different CRIS architectures and chip implementa-
tions can be found in the following table:

Value Architecture Chip Name Part No Note

0 CRIS v0 ETRAX E1 13425

1 CRIS v1 ETRAX E2 13576

2 CRIS v2 ETRAX E3 13873

3 CRIS v3 ETRAX E4 14517

4-7 Reserved for future use in the
ETRAX family.

8 CRIS v8 ETRAX 100 E1 15822

9 CRIS v8 ETRAX 100 E2 16284

10 CRIS v10 ETRAX 100LX E1 17511

11 CRIS v10 ETRAX 100LX E2 17854

11 CRIS v10 ETRAX 100LX E3 18816

11 CRIS v10 ETRAX 100LX E3 19322 Lead (Pb) free.

12-15 Reserved for future use in the
ETRAX 100 family.

16 CRIS v8 ARTPEC 2 19054

16 CRIS v8 ARTPEC 2 20667 Lead (Pb) free.

17-31 Reserved for future use in the
ARTPEC family.

32 CRIS v32 ETRAX FS 21050

32 CRIS v32 ETRAX FS 24745 Lead (Pb) free.

33-255 Not assigned.

Table 2.16:CRIS Version register

2.1.18 Reset

On reset, the CPU will start executing at a specific address. This address points out the
start address of the internal boot ROM. The CPU starts out in Kernel mode (flag U=0)
with NMI and interrupts disabled (flags M=0 and I=0).

CCS = 0 Kernel Mode, Interrupts and NMI disabled

PC = boot rom entry Boot ROM entry address (0x3c000100)

The caches are disabled after reset but this is not visible for normal program code
in ETRAX FS. The internal boot ROM will initialize and enable the caches before
jumping to normal program code. Memory management is always disabled after reset.
See6.4.1for more information.

2.2. INSTRUCTION SET DESCRIPTION 89

2.2 Instruction set description

2.2.1 General

2.2.1.1 Definitions

In the instruction descriptions, the following definitions apply:

m Size modifier, byte (00), word (01) or dword (10)

z Size modifier, byte (0) or word (1)

Rs Source operand, register addressing mode

[Rs] Source operand, indirect addressing mode

[Rs+] Source operand, autoincrement addressing mode (note)

k 8,16 or 32 bit immediate operand

s Source operand, any of the modes Rs, [Rs] or [Rs+] or k

Ps Source operand, special register

i 6-bit signed immediate operand

j 6-bit unsigned immediate operand

c 5-bit immediate shift value

qo 4-bit unsigned immediate operand

Rd Destination operand, register addressing mode

[Rd] Destination operand, indirect addressing mode

[Rd+] Destination operand, autoincrement addressing mode

d Destination operand, any of the modes Rd, [Rd] or [Rd+]

Pd Destination operand, special register

o 8-bit immediate offset value

cc Condition code

n 4 bit breakpoint exception vector index

ao 32 bit immediate address offset operand

aa 32 bit immediate absolute address operand

bo 16 bit immediate branch offset operand

Table 2.17:Instruction description definitions

Note: [ACR+] or [R15+] is not possible as this coding is for the immediate addressing
mode.

For a description of how the flags are affected, the following definitions apply:

- Flag not affected

0 Flag cleared

1 Flag set

* Flag affected according to the result of the operation.
Refer to section2.1.3for details.

Table 2.18:How flags are affected

Instructions, register specifications, condition code specifications, and size modifiers
may be written in upper or lower case. Upper case is used throughout this manual to

90 CHAPTER 2. CPU

distinguish instructions from normal text.

2.2.1.2 Size modifiers

Many of the CRIS instructions can operate on the three different data types byte (8 bits),
word (16 bits) and dword (32 bits). The size of the operation or operand is indicated
by a size modifier added to the instruction. The size modifiers are:

Name Description Size modifier

Byte 8-bit integer .B

Word 16-bit integer .W

Dword 32-bit integer or address .D

Table 2.19:Size modifiers

2.2.1.3 Addressing modes

The addressing modes of the CRIS CPU are described in table2.20 below. For a
detailed description of each addressing mode, refer to section2.1.6.

Assembler Syntax Addressing mode

i , j Quick immediate

Rn Register

Pn Special register

Sn Support function register

[Rn] Indirect

[Rn+] Autoincrement

x , u Byte immediate

xx , uu Word immediate

xxxx , uuuu Dword immediate

Table 2.20:Addressing modes

2.2.2 Instruction function summary

Instructions for the CRIS CPU are listed alphabetically in the following sections below
together with their flag operation and a brief description.

2.2.2.1 Address calculation instructions

Address calculation instructions for the CRIS CPU are described in the table below.

Instruction S R P U I X N Z V C Description

ADDO.m [Rs],Rd,ACR - - - - - 0 - - - - Add sign extended source

ADDO.m [Rs+],Rd,ACR - - - - - 0 - - - - Add sign extended source

ADDO.m k,Rd,ACR - - - - - 0 - - - - Add sign extended source

ADDOQ o,Rs,ACR - - - - - 0 - - - - Add 8-bit signed offset

ADDI Rs.m,Rd - - - - - 0 - - - - Add scaled index to base

2.2. INSTRUCTION SET DESCRIPTION 91

ADDI Rs.m,Rd,ACR - - - - - 0 - - - - Add scaled index to base

LAPC k,Rd - - - - - 0 - - - - Assign Rd sum of PC plus operand

LAPCQ qo,Rd - - - - - 0 - - - - Assign Rd sum of PC plus constant*2

Table 2.21:Address calculation instructions

2.2.2.2 Arithmetic instructions

The arithmetic instructions for the CRIS CPU are listed in the table below.

Instruction S R P U I X N Z V C Description

ABS Rs,Rd - - - - - 0 * * 0 0 Absolute value

ADD.m s,Rd - - - - - 0 * * * * Add source to destination register

ADDC s,Rd - - - - - 0 * * * * Add source with carry bit to register

ADDQ j,Rd - - - - - 0 * * * * Add 6-bit unsigned immediate

ADDS.z s,Rd - - - - - 0 * * * * Add sign extended source to register

ADDU.z s,Rd - - - - - 0 * * * * Add zero extended source to register

CMP.m s,Rd - - - - - 0 * * * * Compare source to register

CMPQ i,Rd - - - - - 0 * * * * Compare with 6-bit signed immediate

CMPS.z [Rs],Rd - - - - - 0 * * * * Compare with sign extended source

CMPS.z [Rs+],Rd - - - - - 0 * * * * Compare with sign extended source

CMPS.z k,Rd - - - - - 0 * * * * Compare with sign extended source

CMPU.z [Rs],Rd - - - - - 0 * * * * Compare with zero extended source

CMPU.z [Rs+],Rd - - - - - 0 * * * * Compare with zero extended source

CMPU.z k,Rd - - - - - 0 * * * * Compare with zero extended source

DSTEP Rs,Rd - - - - - 0 * * - - Divide step

MCP Ps,Rd - * - - - 0 * * * - Multiply carry propagation

MULS.m Rs,Rd - - - - - 0 * * * - Signed multiply

MULU.m Rs,Rd - - - - - 0 * * * - Unsigned multiply

NEG.m Rs,Rd - - - - - 0 * * * * Negate (2’s complement)

SUB.m s,Rd - - - - - 0 * * * * Subtract source from register

SUBQ j,Rd - - - - - 0 * * * * Subtract 6-bit unsigned immediate

SUBS.z s,Rd - - - - - 0 * * * * Subtract sign extended source

SUBU.z s,Rd - - - - - 0 * * * * Subtract zero extended source

TEST.m [Rs] - - - - - 0 * * 0 0 Compare source with 0

TEST.m [Rs+] - - - - - 0 * * 0 0 Compare source with 0

Table 2.22:Arithmetic instructions

2.2.2.3 Bit test instructions

The bit test instructions for the CRIS CPU are shown in the table below. The BTST
and BTSTQ instructions set the N flag according to the selected bit in the destination
register. The Z flag is set if the selected bit and all bits to the right of the destination
register are zero. When the bit number is contained in a register, the 6 least significant
bits of the register are used as an unsigned bit number.

Instruction S R P U I X N Z V C Description

BTST Rs,Rd - - - - - 0 * * - - Test bit Rs in register Rd

92 CHAPTER 2. CPU

BTSTQ c,Rd - - - - - 0 * * - - Test bit c in register Rd

Table 2.23:Bit test instructions

2.2.2.4 Cache manipulation instructions

Instructions used to manage the caches for the CRIS CPU are shown in the table below.

Instruction S R P U I X N Z V C Description

FIDXD [Rs] - - - - - 0 - - - - Flush data cache with index

FIDXI [Rs] - - - - - 0 - - - - Flush instruction cache with index

FTAGD [Rs] - - - - - 0 - - - - Flush data cache with address

FTAGI [Rs] - - - - - 0 - - - - Flush instruction cache with address

Table 2.24:Cache manipulation instructions

2.2.2.5 Condition code manipulation instructions

The condition code manipulation instructions for the CRIS CPU are shown in the table
below. The predefined assembler macros EI, DI, and AX are also shown.

Instruction S R P U I X N Z V C Description

AX - - - - - 1 - - - - Arithmetic extend (SETF X)

CLEARF<list of flags>
Kernel Mode

- - * * * 0 * * * * Clear flags in list

CLEARF<list of flags>
User Mode

- - * - - 0 * * * * Clear flags in list

DI
Kernel Mode

- - - - 0 0 - - - - Disable interrupts (CLEARF I)

EI
Kernel Mode

- - - - 1 0 - - - - Enable interrupts (SETF I)

RFE
Kernel Mode

* * * * * * * * * * Restore from exception

RFE
User Mode

- * * - - * * * * * Restore from exception

RFG
Guru Mode

* * * * * * * * * * Restore from guru mode

RFG
User and Kernel Mode

- - - - - - - - - - Restore from guru mode

RFN
Kernel Mode

* * * * * * * * * * Restore from NMI exception

RFN
User Mode

- * * - - * * * * * Restore from NMI exception

SETF<list of flags>
Kernel Mode

- - * * * * * * * * Set flags in list

SETF<list of flags>
User Mode

- - * - - * * * * * Set flags in list

SFE
Kernel Mode

0 0 0 0 0 0 0 0 0 0 Save for exception

SFE
User Mode

- 0 0 - - 0 0 0 0 0 Save for exception

2.2. INSTRUCTION SET DESCRIPTION 93

Table 2.25:Condition code manipulation instructions

2.2.2.6 Data transfers

The data transfer instructions for the CRIS CPU are listed in the table below.

Instruction S R P U I X N Z V C Description

CLEAR.m d - - - - - 0 - - - - Clear destination operand

MOVE Ps,Rd - - - - - 0 - - - - Move from source special register to
destination

MOVE Ps,[Rd]
X flag cleared

- - - - - 0 - - - - Move from source special register to
destination

MOVE Ps,[Rd]
X flag set

- - - - - 0 - - - * Move from source special register to
destination

MOVE Ps,[Rd+]
X flag cleared

- - - - - 0 - - - - Move from source special register to
destination

MOVE Ps,[Rd+]
X flag set

- - - - - 0 - - - * Move from source special register to
destination

MOVE Rs,Pd
Pd != CCS

- - - - - 0 - - - - Move from source to destination
special register

MOVE Rs,Pd
Pd = CCS,
Kernel Mode

* * * * * * * * * * Move from source to destination
special register

MOVE Rs,Pd
Pd = CCS, User Mode

- * * - - * * * * * Move from source to destination
special register

MOVE [Rs],Pd
Pd != CCS

- - - - - 0 - - - - Move from source to destination
special register

MOVE [Rs],Pd
Pd = CCS,
Kernel Mode

* * * * * * * * * * Move from source to destination
special register

MOVE [Rs],Pd
Pd = CCS,
User Mode

- * * - - * * * * * Move from source to destination
special register

MOVE [Rs+],Pd
Pd != CCS

- - - - - 0 - - - - Move from source to destination
special register

MOVE [Rs+],Pd
Pd = CCS,
Kernel Mode

* * * * * * * * * * Move from source to destination
special register

MOVE [Rs+],Pd
Pd = CCS,
User Mode

- * * - - * * * * * Move from source to destination
special register

Instruction S R P U I X N Z V C Description

MOVE Rs,Sd - - - - - 0 - - - - Move from source to support function
register

MOVE Ss,Rd - - - - - 0 - - - - Move from support function register to
source

MOVE.m d,Rd - - - - - 0 * * - - Move from source to general register

MOVE.m Rs,[Rd]
X flag cleared

- - - - - 0 - - - - Move from general register to
destination

MOVE.m Rs,[Rd+]
X flag cleared

- - - - - 0 - - - - Move from general register to
destination

MOVE.m Rs,[Rd]
X flag set

- - - - - 0 - - - * Move from general register to
destination

94 CHAPTER 2. CPU

MOVE.m Rs,[Rd+]
X flag set

- - - - - 0 - - - * Move from general register to
destination

MOVEM Rs,[Rd] - - - - - 0 - - - - Move multiple registers to memory

MOVEM Rs,[Rd+] - - - - - 0 - - - - Move multiple registers to memory

MOVEM [Rs],Rd - - - - - 0 - - - - Move from memory to multiple
registers

MOVEM [Rs+],Rd - - - - - 0 - - - - Move from memory to multiple
registers

Instruction S R P U I X N Z V C Description

MOVEQ - - - - - 0 - - - - Move 6-bit signed immediate to
destination register

MOVS.z s,Rd - - - - - 0 * * - - Move sign extended source to
destination register

MOVU.z s,Rd - - - - - 0 0 * - - Move zero extended source to
destination register

Table 2.26:Data transfer instructions

2.2.2.7 Jump and Branch Instructions

The jump and branch instructions of the CRIS CPU are shown in the table below. The
predefined assembler macros RET and RETE are also shown. Note that all jump and
branch instructions (except BREAK) have a delayed effect, see section2.1.7.

Instruction S R P U I X N Z V C Description

BA k - - - - - 0 - - - - Alias for BAS k,P0

BAS ao,Pd - - - - - 0 - - - - Branch and save

BASC ao,Rd - - - - - 0 - - - - Branch and save w context

Bcc o - - - - - 0 - - - - Conditional relative branch

Bcc bo - - - - - 0 - - - - Branch with 16-bit offset

BREAK n - - - - - 0 - - - - Breakpoint

BSR ao - - - - - 0 - - - - Branch to subroutine

BSRC ao - - - - - 0 - - - - Branch to subroutine w context

JAS Rs,Pd - - - - - 0 - - - - Jump and save

JAS aa,Pd - - - - - 0 - - - - Jump and save

JASC Rs,Pd - - - - - 0 - - - - Jump and save w context

JASC aa,Pd - - - - - 0 - - - - Jump and save w context

JSR Rs - - - - - 0 - - - - Jump to subroutine

JSR aa - - - - - 0 - - - - Jump to subroutine

JSRC Rs - - - - - 0 - - - - Jump to subroutine w context

JSRC aa - - - - - 0 - - - - Jump to subroutine w context

JUMP Rs - - - - - 0 - - - - Jump to absolute address

JUMP aa - - - - - 0 - - - - Jump to absolute address

JUMP Ps - - - - - 0 - - - - Jump to special register

RET - - - - - 0 - - - - Return from subroutine

RETE - - - - - 0 - - - - Return from exception

RETN - - - - - 0 - - - - Return from NMI exception

Table 2.27:Flag operation for jump and branch instructions

2.2. INSTRUCTION SET DESCRIPTION 95

2.2.2.8 Logical Instructions

The logical instructions for the CRIS CPU are described in the table below.

Instruction S R P U I X N Z V C Description

AND.m s,Rd - - - - - 0 * * - - Bitwise logical AND

ANDQ i,Rd - - - - - 0 * * - - AND with 6-bit signed immediate

NOT Rd - - - - - 0 * * - - Bitwise logical NOT

OR.m s,Rd - - - - - 0 * * - - Bitwise logical OR

ORQ i,Rd - - - - - 0 * * - - OR with 6-bit signed immediate

SWAP<option> Rd - - - - - 0 * * - - Swap operand bits

XOR Rs,Rd - - - - - 0 * * - - Bitwise Exclusive OR

Table 2.28:Logical instructions

The SWAP instruction takes one or more of the following option flags.

Flag Description

N Invert all bits in the operand.

W Swap the words of the operand.

B Swap the two bytes within each word
of the operand.

R Reverse the bit order within each byte
of the operand.

2.2.2.9 Miscellaneous data operations

Miscellaneous data operation instructions for the CRIS CPU are described in the table
below.

Instruction S R P U I X N Z V C Description

BOUND.m Rs,Rd - - - - - 0 * * - - Adjust table index (unsigned min)

BOUND.m k,Rd - - - - - 0 * * - - Adjust table index (unsigned min)

LZ - - - - - 0 0 * - - Number of leading zeros

NOP - - - - - 0 - - - - No operation (alias for SETF)

Scc Rd - - - - - 0 - - - - Set register according to cc

Table 2.30:Miscellaneous data operations

2.2.2.10 Shift instructions

The shift instructions for the CRIS CPU are shown in the table below. When the shift
count is contained in a register, the 6 least significant bits of the register are used as an
unsigned shift count.

Instruction S R P U I X N Z V C Description

ASR.m Rs,Rd - - - - - 0 * * - - Right shift Rd with sign fill

ASRQ c,Rd - - - - - 0 * * - - Right shift Rd with sign fill

LSL.m Rs,Rd - - - - - 0 * * - - Left shift Rd with zero fill

96 CHAPTER 2. CPU

LSLQ c,Rd - - - - - 0 * * - - Left shift Rd with zero fill

LSR.m Rs,Rd - - - - - 0 * * - - Right shift Rd with zero fill

LSRQ c,Rd - - - - - 0 * * - - Right shift Rd with zero fill

Table 2.31:Shift instructions

2.2.3 Instruction format summary

In each of the tables below, instructions are listed in numerical order according their
opcodes.

2.2.3.1 Quick immediate mode instructions

The following table summarizes the quick immediate mode instructions.

Note that the (s.) field of Bcc o is the sign bit of the offset.

Bit number/General instruction format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Operation Operand2 Mode Opcode Operand1

Bcc o Condition 0 0 0 0 Offset s.

ADDOQ o,Rs,ACR Base 0 0 0 1 Signed Displacement

BREAK n 1 1 1 0 1 0 0 1 0 0 1 1 n

ADDQ i,Rd Dest. Reg. 0 0 1 0 0 0 Unsigned Immed.

MOVEQ i,Rd Dest. Reg. 0 0 1 0 0 1 Signed Immediate

SUBQ i,Rd Dest. Reg. 0 0 1 0 1 0 Unsigned Immed.

CMPQ i,Rd Dest. Reg. 0 0 1 0 1 1 Signed Immediate

ANDQ i,Rd Dest. Reg. 0 0 1 1 0 0 Signed Immediate

ORQ i,Rd Dest. reg. 0 0 1 1 0 1 Signed Immediate

BTSTQ c,Rd Dest. Reg. 0 0 1 1 1 0 0 Bit Number

ASRQ c,Rd Dest. Reg. 0 0 1 1 1 0 1 Shift Value

LSLQ c,Rd Dest. Reg. 0 0 1 1 1 1 0 Shift Value

LSRQ c,Rd Dest. Reg. 0 0 1 1 1 1 1 Shift Value

Table 2.32:Quick immediate mode instructions

2.2.3.2 Register instructions with variable size

The first table below gives the different sizes of the instructions, and the second table
summarizes the register instructions of variable size.

z Size zz Size

0 byte 00 byte

1 word 01 word

10 dword

Table 2.33:Instruction sizes

2.2. INSTRUCTION SET DESCRIPTION 97

Bit number/General instruction format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Operation Operand2 Mode Opcode Size Operand1

ADDU.z Rs,Rd Dest. Reg. 0 1 0 0 0 0 0 z Source Reg.

ADDS.z Rs,Rd Dest. Reg. 0 1 0 0 0 0 1 z Source Reg.

MOVU.z Rs,Rd Dest. Reg. 0 1 0 0 0 1 0 z Source Reg.

MOVS.z Rs,Rd Dest. Reg. 0 1 0 0 0 1 1 z Source Reg.

SUBU.z Rs,Rd Dest. Reg. 0 1 0 0 1 0 0 z Source Reg.

SUBS.z Rs,Rd Dest. Reg. 0 1 0 0 1 0 1 z Source Reg.

LSL.m Rs,Rd Dest. Reg. 0 1 0 0 1 1 z z Source Reg.

ADDI Rs.m,Rd Source Reg 0 1 0 1 0 0 z z Dest. Reg.

MULU.m Rs,Rd Dest. Reg. 1 0 0 1 0 0 z z Source Reg.

MULS.m Rs,Rd Dest. Reg. 1 1 0 1 0 0 z z Source Reg.

ADDI Rs.m,Rd,ACR Source Reg 0 1 0 1 0 1 z z Dest. Reg.

NEG.m Rs,Rd Dest. Reg. 0 1 0 1 1 0 z z Source Reg.

BOUND.m Rs,Rd Dest. Reg 0 1 0 1 1 1 z z Source Reg.

ADD.m Rs,Rd Dest. Reg. 0 1 1 0 0 0 z z Source Reg.

MOVE.m Rs,Rd Dest. Reg. 0 1 1 0 0 1 z z Source Reg.

SUB.m Rs,Rd Dest. Reg. 0 1 1 0 1 0 z z Source Reg.

CMP.m Rs,Rd Dest. Reg. 0 1 1 0 1 1 z z Source Reg.

AND.m Rs,Rd Dest. Reg. 0 1 1 1 0 0 z z Source Reg.

OR.m Rs,Rd Dest. Reg. 0 1 1 1 0 1 z z Source Reg.

ASR.m Rs,Rd Dest. Reg. 0 1 1 1 1 0 z z Source Reg.

LSR.m Rs,Rd Dest. Reg. 0 1 1 1 1 1 z z Source Reg.

Table 2.34:Register instructions with variable size

2.2.3.3 Summary of register instructions with fixed size

Bit number/General instruction format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Operation Operand2 Mode Opcode Size Operand1

BTST Rs,Rd Dest. Reg. 0 1 0 0 1 1 1 1 Source Reg.

Scc Rd Condition 0 1 0 1 0 0 1 1 Dest. Reg.

RFE 0 0 1 0 1 0 0 1 0 0 1 1 0 0 0 0

SFE 0 0 1 1 1 0 0 1 0 0 1 1 0 0 0 0

RFG 0 1 0 0 1 0 0 1 0 0 1 1 0 0 0 0

RFN 0 1 0 1 1 0 0 1 0 0 1 1 0 0 0 0

HALT 1 1 1 1 1 0 0 1 0 0 1 1 0 0 0 0

ADDC Rs,Rd Dest. Reg. 0 1 0 1 0 1 1 1 Source Reg.

SETF<list> P U I X 0 1 0 1 1 0 1 1 N Z V C

CLEARF<list> P U I X 0 1 0 1 1 1 1 1 N Z V C

MOVE Rs,Pd Special Reg. 0 1 1 0 0 0 1 1 Source Reg.

MOVE Ps,Rd Special Reg. 0 1 1 0 0 1 1 1 Dest. Reg.1

ABS Rs,Rd Dest. Reg. 0 1 1 0 1 0 1 1 Source Reg.

DSTEP Rs,Rd Dest. Reg. 0 1 1 0 1 1 1 1 Source Reg.

1MOVE from the zero special registers (DZ,WZ and BZ) are used as CLEAR. The size of the clear
depends on the special register used.

98 CHAPTER 2. CPU

LZ Rs,Rd Dest. Reg. 0 1 1 1 0 0 1 1 Source Reg.

MOVE Rs,Sd Support Reg. 1 0 1 1 0 1 1 1 Source Reg.

MOVE Ss,Rd Support Reg. 1 1 1 1 0 1 1 1 Dest. Reg.

SWAP<opt> Rd N W B R 0 1 1 1 0 1 1 1 Dest. Reg.

XOR Rs,Rd Dest. Reg. 0 1 1 1 1 0 1 1 Source Reg.

MCP Ps,Rd Special Reg. 0 1 1 1 1 1 1 1 Dest. Reg.

Table 2.35:Register instructions with fixed size

2.2.3.4 Summary of indirect instructions with variable size

m Mode

0 Register indirect

1 Register indirect with post increment

Table 2.36:Instruction modes

z Size zz Size

0 byte 00 byte

1 word 01 word

10 dword

Table 2.37:Instruction sizes

Bit number/General instruction format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Operation Operand2 Mode Opcode Size Operand1

ADDU.z [],Rd Dest. Reg. 1 m 0 0 0 0 0 z Source Reg.

ADDS.z [],Rd Dest. Reg. 1 m 0 0 0 0 1 z Source Reg.

MOVU.z [],Rd Dest. Reg. 1 m 0 0 0 1 0 z Source Reg.

MOVS.z [],Rd Dest. Reg. 1 m 0 0 0 1 1 z Source Reg.

SUBU.z [],Rd Dest. Reg. 1 m 0 0 1 0 0 z Source Reg.

SUBS.z [],Rd Dest. Reg. 1 m 0 0 1 0 1 z Source Reg.

CMPU.z [],Rd Dest. Reg. 1 m 0 0 1 1 0 z Source Reg.

CMPS.z [],Rd Dest. Reg. 1 m 0 0 1 1 1 z Source Reg.

ADDO.m [],Rd,ACR Base 1 m 0 1 0 1 z z Source Reg.

BOUND.m [],Rd Index 1 m 0 1 1 1 z z Bound

ADD.m [],Rd Dest. Reg. 1 m 1 0 0 0 z z Source Reg.

MOVE.m [],Rd Dest. Reg. 1 m 1 0 0 1 z z Source Reg.

SUB.m [],Rd Dest. Reg. 1 m 1 0 1 0 z z Source Reg.

CMP.m [],Rd Dest. Reg. 1 m 1 0 1 1 z z Source Reg.

AND.m [],Rd Dest. Reg. 1 m 1 1 0 0 z z Source Reg.

OR.m [],Rd Dest. Reg. 1 m 1 1 0 1 z z Source Reg.

TEST.m [] 0 0 0 0 1 m 1 1 1 0 z z Source Reg.

MOVE.m Rs,[] Source Reg. 1 m 1 1 1 1 z z Dest.

Table 2.38:Indirect instructions with variable size

2.3. INSTRUCTIONS IN ALPHABETICAL ORDER 99

2.2.3.5 Summary of indirect instructions with fixed size

m Mode

0 Register Indirect

1 Register Indirect with post increment

Table 2.39:Instruction modes

Bit number/General instruction format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Operation Operand2 Mode Opcode Size Operand1

FIDXI [Rs] 0 0 0 0 1 1 0 1 0 0 1 1 Source Reg.

FTAGI [Rs] 0 0 0 1 1 1 0 1 0 0 1 1 Source Reg.

LAPCQ qo,Rd Dest. Reg. 1 0 0 1 0 1 1 1 Imm. Offset

LAPC k,Rd Dest. Reg. 1 1 0 1 0 1 1 1 1 1 1 1

Reserved Dest. Reg. 1 m 0 1 1 0 0 0 Source Reg.

Reserved Dest. Reg. 1 m 0 1 1 0 0 1 Source Reg.

ADDC [],Rd Dest. Reg. 1 m 0 1 1 0 1 0 Source Reg.

JAS Rs,Pd Special Reg. 1 0 0 1 1 0 1 1 Source Reg.

JAS aa,Pd Special Reg. 1 1 0 1 1 0 1 1 1 1 1 1

JUMP Ps Special Reg. 1 0 0 1 1 1 1 1 0 0 0 0

Bcc bo Condition 1 1 0 1 1 1 1 1 1 1 1 1

MOVE [],Pd Special Reg. 1 m 1 0 0 0 1 1 Source Reg.

MOVE Ps,[] Special Reg. 1 m 1 0 0 1 1 1 Dest.2

FIDXD [Rs] 0 0 0 0 1 0 1 0 1 0 1 1 Source Reg.

FTAGD [Rs] 0 0 0 1 1 0 1 0 1 0 1 1 Source Reg.

BAS ao,Pd Special Reg. 1 1 1 0 1 0 1 1 1 1 1 1

Reserved Special Reg. 1 0 1 0 1 1 1 1 Source Reg.

BASC ao,Pd Special Reg. 1 1 1 0 1 1 1 1 1 1 1 1

JASC Rs,Pd Special Reg. 1 0 1 1 0 0 1 1 Source Reg.

JASC aa,Pd Special Reg. 1 1 1 1 0 0 1 1 1 1 1 1

MOVEM [],Rd Dest. Reg. 1 m 1 1 1 0 1 1 Source Reg.

MOVEM Rs,[] Source Reg. 1 m 1 1 1 1 1 1 Dest.

Table 2.40:Indirect instructions with fixed size

2.3 Instructions in alphabetical order

2.3.1 Introduction

In this section, all the instructions of the CRIS CPU are described in alphabetical order.
Each description contains the following information:

Assembler syntax: Shows the assembler syntax for the instruction. Operands, addressing modes and
size modifiers are described using the definitions shown in section2.2.1.1.

2MOVE from the zero special registers (DZ,WZ and BZ) are used as CLEAR. The size of the clear
depends on the special register used.

100 CHAPTER 2. CPU

Size: Lists the different data sizes for the instruction.

Operation: Describes the instruction in a form similar to the C programming language. Dif-
ferent data sizes are shown with the type cast method used in the C language.
The behavior of the flags is usually not shown.

Description: A text description of the instruction.

Flags affected: Shows which flags are affected by the instruction. The detailed behavior of the
flags is shown in section2.1.3.

Instruction format: Shows the instruction formats.

2.3. INSTRUCTIONS IN ALPHABETICAL ORDER 101

2.3.2 ABS - Absolute Value

Assembler syntax: ABS Rs,Rd

Size: Dword

Description: The absolute value of the contents of the source register is stored in the destina-
tion register. The size of the operation is dword.

Operation:
if (Rs < 0) {

Rd = -Rs;
} else {

Rd = Rs;
}

Flags affected:
S R P U I X N Z V C
- - - - - 0 * * - -

Instruction format: ABS Rs,Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 0 1 1 0 1 0 1 1 | Source(Rs) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Note: If the source operand is 0x80000000, the result of the operation will be 0x80000000.

102 CHAPTER 2. CPU

2.3.3 ADD - Add

Assembler syntax:
ADD.m Rs,Rd
ADD.m [Rs],Rd
ADD.m [Rs+],Rd
ADD.m k,Rd

Size: Byte, word, or dword

Description: The source data is added to the destination register. The size of the operation is
m. The rest of the destination register is not affected.

Operation:
(m)Rd += (m)s;

Flags affected:
S R P U I X N Z V C
- - - - - 0 * * * *

Instruction format: ADD.m Rs,Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 0 1 1 0 0 0 | m | Source(Rs) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Instruction format: ADD.m [Rs],Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 1 0 1 0 0 0 | m | Source(Rs) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Instruction format: ADD.m [Rs+],Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 1 1 1 0 0 0 | m | Source(Rs) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Instruction format: ADD.d k,Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 1 1 1 0 0 0 1 0 | 1 1 1 1 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| Bits 0-15 of k |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| Bits 16-31 of k |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

2.3. INSTRUCTIONS IN ALPHABETICAL ORDER 103

Instruction format: ADD.b k,Rd andADD.w k,Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 1 1 1 0 0 0 | m | 1 1 1 1 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| Bits 0-15 of k (bits 8-15 are ignored if size is byte) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Mode (m) Description

00 Byte

01 Word

10 Dword

104 CHAPTER 2. CPU

2.3.4 ADDC - Add with Carry

Assembler syntax:
ADDC Rs,Rd
ADDC [Rs],Rd
ADDC [Rs+],Rd
ADDC k,Rd

Size: Dword

Description: The source data is added together with the carry flag to the destination register.
The size of the operation is dword.

ADDC performs the same operation as the sequence:

AX
ADD.d s,Rd

Operation:
Rd += s + C-flag;

Flags affected:
S R P U I X N Z V C
- - - - - 0 * * * *

Instruction format: ADDC Rs,Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 0 1 0 1 0 1 1 1 | Source(Rs) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Instruction format: ADDC [Rs],Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 1 0 0 1 1 0 1 0 | Source(Rs) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Instruction format: ADDC [Rs+],Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 1 1 0 1 1 0 1 0 | Source(Rs) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Instruction format: ADDC k,Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 1 1 0 1 1 0 1 0 | 1 1 1 1 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| Bits 0-15 of k |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| Bits 16-31 of k |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

2.3. INSTRUCTIONS IN ALPHABETICAL ORDER 105

2.3.5 ADDI - Add Index

Assembler syntax:
ADDI Rs.m,Rd

Size: Rs is a pointer to byte, word or dword. The size of the operation is dword.

Description: Add a scaled index to a base. The contents of the source register is shifted left
0, 1 or 2 positions, depending on the size modifier m, and then added to the
destination register. The size of the operation is dword.

Operation:
Rd += Rs * sizeof(m);

Flags affected:
S R P U I X N Z V C
- - - - - 0 - - - -

Instruction format: ADDI Rs.m,Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| Source(Rs) | 0 1 0 1 0 0 | m |Destination(Rd)|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Mode (m) Description

00 Byte

01 Word

10 Dword

106 CHAPTER 2. CPU

2.3.6 ADDI - Add Index (to ACR)

Assembler syntax:
ADDI Rs.m,Rd,ACR

Size: Rs is a pointer to byte, word or dword. The size of the operation is dword.

Description: Base plus index address calculation. ACR is assigned the sum of the contents of
the destination register and the the shifted contents of the source operand. The
shift will be 0, 1 or 2 steps depending on the specified size m. The operation
will be performed on all 32 bits of the operands. The destination register is not
updated.

· Example:

ADDI R12.W,R1,ACR
ADD.d R2,R4 ;; inserted to use latency
AND.w [ACR],R5 ;; R5 &= [R1+R12*2]

Operation:
ACR = Rd + Rs * sizeof(m);

Flags affected:
S R P U I X N Z V C
- - - - - 0 - - - -

Instruction format: ADDI Rs.m,Rd,ACR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| Source(Rs) | 0 1 0 1 0 1 | m |Destination(Rd)|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Mode (m) Description

00 Byte

01 Word

10 Dword

2.3. INSTRUCTIONS IN ALPHABETICAL ORDER 107

2.3.7 ADDO - Add Offset

Assembler syntax:
ADDO.m [Rs],Rd,ACR
ADDO.m [Rs+],Rd,ACR
ADDO.m k,Rd,ACR

Size: Source size is byte, word or dword. Operation size is dword.

Description: Base plus offset address calculation. ACR is assigned the sum of the source
operand, sign extended to dword, and the contents of the destination register.
The destination register is not updated.

· Example:

ADDO.W 1044,R10,ACR
ADD.D R1,R2 ;; inserted to use latency
MOVE.D [ACR],R1 ;; [1044 + R10] -> R1

ADDO.D [R1],R2,ACR
SUBQ 4,R1
ADD.D [ACR],R3 ;; R3 += [[R1--] + R2]

The main purpose with this instruction is to offer a wider range of immediate
offsets than the ADDQ o,Rs,ACR instruction does.

Operation:
ACR = Rd + (m)s;

Flags affected:
S R P U I X N Z V C
- - - - - 0 - - - -

Instruction format: ADDO.m [Rs],Rd,ACR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 1 0 0 1 0 1 | m | Source(Rs) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Instruction format: ADDO.m [Rs+],Rd,ACR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 1 1 0 1 0 1 | m | Source(Rs) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

108 CHAPTER 2. CPU

Instruction format: ADDO.d k,Rd,ACR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 1 1 0 1 0 1 1 0 | 1 1 1 1 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| Bits 0-15 of k |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| Bits 16-31 of k |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Instruction format: ADDO.b k,Rd,ACR and ADDO.w k,Rd,ACR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 1 1 0 1 0 1 | m | 1 1 1 1 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| Bits 0-15 of k (bits 8-15 are ignored if size is byte) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Mode (m) Description

00 Byte

01 Word

10 Dword

2.3. INSTRUCTIONS IN ALPHABETICAL ORDER 109

2.3.8 ADDOQ - Add Offset Quick

Assembler syntax:
ADDOQ o,Rs,ACR

Size: Source data is 8-bit. The size of the operation is dword.

Description: Base plus offset address calculation. ACR is assigned the sum of the contents of
the source register and an 8-bit signed offset o.

· Example:

ADDOQ -8,R7,ACR
MOVE.D R3,[ACR]

Operation:
ACR = Rs + o;

Flags affected:
S R P U I X N Z V C
- - - - - 0 - - - -

Instruction format: ADDOQ o,Rs,ACR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rs)| 0 0 0 1 | o |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

110 CHAPTER 2. CPU

2.3.9 ADDQ - Add Quick

Assembler syntax:
ADDQ j,Rd

Size: Source data is 6-bit. The size of the operation is dword.

Description: A 6-bit immediate value, zero extended to dword, is added to the destination
register.

Operation:
Rd += j;

Flags affected:
S R P U I X N Z V C
- - - - - 0 * * * *

Instruction format: ADDQ j,Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 0 0 1 0 0 0 | j |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

2.3. INSTRUCTIONS IN ALPHABETICAL ORDER 111

2.3.10 ADDS - Add with Sign Extend

Assembler syntax:
ADDS.z Rs,Rd
ADDS.z [Rs],Rd
ADDS.z [Rs+],Rd
ADDS.z k,Rd

Size: Source size is byte or word. Operation size is dword

Description: The source data is sign extended from z to dword, and then added to the destina-
tion register.

Operation:
Rd += (z)s;

Flags affected:
S R P U I X N Z V C
- - - - - 0 * * * *

Instruction format: ADDS.z Rs,Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 0 1 0 0 0 0 1 | z | Source(Rs) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Instruction format: ADDS.z [Rs],Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 1 0 0 0 0 0 1 | z | Source(Rs) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Instruction format: ADDS.z [Rs+],Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 1 1 0 0 0 0 1 | z | Source(Rs) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Instruction format: ADDS.z k,Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 1 1 0 0 0 0 1 | z | 1 1 1 1 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| Bits 0-15 of k (bits 8-15 are ignored if size is byte) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Size (z) Description

0 Byte source operand

1 Word source operand

112 CHAPTER 2. CPU

2.3.11 ADDU - Add with Zero Extend

Assembler syntax:
ADDU.z Rs,Rd
ADDU.z [Rs],Rd
ADDU.z [Rs+],Rd
ADDU.z k,Rd

Size: Source size is byte or word. Operation size is dword.

Description: The source data is zero extended from z to dword, and then added to the destina-
tion register.

Operation:
Rd += (unsigned z)s;

Flags affected:
S R P U I X N Z V C
- - - - - 0 * * * *

Instruction format: ADDU.z Rs,Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 0 1 0 0 0 0 0 | z | Source(Rs) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Instruction format: ADDU.z [Rs],Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 1 0 0 0 0 0 0 | z | Source(Rs) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Instruction format: ADDU.z [Rs+],Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 1 1 0 0 0 0 0 | z | Source(Rs) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Instruction format: ADDU.z k,Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 1 1 0 0 0 0 0 | z | 1 1 1 1 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| Bits 0-15 of k (bits 8-15 are ignored if size is byte) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Size (z) Description

0 Byte source operand

1 Word source operand

2.3. INSTRUCTIONS IN ALPHABETICAL ORDER 113

2.3.12 AND - Logical AND

Assembler syntax:
AND.m Rs,Rd
AND.m [Rs],Rd
AND.m [Rs+],Rd
AND.m k,Rd

Size: Byte, word, or dword

Description: A logical AND is performed between the source operand and the destination
register. The size of the operation is m. The rest of the destination register is not
affected.

Operation:
(m)Rd &= (m)s;

Flags affected:
S R P U I X N Z V C
- - - - - 0 * * - -

Instruction format: AND.m Rs,Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 0 1 1 1 0 0 | m | Source(Rs) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Instruction format: AND.m [Rs],Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 1 0 1 1 0 0 | m | Source(Rs) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Instruction format: AND.m [Rs+],Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 1 1 1 1 0 0 | m | Source(Rs) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Instruction format: AND.d k,Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 1 1 1 1 0 0 1 0 | 1 1 1 1 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| Bits 0-15 of k |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| Bits 16-31 of k |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

114 CHAPTER 2. CPU

Instruction format: AND.b k,Rd and AND.w k,Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 1 1 1 1 0 0 | m | 1 1 1 1 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| Bits 0-15 of k (bits 8-15 are ignored if size is byte) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Mode (m) Description

00 Byte

01 Word

10 Dword

2.3. INSTRUCTIONS IN ALPHABETICAL ORDER 115

2.3.13 ANDQ - Logical AND Quick

Assembler syntax:
ANDQ i,Rd

Size: Source data is 6-bit. Operation size is dword.

Description: A logical AND is performed between a 6-bit immediate value, sign extended to
dword, and the destination register.

Operation:
Rd &= i;

Flags affected:
S R P U I X N Z V C
- - - - - 0 * * - -

Instruction format: ANDQ i,Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 0 0 1 1 0 0 | i |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

116 CHAPTER 2. CPU

2.3.14 ASR - Arithmetic Shift Right

Assembler syntax:
ASR.m Rs,Rd

Size: Byte, word or dword

Description: The destination register is right shifted the number of steps specified by the 6
least significant bits of the source register. The shift is performed with sign
extend. The size of the operation is m. The rest of the destination register is not
affected.

Operation:
(m)Rd >>= (Rs & 63);

Flags affected:
S R P U I X N Z V C
- - - - - 0 * * - -

Instruction format: ASR.m Rs,Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 0 1 1 1 1 0 | m | Source(Rs) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Mode (m) Description

00 Byte

01 Word

10 Dword

2.3. INSTRUCTIONS IN ALPHABETICAL ORDER 117

2.3.15 ASRQ - Arithmetic Shift Right Quick

Assembler syntax:
ASRQ c,Rd

Size: Dword

Description: The destination register is right shifted the number of steps specified by the 5-
bit immediate value. The shift is performed with sign extend. The size of the
operation is dword.

Operation:
Rd >>= c;

Flags affected:
S R P U I X N Z V C
- - - - - 0 * * - -

Instruction format: ASRQ c,Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 0 0 1 1 1 0 1 | c |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

118 CHAPTER 2. CPU

2.3.16 AX - Arithmetic Extension

Assembler syntax:
AX

Size: NA

Description: AX is the arithmetic extension prefix and an alias for SETF X. Set X flag. AX is
also used to indicate that the following write operation is conditional.

2.3. INSTRUCTIONS IN ALPHABETICAL ORDER 119

2.3.17 BA - Branch Always

Assembler syntax:
BA ao

Size: Dword

Description: Dword sized BA ao is an alias for BAS ao,P0. For word and byte sized versions
see section2.3.20below.

120 CHAPTER 2. CPU

2.3.18 BAS - Branch And Save

Assembler syntax:
BAS ao,Pd

Size: Dword

Description: Jumps to a PC relative address.

Special register Pd is loaded with the address of the instruction following BAS
plus two. The instruction following the BAS is executed before the jump takes
effect (i.e. the BAS instruction has one delay slot). The content of the dword
sized operand is then added to PC. The value of PC used for the address calcula-
tion is the address of the BAS instruction itself.

Legal instructions for the delay slot are all instructions except:

· Bcc

· JAS,BAS,JASC,BASC,JUMP,HALT,FIDXI,FTAGI

· Immediate Addressing other than Quick Immediate

The BAS instruction is used for both regular and subroutine branches. Regular
branches are made by using BZ (P0) as the destination special register. Branches
to subroutines are made by using SRP as the destination special register. Other
destination special registers may be used as follows:

Special Register Use

VR, WZ, DZ Same behavior as BZ.

PID Undefined behavior, should not be used.

SRS Only eight bits, should not be used.

EXS, EDA, ERP May be used when no exceptions are expected.

NRP May be used when no NMI exceptions are expected.

EBP May be used when no exceptions or NMI are used.

CCS Not useful.

USP May be used when USP is not used as a User Mode stack
pointer.

MOF May be used.

SPC Should not be used as it may break debugging via the guru
mode.

Operation:
Pd = PC + 8;
PC += ao;

Flags affected:
S R P U I X N Z V C
- - - - - 0 - - - -

2.3. INSTRUCTIONS IN ALPHABETICAL ORDER 121

Instruction format: BAS ao,Pd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Pd)| 1 1 1 0 1 0 1 1 1 1 1 1 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| Bits 0-15 of ao |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| Bits 16-31 of ao |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

122 CHAPTER 2. CPU

2.3.19 BASC - Branch And Save with Context Information

Assembler syntax:
BASC ao,Pd

Size: Dword

Description: Jumps to a PC relative address.

BASC is the same as BAS except that Pd is loaded with the address of the in-
struction following the BASC instruction plus 6. This leaves a 32 bit slot for
storing context information after the delay slot.

addr a : [BASC aa,Pd]
a+2 : [jump target..]
a+4 : [address]
a+6 : [op or nop]
a+8 : [space for..]
a+10: [context info]
a+12: [op] <- addr in Pd

The value of PC used for the address calculation is the address of the branch
instruction itself.

The BASC instruction is a delayed branch instruction, with one delay slot. Legal
instructions for the delay slot are all instructions except:

· Bcc

· JAS,BAS,JASC,BASC,JUMP,HALT,FIDXI,FTAGI

· Immediate Addressing other than Quick Immediate

Operation:
Pd = PC + 12;
PC = ao;

Flags affected:
S R P U I X N Z V C
- - - - - 0 - - - -

Instruction format: BASC ao,Pd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Pd)| 1 1 1 0 1 1 1 1 1 1 1 1 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| Bits 0-15 of ao |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| Bits 16-31 of ao |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

2.3. INSTRUCTIONS IN ALPHABETICAL ORDER 123

2.3.20 Bcc - Branch Conditionally

Assembler syntax:
Bcc o
Bcc bo

Size: Byte or word

Description: Conditionally jumps to a PC relative address. If the condition cc is true, the
offset is added to PC.

In the byte version, bit 0 of the offset is the sign bit, and bits (7..1) in the offset
represent bits (7..1) in the actual address increment/decrement. In this way the
branch range will be (-256..+254 bytes). When bit 0 == 1 the branch is back-
wards.

In the word version, the immediate offset is added to the current PC to get the
target address. Bit 0 in the word sized offset shall always be zero.

There is also a 32 bit version of BA (which is an alias for BAS ao,P0). See
section2.2.2.7for details.

The instruction following the Bcc is executed before the jump takes effect (i.e.
the Bcc instruction has one delay slot). Legal instructions for the delay slot are
all instructions except:

· Bcc

· JAS,BAS,JASC,BASC,JUMP,HALT,FIDXI,FTAGI

· Immediate Addressing other than Quick Immediate

The value of PC used for the address calculation is the address of the branch
instruction itself.

Operation: Bcc o :

if (cc) {
PC += o;

}

Bcc bo :

if (cc) {
PC += bo;

}

Flags affected:
S R P U I X N Z V C
- - - - - 0 - - - -

Instruction format: Bcc o

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| cc | 0 0 0 0 | o |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

124 CHAPTER 2. CPU

Instruction format: Bcc bo

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| cc | 1 1 0 1 1 1 1 1 1 1 1 1 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| bo |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

2.3. INSTRUCTIONS IN ALPHABETICAL ORDER 125

2.3.21 BOUND - Adjust Index to Bound

Assembler syntax:
BOUND.m Rs,Rd
BOUND.m k,Rd

Size: Source is byte, word or dword. Operation is dword.

Description: BOUND is a bounding instruction. For example, it adjusts branch indexes in
switch statements. If the unsigned contents of the dword index (destination)
register is greater than the bound (source) data, the bound data (zero extended
to dword) is loaded to the index (destination) register. Otherwise, the index
(destination) register is unaffected.

This operation can also be used to calculate the unsigned minimum of two operands.
The destination is loaded with the minimum of the source and destination operands.

Operation:
if ((unsigned)Rd > (unsigned m)s) {

Rd = (unsigned m)s;
}

Flags affected:
S R P U I X N Z V C
- - - - - 0 * * - -

Instruction format: BOUND.m Rs,Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 0 1 0 1 1 1 | m | Source(Rs) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Instruction format: BOUND.d k,Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 1 1 0 1 1 1 1 0 | 1 1 1 1 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| Bits 0-15 of k |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| Bits 16-31 of k |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Instruction format: BOUND.b k,Rd and BOUND.w k,Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 1 1 0 1 1 1 | m | 1 1 1 1 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| Bits 0-15 of k (bits 8-15 are ignored if size is byte) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Mode (m) Description

00 Byte

01 Word

10 Dword

126 CHAPTER 2. CPU

2.3.22 BREAK - Software Breakpoint

Assembler syntax:
BREAK n

Size: NA

Description: This instruction causes a software exception. The operand n selects which vector
index to use.

Operation:
Cause exception using vector n+0x10

Flags affected:
S R P U I X N Z V C
- - - - - 0 - - - -

Instruction format: BREAK n

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| 1 1 1 0 1 0 0 1 0 0 1 1 | n |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

2.3. INSTRUCTIONS IN ALPHABETICAL ORDER 127

2.3.23 BSR - Branch to Subroutine

Assembler syntax:
BSR ao

Size: Dword

Description: BSR ao is an alias for BAS ao,SRP.

128 CHAPTER 2. CPU

2.3.24 BSRC - Branch to Subroutine with Context Information

Assembler syntax:
BSRC ao

Size: Dword

Description: BSRC ao is an alias for BASC ao,SRP.

2.3. INSTRUCTIONS IN ALPHABETICAL ORDER 129

2.3.25 BTST - Bit Test

Assembler syntax:
BTST Rs,Rd

Size: Dword

Description: The N flag is set according to the selected bit in the destination register. The Z
flag is set if the selected bit and all bits to the right of it are zero. The bit number
is selected by the 5 least significant bits of the source register. The destination
register is not affected.

Operation:
N = Bit number (Rs & 31) of Rd;
Z = ((Bit numbers 0 to (Rs & 31) of Rd) == 0);

Flags affected:
S R P U I X N Z V C
- - - - - 0 * * - -

Instruction format: BTST Rs,Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 0 1 0 0 1 1 1 1 | Source(Rs) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

130 CHAPTER 2. CPU

2.3.26 BTSTQ - Bit Test Quick

Assembler syntax:
BTSTQ c,Rd

Size: Dword

Description: The N flag is set according to the selected bit in the destination register. The Z
flag is set if the selected bit and all bits to the right of it are zero. The bit number
is selected by the 5-bit immediate value. The destination register is not affected.

Operation:
N = Bit number c of Rd;
Z = ((Bit numbers 0 to c of Rd) == 0);

Flags affected:
S R P U I X N Z V C
- - - - - 0 * * - -

Instruction format: BTSTQ c,Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 0 0 1 1 1 0 0 | c |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

2.3. INSTRUCTIONS IN ALPHABETICAL ORDER 131

2.3.27 CLEAR - Clear

Assembler syntax:
CLEAR.m Rd
CLEAR.m [Rd]
CLEAR.m [Rd+]

Size: Byte, word, or dword

Description: CLEAR.m d is an alias for MOVE Ps,d where Ps = P0,P4 or P8. The destination
is cleared to all zeroes. The size of the operation is m.

Note The clear instruction is implemented as a MOVE from a special register destina-
tion. The size depends on the selected number.

132 CHAPTER 2. CPU

2.3.28 CLEARF - Clear Flags

Assembler syntax:
CLEARF <list of flags>

Size: NA

Description: The specified flags are set to 0. The X flag is cleared even if it is not in the list.
The U and I flags can not be changed when in User mode (U==1).

Operation:
Selected flags = 0;
/* U and I flags are not affected in User mode */
X = 0;

Flags affected: (Kernel mode)

S R P U I X N Z V C
- - * * * 0 * * * *

Flags affected: (User mode)

S R P U I X N Z V C
- - * - - 0 * * * *

Instruction format: CLEARF <list of flags>

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| P U I X | 0 1 0 1 1 1 1 1 | N Z V C |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

2.3. INSTRUCTIONS IN ALPHABETICAL ORDER 133

2.3.29 CMP - Compare

Assembler syntax:
CMP.m Rs,Rd
CMP.m [Rs],Rd
CMP.m [Rs+],Rd
CMP.m k,Rd

Size: Byte, word, or dword

Description: The source data is subtracted from the destination register, and the flags are set
accordingly. The size of the operation is m. The destination register is not up-
dated.

Operation:
(m)Rd - (m)s;

Flags affected:
S R P U I X N Z V C
- - - - - 0 * * * *

Instruction format: CMP.m Rs,Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 0 1 1 0 1 1 | m | Source(Rs) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Instruction format: CMP.m [Rs],Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 1 0 1 0 1 1 | m | Source(Rs) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Instruction format: CMP.m [Rs+],Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 1 1 1 0 1 1 | m | Source(Rs) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Instruction format: CMP.d k,Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 1 1 1 0 1 1 1 0 | 1 1 1 1 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| Bits 0-15 of k |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| Bits 16-31 of k |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

134 CHAPTER 2. CPU

Instruction format: CMP.b k,Rd and CMP.w k,Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 1 1 1 0 1 1 | m | 1 1 1 1 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| Bits 0-15 of k (bits 8-15 are ignored if size is byte) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Mode (m) Description

00 Byte

01 Word

10 Dword

2.3. INSTRUCTIONS IN ALPHABETICAL ORDER 135

2.3.30 CMPQ - Compare Quick

Assembler syntax:
CMPQ i,Rd

Size: Dword

Description: A 6-bit immediate value, sign extended to dword, is subtracted from the desti-
nation register, and the flags are set accordingly. The destination register is not
updated.

Operation:
Rd - i;

Flags affected:
S R P U I X N Z V C
- - - - - 0 * * * *

Instruction format: CMPQ i,Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 0 0 1 0 1 1 | i |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

136 CHAPTER 2. CPU

2.3.31 CMPS - Compare with Sign Extend

Assembler syntax:
CMPS.z [Rs],Rd
CMPS.z [Rs+],Rd
CMPS.z k,Rd

Size: Source size is byte or word. Operation size is dword.

Description: The source data, sign extended to dword, is subtracted from the destination reg-
ister, and the flags are set accordingly. The destination register is not updated.

Operation:
Rd - (z)si;

Flags affected:
S R P U I X N Z V C
- - - - - 0 * * * *

Instruction format: CMPS.z [Rs],Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 1 0 0 0 1 1 1 | z | Source(Rs) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Instruction format: CMPS.z [Rs+],Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 1 1 0 0 1 1 1 | z | Source(Rs) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Instruction format: CMPS.z k,Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 1 1 0 0 1 1 1 | z | 1 1 1 1 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| Bits 0-15 of k (bits 8-15 are ignored if size is byte) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Size (z) Description

0 Byte source operand

1 Word source operand

2.3. INSTRUCTIONS IN ALPHABETICAL ORDER 137

2.3.32 CMPU - Compare with Zero Extend

Assembler syntax:
CMPU.z [Rs],Rd
CMPU.z [Rs+],Rd
CMPU.z k,Rd

Size: Source size is byte or word. Operation size is dword.

Description: The source data, zero extended to dword, is subtracted from the destination reg-
ister, and the flags are set accordingly. The destination register is not updated.

Operation:
Rd - (unsigned z)si;

Flags affected:
S R P U I X N Z V C
- - - - - 0 * * * *

Instruction format: CMPU.z [Rs],Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 1 0 0 0 1 1 0 | z | Source(Rs) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Instruction format: CMPU.z [Rs+],Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 1 1 0 0 1 1 0 | z | Source(Rs) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Instruction format: CMPU.z k,Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 1 1 0 0 1 1 0 | z | 1 1 1 1 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| Bits 0-15 of k (bits 8-15 are ignored if size is byte) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Size (z) Description

0 Byte source operand

1 Word source operand

138 CHAPTER 2. CPU

2.3.33 DI - Disable Interrupts

Assembler syntax:
DI

Size: N/A

Description: DI is an alias for CLEARF I. Disables interrupts. DI has no effect in User Mode.

2.3. INSTRUCTIONS IN ALPHABETICAL ORDER 139

2.3.34 DSTEP - Divide Step

Assembler syntax:
DSTEP Rs,Rd

Size: Dword

Description: This is a divide-step operation, which performs one iteration of an iterative di-
vide operation. The destination operand is shifted one step to the left. If the
shifted destination operand is unsigned greater or equal to the source operand,
the source operand is subtracted from the shifted destination operand. The size
of the operation is dword.

Operation:
Rd <<= 1;
if ((unsigned)Rd >= (unsigned)Rs) {

Rd -= Rs;
}

Flags affected:
S R P U I X N Z V C
- - - - - 0 * * - -

Instruction format: DSTEP Rs,Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 0 1 1 0 1 1 1 1 | Source(Rs) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

140 CHAPTER 2. CPU

2.3.35 EI - Enable Interrupt

Assembler syntax:
EI

Size: N/A

Description: EI is an alias for SETF I. Enable interrupts. EI has no effect in User mode.

2.3. INSTRUCTIONS IN ALPHABETICAL ORDER 141

2.3.36 FIDXD - Flush Data Cache Line by Index

Assembler syntax:
FIDXD [Rs]

Size: N/A

Description: Flushes (invalidates and writes if dirty) the cache line with the specified index
from the data cache. The cache line is specified as:

Rs[20:5] = cache line
Rs[4:0] = cache bank

The number of bits actually used for cache line and cache bank depends on the
(fixed) data cache size. All unused bits of Rs should be set to zero.

This instruction is only available in kernel mode and may be used to initialize
the data cache at system start-up. FIDXD is silently ignored in user mode.

Operation:
Flush data cache line Rs[20:5] in bank Rs[4:0]

Flags affected:
S R P U I X N Z V C
- - - - - 0 - - - -

Instruction format: FIDXD [Rs]

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| 0 0 0 0 | 1 0 1 0 1 0 1 1 | Source(Rs) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

142 CHAPTER 2. CPU

2.3.37 FIDXI - Flush Instruction Cache Line by Index

Assembler syntax:
FIDXI [Rs]

Size: N/A

Description: Flushes (invalidates) the cache line with the specified index from the instruction
cache. The cache line is specified as:

Rs[20:5] = cache line
Rs[4:1] = cache bank

The number of bits actually used for cache line and cache bank depends on the
(fixed) instruction cache size. All unused bits of Rs should be set to zero.

This instruction is only available in kernel mode and may be used to initialize
the instruction cache at system start-up. FIDXI is silently ignored in user mode.

Operation:
Flush instruction cache line Rs[20:5] in bank Rs[4:1]

Flags affected:
S R P U I X N Z V C
- - - - - 0 - - - -

Instruction format: FIDXI [Rs]

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| 0 0 0 0 | 1 1 0 1 0 0 1 1 | Source(Rs) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

2.3. INSTRUCTIONS IN ALPHABETICAL ORDER 143

2.3.38 FTAGD - Flush Data Cache Line by Address

Assembler syntax:
FTAGD [Rs]

Size: N/A

Description: Flushes (invalidates and writes if dirty) the cache line with the specified address
from the data cache. If the specified address is not cached nothing is done. Bit
31 and bits 0-4 in the specified address are ignored.

This instruction is only available in kernel mode. It is silently ignored in User
mode.

Operation:
Flush data cache line containing [Rs], if any

Flags affected:
S R P U I X N Z V C
- - - - - 0 - - - -

Instruction format: FTAGD [Rs]

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| 0 0 0 1 | 1 0 1 0 1 0 1 1 | Source(Rs) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

144 CHAPTER 2. CPU

2.3.39 FTAGI - Flush Instruction Cache Line by Address

Assembler syntax:
FTAGI [Rs]

Size: N/A

Description: Flushes (invalidates) the cache line with the specified address from the instruc-
tion cache. If the specified address isn’t cached nothing is done. Bit 31 and bits
0-4 in the specified address are ignored.

This instruction is only available in kernel mode. It is silently ignored in User
mode.

Operation:
Flush instruction cache line containing [Rs], if any

Flags affected:
S R P U I X N Z V C
- - - - - 0 - - - -

Instruction format: FTAGI [Rs]

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| 0 0 0 1 | 1 1 0 1 0 0 1 1 | Source(Rs) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

2.3. INSTRUCTIONS IN ALPHABETICAL ORDER 145

2.3.40 HALT - Stop and Wait for Exceptions

Assembler syntax:
HALT

Size: N/A

Description: Stop execution and wait for exceptions. Continue execution with the instruction
following the HALT after an exception has been served. This instruction is only
allowed in kernel mode. In user mode it is ignored. HALT instructions may not
be in a delay slot.

Operation:
while(!exceptions);

Flags affected:
S R P U I X N Z V C
- - - - - 0 - - - -

Instruction format: HALT

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| 1 1 1 1 | 1 0 0 1 0 0 1 1 | 0 0 0 0 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

146 CHAPTER 2. CPU

2.3.41 JAS - Jump and Save

Assembler syntax:
JAS Rs,Pd
JAS aa,Pd

Size: Dword

Description: Jumps to an absolute address.

Special register Pd is loaded with the address of the instruction following JAS
plus two. The instruction following the JAS is executed before the jump takes
effect (i.e. the JAS instruction has one delay slot). PC is then loaded with the
content of the dword sized source operand.

Legal instructions for the delay slot are all instructions except:

· Bcc

· JAS,BAS,JASC,BASC,JUMP,HALT,FIDXI,FTAGI

· Immediate Addressing other than Quick Immediate

Modifying Rs in the delay slot of JAS Rs,Pd is harmless and does not affect the
target address of the jump.

The JAS instruction is used for both regular jumps and subroutine jumps. Reg-
ular jumps are made by using BZ (P0) as the destination special register. Jumps
to subroutines are made by using SRP as the destination special register. Other
destination special registers may be used as follows:

Special register Use

VR, WZ, DZ Same behavior as BZ.

PID Undefined behavior, should not be used.

SRS Only eight bits, should not be used.

EXS, EDA, ERP May be used when no exceptions are expected.

NRP May be used when no NMI exceptions are expected.

EBP May be used when no exceptions or NMI are used.

CCS Not useful.

USP May be used when USP is not used as a user mode stack
pointer.

MOF May be used.

SPC Should not be used as it may break debugging via the guru
mode.

Operation: JAS Rs,Pd :

Pd = PC + 4;
PC = Rs;

JAS aa,Pd :

Pd = PC + 8;
PC = aa;

2.3. INSTRUCTIONS IN ALPHABETICAL ORDER 147

Flags affected:
S R P U I X N Z V C
- - - - - 0 - - - -

Instruction format: JAS Rs,Pd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Pd)| 1 0 0 1 1 0 1 1 | Source(Rs) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Instruction format: JAS aa,Pd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Pd)| 1 1 0 1 1 0 1 1 1 1 1 1 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| Bits 0-15 of aa |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| Bits 16-31 of aa |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

148 CHAPTER 2. CPU

2.3.42 JASC - Jump and Save with Context Information

Assembler syntax:
JASC Rs,Pd
JASC aa,Pd

Size: Dword

Description: Jumps to an absolute address.

JASC similar to JAS that Pd is loaded with the address of the instruction follow-
ing the JAS plus 6. This leaves a 32 bit slot for storing context information after
the delay slot.

addr a : [JASC Rs,Pd]
a+2 : [op or nop]
a+4 : [space for..]
a+6 : [context info]
a+8 : [op] <- addr in Pd

addr a : [JASC aa,Pd]
a+2 : [jump target..]
a+4 : [address]
a+6 : [op or nop]
a+8 : [space for..]
a+10: [context info]
a+12: [op] <- addr in Pd

Operation: JASC Rs,Pd :

Pd = PC + 8;
PC = Rs;

JASC aa,Pd :

Pd = PC + 12;
PC = aa;

Flags affected:
S R P U I X N Z V C
- - - - - 0 - - - -

Instruction format: JASC Rs,Pd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Pd)| 1 0 1 1 0 0 1 1 | Source(Rs) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

2.3. INSTRUCTIONS IN ALPHABETICAL ORDER 149

Instruction format: JASC aa,Pd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Pd)| 1 1 1 1 0 0 1 1 1 1 1 1 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| Bits 0-15 of aa |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| Bits 16-31 of aa |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

150 CHAPTER 2. CPU

2.3.43 JSR - Jump to Subroutine

Assembler syntax:
JSR aa
JSR Rs

Size: Dword

Description: JSR is an alias for JAS aa,SRP. JSR Rs is an alias for JAS Rs,SRP.

2.3. INSTRUCTIONS IN ALPHABETICAL ORDER 151

2.3.44 JSRC - Jump to Subroutine with Context Information

Assembler syntax:
JSRC aa
JSRC Rs

Size: Dword

Description: JSRC aa is an alias for JASC aa,SRP. JSRC Rs is an alias for JASC Rs,SRP.

152 CHAPTER 2. CPU

2.3.45 JUMP - Jump to Absolute Address

Assembler syntax:
JUMP aa
JUMP Rs

Size: Dword

Description: JUMP aa an alias for JAS aa,P0. JUMP Rs is an alias for JAS Rs,P0.

2.3. INSTRUCTIONS IN ALPHABETICAL ORDER 153

2.3.46 JUMP - Jump to Special Register

Assembler syntax:
JUMP Ps

Size: Dword

Description: Jump to special register. The program counter is loaded with the value of the
dword sized source operand. The instruction following the JUMP Ps is executed
before the jump takes effect (i.e. the JUMP Ps instruction has one delay slot).

The JUMP Ps instruction is used for returning from subroutines and exceptions.
JUMP SRP returns from a subroutine, JUMP ERP returns from an exception and
JUMP NRP returns from an NMI exception. Observe that JUMP ERP normally
should have an RFE instruction in the delay slot, and JUMP NRP should have an
RFN instruction in the delay slot.

Legal instructions for the delay slot are all instructions except:

· Bcc

· JAS,BAS,JASC,BASC,JUMP,HALT,FIDXI,FTAGI

· Immediate addressing other than Quick Immediate

Modifying Ps in the delay slot of JUMP Ps is harmless and does not affect the
target address of the jump.

Operation:
PC = Ps;

Flags affected:
S R P U I X N Z V C
- - - - - 0 - - - -

Instruction format: JUMP Ps

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Ps)| 1 0 0 1 1 1 1 1 0 0 0 0 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

154 CHAPTER 2. CPU

2.3.47 LAPC - Load PC Relative Address

Assembler syntax:
LAPC address,Rd

Size: Dword

Description: Assigns Rd the sum of the PC and the signed dword k in the immediate operand
of the instruction. The assembler operand syntax describes an absolute address,
the resulting PC + k.

This instruction is mainly used for PC relative addressing of data and code. Can
also be used to get the current value of PC.

Operation:
Rd = PC + k;

Flags affected:
S R P U I X N Z V C
- - - - - 0 - - - -

Instruction format: LAPC address,Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 1 1 0 1 0 1 1 1 1 1 1 1 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| Bits 0-15 of k |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| Bits 16-31 of k |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

2.3. INSTRUCTIONS IN ALPHABETICAL ORDER 155

2.3.48 LAPCQ - Load PC Relative Address Quick

Assembler syntax:
LAPCQ address,Rd

Size: N/A

Description: Assigns Rd the sum of the PC and unsigned 4-bit immediate constant qo in the
instruction source field, multiplied by two. The assembler operand syntax de-
scribes an absolute address, the resulting PC + 2*qo.

This instruction is mainly used for PC relative addressing of data and code. Can
also be used to get the current value of PC.

· Example:

LAPCQ .,Rd ;; Rd = PC

Operation:
Rd = PC + 2*qo;

Flags affected:
S R P U I X N Z V C
- - - - - 0 - - - -

Instruction format: LAPCQ address,Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 1 0 0 1 0 1 1 1 | qo |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

156 CHAPTER 2. CPU

2.3.49 LSL - Logical Shift Left

Assembler syntax:
LSL.m Rs,Rd

Size: Byte, word, or dword

Description: The destination register is left shifted the number of steps specified by the 6 least
significant bits of the source register. The size of the operation is m. The rest of
the destination register is not affected.

Operation:
(m)Rd <<= (Rs & 63);

Flags affected:
S R P U I X N Z V C
- - - - - 0 * * - -

Instruction format: LSL.m Rs,Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 0 1 0 0 1 1 | m | Source(Rs) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Mode (m) Description

00 Byte

01 Word

10 Dword

2.3. INSTRUCTIONS IN ALPHABETICAL ORDER 157

2.3.50 LSLQ - Logical Shift Left Quick

Assembler syntax:
LSLQ c,Rd

Size: Dword

Description: The destination register is left shifted the number of steps specified by the 5-bit
immediate value. The size of the operation is dword.

Operation:
Rd <<= c;

Flags affected:
S R P U I X N Z V C
- - - - - 0 * * - -

Instruction format: LSLQ c,Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 0 0 1 1 1 1 0 | c |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

158 CHAPTER 2. CPU

2.3.51 LSR - Logical Shift Right

Assembler syntax:
LSR.m Rs,Rd

Size: Byte, word or dword

Description: The destination register is right shifted the number of steps specified by the 6
least significant bits of the source register. The shift is performed with zero
extend. The size of the operation is m. The rest of the destination register is not
affected.

Operation:
(unsigned m)Rd >>= (Rs & 63);

Flags affected:
S R P U I X N Z V C
- - - - - 0 * * - -

Instruction format: LSR.m Rs,Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 0 1 1 1 1 1 | m | Source(Rs) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Mode (m) Description

00 Byte

01 Word

10 Dword

2.3. INSTRUCTIONS IN ALPHABETICAL ORDER 159

2.3.52 LSRQ - Logical Shift Right Quick

Assembler syntax:
LSRQ c,Rd

Size: Dword

Description: The destination register is right shifted the number of steps specified by the 5-
bit immediate value. The shift is performed with zero extend. The size of the
operation is dword.

Operation:
(unsigned)Rd >>= c;

Flags affected:
S R P U I X N Z V C
- - - - - 0 * * - -

Instruction format: LSRQ c,Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 0 0 1 1 1 1 1 | c |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

160 CHAPTER 2. CPU

2.3.53 LZ - Leading Zeros

Assembler syntax:
LZ Rs,Rd

Size: Dword

Description: The destination register is loaded with the number of leading zeroes of the con-
tents of the source register. The size of the operation is dword.

Operation:
Rd = 32;
while (((unsigned)Rs >> (32 - Rd)) != 0) {

Rd--;
}

Flags affected:
S R P U I X N Z V C
- - - - - 0 0 * - -

Instruction format: LZ Rs,Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 0 1 1 1 0 0 1 1 | Source(Rs) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

2.3. INSTRUCTIONS IN ALPHABETICAL ORDER 161

2.3.54 MCP - Multiply Carry Propagation

Assembler syntax:
MCP Ps,Rd

Size:

Description: This operation is used during iterative large number multiply operation. It adds
Ps to Rd with carry and uses the R-flag as both carry in and carry out.

Operation:
{R-flag,Rd} = Rd + Ps + R-flag;

Flags affected:
S R P U I X N Z V C
- * - - - 0 * * * -

Instruction format: MCP Ps,Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Source(Ps) | 0 1 1 1 1 1 1 1 |Destination(Rd)|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

162 CHAPTER 2. CPU

2.3.55 MOVE - Move to General Register

Assembler syntax:
MOVE.m Rs,Rd
MOVE.m [Rs],Rd
MOVE.m [Rs+],Rd
MOVE.m k,Rd

Size: Byte, word or dword

Description: Move data from source to the destination register. The size of the operation is m.
The rest of the destination register is not affected.

Operation:
(m)Rd = (m)s;

Flags affected:
S R P U I X N Z V C
- - - - - 0 * * - -

Instruction format: MOVE.m Rs,Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 0 1 1 0 0 1 | m | Source(Rs) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Instruction format: MOVE.m [Rs],Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 1 0 1 0 0 1 | m | Source(Rs) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Instruction format: MOVE.m [Rs+],Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 1 1 1 0 0 1 | m | Source(Rs) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Instruction format: MOVE.d k,Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 1 1 1 0 0 1 1 0 | 1 1 1 1 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| Bits 0-15 of k |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| Bits 16-31 of k |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

2.3. INSTRUCTIONS IN ALPHABETICAL ORDER 163

Instruction format: MOVE.b k,Rd and MOVE.w k,Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 1 1 1 0 0 1 | m | 1 1 1 1 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| Bits 0-15 of k (bits 8-15 are ignored if size is byte) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Mode (m) Description

00 Byte

01 Word

10 Dword

164 CHAPTER 2. CPU

2.3.56 MOVE - Move from General Register to Memory

Assembler syntax:
MOVE.m Rs,[Rd]
MOVE.m Rs,[Rd+]

Size: Byte, word or dword

Description: Move data from the source register to the destination. The size of the operation
is m.

Operation:
(m)Rd = (m)Rs;

Flags affected: X flag cleared:

S R P U I X N Z V C
- - - - - 0 - - - -

Flags affected: X flag set:

S R P U I X N Z V C
- - - - - 0 - - - *

The C flag is only affected if the X flag was set before theMOVE CCS,d instruc-
tion (conditional write).

Instruction format: MOVE.m Rs,[Rd]

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 1 0 1 1 1 1 | m | Source(Rs) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Instruction format: MOVE.m Rs,[Rd+]

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 1 1 1 1 1 1 | m | Source(Rs) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Mode (m) Description

00 Byte

01 Word

10 Dword

2.3. INSTRUCTIONS IN ALPHABETICAL ORDER 165

2.3.57 MOVE - Move to Special Register

Assembler syntax:
MOVE Rs,Pd
MOVE [Rs],Pd
MOVE [Rs+],Pd
MOVE k,Pd

Size: Byte, word or dword depending on the size of of register Pd

Description: Move data from source to the destination special register. The size of the oper-
ation is the same as the size of the special register involved. Moves to constant
registers are ignored. Constant registers are:

BZ, VR, WZ and DZ

In User Mode, moves to protected registers are ignored and may cause moves
from special registers to yield invalid results the three following cycles. Protected
registers are:

PID, SRS, EBP and SPC

Operation:
Pd = s;

Flags affected: (Pd != CCS)

S R P U I X N Z V C
- - - - - 0 - - - -

Flags affected: (Pd = CCS, Kernel Mode)

S R P U I X N Z V C
* * * * * * * * * *

Flags affected: (Pd = CCS, User Mode)

S R P U I X N Z V C
- * * - - * * * * *

The X flag is cleared after the instruction. If the X flag was set before a MOVE
CCS,d instruction, the destination will have the bit corresponding to the X flag
set.

Instruction format: MOVE Rs,Pd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Pd)| 0 1 1 0 0 0 1 1 | Source(Rs) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

166 CHAPTER 2. CPU

Instruction format: MOVE [Rs],Pd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Pd)| 1 0 1 0 0 0 1 1 | Source(Rs) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Instruction format: MOVE [Rs+],Pd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Pd)| 1 1 1 0 0 0 1 1 | Source(Rs) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Instruction format: MOVE k,Pd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Pd)| 1 1 1 0 0 0 1 1 | 1 1 1 1 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| Bits 0-15 of k (bits 8-15 are ignored if size is byte) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| Bits 16-31 of k (ignored if size is byte or word) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

2.3. INSTRUCTIONS IN ALPHABETICAL ORDER 167

2.3.58 MOVE - Move from Special Register to General Register

Assembler syntax:
MOVE Ps,Rd

Size: Byte, word or dword depending on the size of of register Ps

Description: Move data from the source special register to the destination general register.
The size of the operation is the same as the size of the special register involved.
The rest of the destination register is not affected.

Operation:
Rd = Ps;

Flags affected:
S R P U I X N Z V C
- - - - - 0 - - - -

The X flag is cleared after the instruction. If the X flag was set before a MOVE
CCS,Rd instruction, the destination will have the bit corresponding to the X flag
set.

Instruction format: MOVE Ps,Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Ps)| 0 1 1 0 0 1 1 1 | Source(Rd) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

168 CHAPTER 2. CPU

2.3.59 MOVE - Move from Special Register to Memory

Assembler syntax:
MOVE Ps,[Rd]
MOVE Ps,[Rd+]

Size: Byte, word or dword depending on the size of of register Ps

Description: Move data from the source special register to the destination. The size of the
operation is the same as the size of the special register involved.

Operation:
(size)d = Ps;

Flags affected: (X flag was cleared)

S R P U I X N Z V C
- - - - - 0 - - - -

Flags affected: (X flag was set)

S R P U I X N Z V C
- - - - - 0 - - - *

The C flag is only affected if the X flag was set before the MOVE CCS,d instruc-
tion (conditional write).

The X flag is cleared after the instruction. If the X flag was set before a MOVE
CCS,d instruction, the destination will have the bit corresponding to the X flag
set.

Instruction format: MOVE Ps,[Rd]

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Ps)| 1 0 1 0 0 1 1 1 | Source(Rd) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Instruction format: MOVE Ps,[Rd+]

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Ps)| 1 1 1 0 0 1 1 1 | Source(Rd) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

2.3. INSTRUCTIONS IN ALPHABETICAL ORDER 169

2.3.60 MOVE - Move to Support Function Register

Assembler syntax:
MOVE Rs,Sd

Size: Byte, word or dword

Description: Move data from the source register Rs to the support function register Sd of the
current support register bank. The current bank is selected by the SRS register.
This instruction is only available in kernel mode, it is silently ignored in user
mode.

Operation:
Sd = Rs;

Flags affected:
S R P U I X N Z V C
- - - - - 0 - - - -

Instruction format: MOVE Rs,Sd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Sd)| 1 0 1 1 0 1 1 1 | Source(Rs) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

170 CHAPTER 2. CPU

2.3.61 MOVE - Move from Support Function Register

Assembler syntax:
MOVE Ss,Rd

Size: Byte, word or dword

Description: Move data from the support function register Sd of the current support register
bank to the source register Rs. The current bank is selected by the SRS register.

Operation:
Rd = Ss;

Flags affected:
S R P U I X N Z V C
- - - - - 0 - - - -

Instruction format: MOVE Ss,Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| Source(Ss) | 1 1 1 1 0 1 1 1 |Destination(Rd)|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

2.3. INSTRUCTIONS IN ALPHABETICAL ORDER 171

2.3.62 MOVEM - Move Multiple Registers to Memory

Assembler syntax:
MOVEM Rs,[Rd]
MOVEM Rs,[Rd+]

Size: Dword

Description: The contents of registers R0 to Rs are stored to memory, starting at the memory
location pointed to by Rd. The size of each register transfer is dword. R0 is
stored at the lowest address: [Rd], and Rs is stored at the highest address:

[Rd + 4 * (<number of stored registers> - 1)].

If autoincrement addressing mode is specified, Rd is updated to

(Rd + 4 * <number of stored registers>).

Setting the X flag does not cause this instruction to perform a conditional write,
as it does with other instructions that write to memory.

Operation:
for (n = 0; n <= numberof(Rs); n++) {

Rd[n] = Rn;
}

numberof(Rs) is the register number of Rs, n is an integer, and Rn the general
register with register number n.

Flags affected:
S R P U I X N Z V C
- - - - - 0 - - - -

Instruction format: MOVEM Rs,[Rd]

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rs)| 1 0 1 1 1 1 1 1 | Source(Rd) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Instruction format: MOVEM Rs,[Rd+]

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rs)| 1 1 1 1 1 1 1 1 | Source(Rd) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

172 CHAPTER 2. CPU

2.3.63 MOVEM - Move Multiple register from Memory

Assembler syntax:
MOVEM [Rs],Rd
MOVEM [Rs+],Rd

Size: Dword

Description: The registers R0 to Rd are loaded from memory, starting at the memory location
pointed to by Rs. The size of each register transfer is dword. R0 is loaded from
the lowest address: [Rs], and Rd is loaded from the highest address:

[Rs + 4 * (<number of loaded registers> - 1)].

If autoincrement addressing mode is specified, Rs is updated to

(Rs + 4 *<number of loaded registers>).

Operation:
for (n = 0; n <= numberof(Rd); n++) {

Rn = Rs[n];
}

numberof(Rd) is the register number of Rd, n is an integer, and Rn the general
register with register number n.

Observe that the behavior is undefined unless numberof(Rs) is greater than num-
berof(Rd).

Flags affected:
S R P U I X N Z V C
- - - - - 0 - - - -

Instruction format: MOVEM [Rs],Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 1 0 1 1 1 0 1 1 | Source(Rs) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Instruction format: MOVEM [Rs+],Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 1 1 1 1 1 0 1 1 | Source(Rs) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

2.3. INSTRUCTIONS IN ALPHABETICAL ORDER 173

2.3.64 MOVEQ - Move Quick

Assembler syntax:
MOVEQ i,Rd

Size: Source data is 6-bit. Operation size is dword.

Description: The destination register is loaded with a 6-bit immediate value, sign extended to
dword.

Operation:
Rd = i;

Flags affected:
S R P U I X N Z V C
- - - - - 0 - - - -

Instruction format: MOVEQ i,Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 0 0 1 0 0 1 | i |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

174 CHAPTER 2. CPU

2.3.65 MOVS - Move to General Register with Sign Extend

Assembler syntax:
MOVS.z Rs,Rd
MOVS.z [Rs],Rd
MOVS.z [Rs+],Rd
MOVS.z k,Rd

Size: Source size is byte or word. Operation size is dword.

Description: Move data from source to the destination register. The source data is sign ex-
tended from z to dword.

Operation:
Rd = (z)s;

Flags affected:
S R P U I X N Z V C
- - - - - 0 * * - -

Instruction format: MOVS.z Rs,Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 0 1 0 0 0 1 1 | z | Source(Rs) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Instruction format: MOVS.z [Rs],Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 1 0 0 0 0 1 1 | z | Source(Rs) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Instruction format: MOVS.z [Rs+],Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 1 1 0 0 0 1 1 | z | Source(Rs) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Instruction format: MOVS.z k,Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 1 1 0 0 0 1 1 | z | 1 1 1 1 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| Bits 0-15 of k (bits 8-15 are ignored if size is byte) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Size (z) Description

0 Byte source operand

1 Word source operand

2.3. INSTRUCTIONS IN ALPHABETICAL ORDER 175

2.3.66 MOVU - Move to General Register with Zero Extend

Assembler syntax:
MOVU.z Rs,Rd
MOVU.z [Rs],Rd
MOVU.z [Rs+],Rd
MOVU.z k,Rd

Size: Source size is byte or word. Operation size is dword.

Description: Move data from source to the destination register. The source data is zero ex-
tended from z to dword.

Operation:
Rd = (unsigned z) s;

Flags affected:
S R P U I X N Z V C
- - - - - 0 0 * - -

Instruction format: MOVU.z Rs,Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 0 1 0 0 0 1 0 | z | Source(Rs) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Instruction format: MOVU.z [Rs],Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 1 0 0 0 0 1 0 | z | Source(Rs) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Instruction format: MOVU.z [Rs+],Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 1 1 0 0 0 1 0 | z | Source(Rs) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Instruction format: MOVU.z k,Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 1 1 0 0 0 1 0 | z | 1 1 1 1 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| Bits 0-15 of k (bits 8-15 are ignored if size is byte) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Size (z) Description

0 Byte source operand

1 Word source operand

176 CHAPTER 2. CPU

2.3.67 MULS - Signed Multiply

Assembler syntax:
MULS.m Rs,Rd

Size: The operands are byte, word or dword. The result is 64 bits.

Description: Both operands are sign extended from the size (m) to dword, and the extended
operands are multiplied, generating a 64-bit result. The lower 32 bits of the
result are written to Rd, and the upper 32 bits are written to the multiply overflow
register (MOF).

N and Z flags are set depending on the 64 bit result. The V flag is set if the result
is more than 32 bits.

V-flag = ((Rd >= 0) && (MOF != 0)) ||
((Rd < 0) && (MOF != -1))

Operation:
MOF = ((m)Rs * (m)Rd) >> 32;
Rd = (dword)((m)Rs * (m)Rd);

Flags affected:
S R P U I X N Z V C
- - - - - 0 * * * -

Instruction format: MULS.m Rs,Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 1 1 0 1 0 0 | m | Source(Rs) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

m Description

00 Byte

01 Word

10 Dword

2.3. INSTRUCTIONS IN ALPHABETICAL ORDER 177

2.3.68 MULU - Unsigned Multiply

Assembler syntax:
MULU.m Rs,Rd

Size: Byte, word or dword. The result is 64 bits.

Description: Both operands are zero extended from the size (m) to dword, and the extended
operands are multiplied, generating a 64-bit result.

The lower 32 bits of the result are written to Rd, and the upper 32 bits are written
to the multiply overflow register (MOF).

N and Z flags are set depending on the 64 bit result. The V flag is set if the result
is more than 32 bits.

V-flag = (MOF != 0)

Operation:
MOF = ((unsigned m)Rs * (unsigned m)Rd) >> 32;
Rd = (dword)((unsigned m)Rs * (unsigned m)Rd);

Flags affected:
S R P U I X N Z V C
- - - - - 0 * * * -

Instruction format: MULU.m Rs,Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 1 0 0 1 0 0 | m | Source(Rs) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

m Description

00 Byte

01 Word

10 Dword

178 CHAPTER 2. CPU

2.3.69 NEG - Negate

Assembler syntax:
NEG.m Rs,Rd

Size: Byte, word or dword

Description: The contents of the source register is negated, and stored in the destination reg-
ister. The size of the operation is m. The rest of the destination register is not
affected.

Operation:
(m)Rd = -(m)Rs;

Flags affected:
S R P U I X N Z V C
- - - - - 0 * * * *

Instruction format: NEG.m Rs,Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 0 1 0 1 1 0 | m | Source(Rs) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

m Description

00 Byte

01 Word

10 Dword

2.3. INSTRUCTIONS IN ALPHABETICAL ORDER 179

2.3.70 NOP - No Operation

Assembler syntax:
NOP

Size: NA

Description: NOP is an alias for SETF.

180 CHAPTER 2. CPU

2.3.71 NOT - Logical Complement

Assembler syntax:
NOT Rd

Size: Dword

Description: NOT Rd is an alias for SWAPN Rd. The contents of the destination register is
inverted. The size of the operation is dword.

2.3. INSTRUCTIONS IN ALPHABETICAL ORDER 181

2.3.72 OR - Logical OR

Assembler syntax:
OR.m Rs,Rd
OR.m [Rs],Rd
OR.m [Rs+],Rd
OR.m k,Rd

Size: Byte, word or dword

Description: A logical OR is performed between the source operand and the destination reg-
ister. The size of the operation is m. The rest of the destination register is not
affected.

Operation:
Rd |= s;

Flags affected:
S R P U I X N Z V C
- - - - - 0 * * - -

Instruction format: OR.m Rs,Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 0 1 1 1 0 1 | m | Source(Rs) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Instruction format: OR.m [Rs],Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 1 0 1 1 0 1 | m | Source(Rs) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Instruction format: OR.m [Rs+],Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 1 1 1 1 0 1 | m | Source(Rs) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Instruction format: OR.d k,Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 1 1 1 1 0 1 1 0 | 1 1 1 1 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| Bits 0-15 of k |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| Bits 16-31 of k |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

182 CHAPTER 2. CPU

Instruction format: OR.b k,Rd and OR.w k,Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 1 1 1 1 0 1 | m | 1 1 1 1 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| Bits 0-15 of k (bits 8-15 are ignored if size is byte) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

m Description

00 Byte

01 Word

10 Dword

2.3. INSTRUCTIONS IN ALPHABETICAL ORDER 183

2.3.73 ORQ - Logical OR Quick

Assembler syntax:
ORQ i,Rd

Size: Source data is 6-bit. Operation size is dword.

Description: A logical OR is performed between a 6-bit immediate value, sign extended to
dword, and the destination register.

Operation:
Rd |= i;

Flags affected:
S R P U I X N Z V C
- - - - - 0 * * - -

Instruction format: ORQ i,Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 0 0 1 1 0 1 | i |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

184 CHAPTER 2. CPU

2.3.74 RET - Return From Subroutine

Assembler syntax:
RET

Description: RET is an alias for JUMP SRP.

2.3. INSTRUCTIONS IN ALPHABETICAL ORDER 185

2.3.75 RETE - Return From Exception

Assembler syntax:
RETE

Description: RETE is an alias for JUMP ERP.

186 CHAPTER 2. CPU

2.3.76 RETN - Return from NMI Exception

Assembler syntax:
RETN

Description: RETN is an alias for JUMP NRP.

2.3. INSTRUCTIONS IN ALPHABETICAL ORDER 187

2.3.77 RFE - Restore from Exception

Assembler syntax:
RFE

Size: N/A

Description: RFE restores the saved flags by shifting the CCS. The operation performed on
CCS is shown in Operation below.

Observe that the P flag is always set by RFE unless the R flag is set. This instruc-
tion is intended to be placed in the delay slot of a RETE or RETN instruction:

<exception routine>
...
RETE
RFE

Operation:
{S,R,P,U,I,X,N,Z,V,C} = {S1,R1,R?P1:1,U1,I1,X1,N1,Z1,V1,C1};

{S1,R1,U1,I1,X1,N1,Z1,V1,C1} = {S2,R2,U2,I2,X2,N2,Z2,V2,C2};
{S2,R2,U2,I2,X2,N2,Z2,V2,C2} = 0;

Flags affected: (Kernel mode)

S R P U I X N Z V C
* * * * * * * * * *

Flags affected: (User mode)

S R P U I X N Z V C
- * * - - * * * * *

Instruction format: RFE

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| 0 0 1 0 | 1 0 0 1 0 0 1 1 | 0 0 0 0 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

188 CHAPTER 2. CPU

2.3.78 RFG - Restore from Guru Mode Exception

Assembler syntax:
RFG

Size: N/A

Description: Restores the status saved when guru mode was entered (CCS, SRS and NRP).
The hidden guru mode flag (g-flag) is also cleared. This instruction is intended
to be placed in the delay slot of an RETN instruction:

<guru exception routine>
...
RETN
RFG

RFG has no effect in User and Kernel modes.

Operation:
CCS = G_CCS;
NRP = G_NRP;
SRS = G_SRS;

Flags affected: (Kernel and User Mode)

S R P U I X N Z V C
- - - - - - - - - -

Flags affected: (Guru Mode)

S R P U I X N Z V C
* * * * * * * * * *

Instruction format: RFG

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| 0 1 0 0 | 1 0 0 1 0 0 1 1 | 0 0 0 0 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

2.3. INSTRUCTIONS IN ALPHABETICAL ORDER 189

2.3.79 RFN - Restore from NMI Exception

Assembler syntax:
RFN

Size: N/A

Description: RFN restores the saved flags by shifting the CCS, then sets the M flag. The
operation performed on CCS is shown in Operation below.

Observe that the P flag is always set by RFN unless the R flag is set. This instruc-
tion is intended to be placed in the delay slot of a RETE or RETN instruction:

<NMI exception routine>
...
RETN
RFN

Operation:
{S,R,P,U,I,X,N,Z,V,C} = {S1,R1,R?P1:1,U1,I1,X1,N1,Z1,V1,C1};

{S1,R1,U1,I1,X1,N1,Z1,V1,C1} = {S2,R2:U2,I2,X2,N2,Z2,V2,C2};
{S2,R2,U2,I2,X2,N2,Z2,V2,C2} = 0;

M = 1;

Flags affected: (Kernel mode)

S R P U I X N Z V C
* * * * * * * * * *

Flags affected: (User mode)

S R P U I X N Z V C
- * * - - * * * * *

Instruction format: RFN

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| 0 1 0 1 | 1 0 0 1 0 0 1 1 | 0 0 0 0 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

190 CHAPTER 2. CPU

2.3.80 Scc - Set Conditional

Assembler syntax:
Scc Rd

Size: Dword

Description: The destination register is loaded with 1 if the condition cc is true, and with 0
otherwise. The size of the operation is dword.

Operation:
if (cc) {

Rd = 1;
} else {

Rd = 0;
}

Flags affected:
S R P U I X N Z V C
- - - - - 0 - - - -

Instruction format: Scc Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| cc | 0 1 0 1 0 0 1 1 |Destination(Rd)|
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

2.3. INSTRUCTIONS IN ALPHABETICAL ORDER 191

2.3.81 SETF - Set Flags

Assembler syntax:
SETF <list of flags>

Size: N/A

Description: The specified flags are set to 1. If the X flag is not in the list, it will be cleared.
SETF may be used to enter User mode from Kernel mode by setting the U flag.
The U and I flags can not be changed when in User mode (U==1).

Operation:
X = 0;
Selected flags = 1; /* U and I flags are not affected in User mode */

Flags affected: (Kernel mode)

S R P U I X N Z V C
- - * * * * * * * *

Flags affected: (User mode)

S R P U I X N Z V C
- - * - - * * * * *

Instruction format: SETF <list of flags>

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| P U I X | 0 1 0 1 1 0 1 1 | N Z V C |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

192 CHAPTER 2. CPU

2.3.82 SFE - Save for Exception

Assembler syntax:
SFE

Size: N/A

Description: Save flags by shifting the CCS. This operation is normally performed automat-
ically when an exception occurs. This instruction can be used to fake calls to
exception routines from kernel mode. If in User Mode the S, U and I flags are
unaffected by this instruction.

Fake a call to an exception routine:

JAS exception_routine, ERP
SFE

Observe that this faked call only works from kernel mode.

Operation:
{S2,R2,P2,U2,I2,X2,N2,Z2,V2,C2} = {S1,R1,P1,U1,I1,X1,N1,Z1,V1,C1};
{S1,R1,P1,U1,I1,X1,N1,Z1,V1,C1} = {S,R,P,U,I,X,N,Z,V,C};

{S,R,P,U,I,X,N,Z,V,C} = 0;

Flags affected: (Kernel mode)

S R P U I X N Z V C
0 0 0 0 0 0 0 0 0 0

Flags affected: (User mode)

S R P U I X N Z V C
- 0 0 - - 0 0 0 0 0

Instruction format: SFE

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| 0 0 1 1 | 1 0 0 1 0 0 1 1 | 0 0 0 0 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

2.3. INSTRUCTIONS IN ALPHABETICAL ORDER 193

2.3.83 SUB - Subtract

Assembler syntax:
SUB.m Rs,Rd
SUB.m [Rs],Rd
SUB.m [Rs+],Rd
SUB.m k,Rd

Size: Byte, word or dword

Description: The source data is subtracted from the destination register. The size of the oper-
ation is m. The rest of the destination register is not affected.

Operation:
(m)Rd -= (m)s;

Flags affected:
S R P U I X N Z V C
- - - - - 0 * * * *

Instruction format: SUB.m Rs,Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 0 1 1 0 1 0 | m | Source(Rs) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Instruction format: SUB.m [Rs],Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 1 0 1 0 1 0 | m | Source(Rs) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Instruction format: SUB.m [Rs+],Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 1 1 1 0 1 0 | m | Source(Rs) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

194 CHAPTER 2. CPU

Instruction format: SUB.d k,Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 1 1 1 0 1 0 1 0 | 1 1 1 1 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| Bits 0-15 of k |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| Bits 16-31 of k |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Instruction format: SUB.b k,Rd and SUB.w k,Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 1 1 1 0 1 0 | m | 1 1 1 1 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| Bits 0-15 of k (bits 8-15 are ignored if size is byte) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

2.3. INSTRUCTIONS IN ALPHABETICAL ORDER 195

2.3.84 SUBQ - Subtract Quick

Assembler syntax:
SUBQ j,Rd

Size: Source data is 6-bit. Operation size is dword.

Description: A 6-bit immediate value, zero extended to dword, is subtracted from the destina-
tion register.

Operation:
Rd -= j;

Flags affected:
S R P U I X N Z V C
- - - - - 0 * * * *

Instruction format: SUBQ j,Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 0 0 1 0 1 0 | j |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

196 CHAPTER 2. CPU

2.3.85 SUBS - Subtract with Sign Extend

Assembler syntax:
SUBS.z Rs,Rd
SUBS.z [Rs],Rd
SUBS.z [Rs+],Rd
SUBS.z k,Rd

Size: Source size is byte or word. Operation size is dword.

Description: The source data is sign extended from z to dword, and then subtracted from the
destination register.

Operation:
Rd -= (z)s;

Flags affected:
S R P U I X N Z V C
- - - - - 0 * * * *

Instruction format: SUBS.z [Rs+],Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 0 1 0 0 1 0 1 | z | Source(Rs) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Instruction format: SUBS.z [Rs],Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 1 0 0 0 1 0 1 | z | Source(Rs) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Instruction format: SUBS.z [Rs+],Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 1 1 0 0 1 0 1 | z | Source(Rs) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Instruction format: SUBS.z k,Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 1 1 0 0 1 0 1 | z | 1 1 1 1 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| Bits 0-15 of k (bits 8-15 are ignored if size is byte) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Size (z) Description

0 Byte source operand

1 Word source operand

2.3. INSTRUCTIONS IN ALPHABETICAL ORDER 197

2.3.86 SUBU - Subtract with Zero Extend

Assembler syntax:
SUBU.z Rs,Rd
SUBU.z [Rs],Rd
SUBU.z [Rs+],Rd
SUBU.z k,Rd

Size: Source size is byte or word. Operation size is dword.

Description: The source data is zero extended from z to dword, and then subtracted from the
destination register.

Operation:
Rd -= (unsigned z)s;

Flags affected:
S R P U I X N Z V C
- - - - - 0 * * * *

Instruction format: SUBU.z Rs,Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 0 1 0 0 1 0 0 | z | Source(Rs) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Instruction format: SUBU.z [Rs],Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 1 0 0 0 1 0 0 | z | Source(Rs) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Instruction format: SUBU.z [Rs+],Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 1 1 0 0 1 0 0 | z | Source(Rs) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Instruction format: SUBU.z k,Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 1 1 0 0 1 0 0 | z | 1 1 1 1 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| Bits 0-15 of k (bits 8-15 are ignored if size is byte) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Size (z) Description

0 Byte source operand

1 Word source operand

198 CHAPTER 2. CPU

2.3.87 SWAP - Swap Bits

Assembler syntax:
SWAP<option> Rd

Size: Dword

Description: The bits in the destination register are reorganized according to the specified
option(s). The following options apply:

Flag Description

N Invert all bits in the operand.

W Swap the words of the operand.

B Swap the two bytes within each word
of the operand.

R Reverse the bit order within each byte
of the operand.

Any combination of the four options are allowed. If more than one option is
specified, they must be given in the order NWBR. The size of the operation is
dword.

Operation:
if (option N) {

Rd = ˜Rd;
}
if (option W) {

Rd = (Rd << 16) | ((Rd >> 16) & 0xffff);
}
if (option B) {

Rd = ((Rd << 8) & 0xff00ff00) |
((Rd >> 8) & 0x00ff00ff);

}
if (option R) {

Rd = ((Rd << 7) & 0x80808080) |
((Rd << 5) & 0x40404040) |
((Rd << 3) & 0x20202020) |
((Rd << 1) & 0x10101010) |
((Rd >> 1) & 0x08080808) |
((Rd >> 3) & 0x04040404) |
((Rd >> 5) & 0x02020202) |
((Rd >> 7) & 0x01010101);

}

Flags affected:
S R P U I X N Z V C
- - - - - 0 * * - -

Instruction format: SWAP<option> Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| N W B R | 0 1 1 1 0 1 1 1 | Source(Rd) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

2.3. INSTRUCTIONS IN ALPHABETICAL ORDER 199

2.3.88 TEST - Compare with Zero

Assembler syntax:
TEST.m [Rs]
TEST.m [Rs+]

Size: Byte, word, or dword

Description: The source data is compared with 0, and the flags are set accordingly.

Operation:
(m)s - 0;

Flags affected:
S R P U I X N Z V C
- - - - - 0 * * 0 0

Instruction format: TEST.m [Rs]

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| 0 0 0 0 1 0 1 1 1 0 | m | Source(Rs) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

Instruction format: TEST.m [Rs+]

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
| 0 0 0 0 1 1 1 1 1 0 | m | Source(Rs) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

m Description

00 Byte

01 Word

10 Dword

200 CHAPTER 2. CPU

2.3.89 XOR - Logical Exclusive OR

Assembler syntax:
XOR Rs,Rd

Size: Dword

Description: A logical XOR is performed between the contents of the source register and the
destination register. The size of the operation is dword.

Operation:
Rd ˆ= Rs;

Flags affected:
S R P U I X N Z V C
- - - - - 0 * * - -

Instruction format: XOR Rs,Rd

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
|Destination(Rd)| 0 1 1 1 1 0 1 1 | Source(Rs) |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+

2.4 CRIS CPU Cycle behavior

2.4.1 References

[CACHE] Cache module datasheet, chapter3

2.4.2 Pipeline Overview

In order to reduce the number of cycles needed to execute an instruction and allow
for higher clock frequencies a pipelined architecture is often used in modern CPU
architectures. This allows the resources to be split into several discrete portions and
shared between several instructions simultaneously.

The CRIS v32 CPU uses a 5-stage pipelined architecture together with a 2-stage mul-
tiply unit allowing five instructions to execute simultaneously in the pipeline and one
instruction to be completed in every clock cycle.

The different stages of the pipeline are shown in figure2.13below:

Fetch Decode
Memory

2- Stage Multiply

Execute
Write Back

Figure 2.13:CPU pipeline stages

In the fetch stage instructions are fetched from the instruction cache into a small
prefetch buffer in the CPU. The prefetch buffer is used to hide the latency of the cache

2.4. CRIS CPU CYCLE BEHAVIOR 201

when crossing a cache line boundary. One full instruction is delivered for execution
into the decode stage every clock cycle.

The decode stage is responsible for decoding the instruction and fetching the source
register operands of the instruction from the register bank. In case of any memory
operands a memory operation is prepared for the memory stage.

The memory stage handles fetching of source operands from memory and storing of
destination operands to memory. The memory stage also includes the first part of a 2-
stage multiplier unit. The memory stage is fully incorporated in the pipeline allowing
one memory or multiply operation to be executed in each clock cycle without any extra
penalty cycles.

In the execute stage the source operands are fed into an ALU (Arithmetic Logic Unit)
where the selected operation of the instruction is performed. The execute stage also
includes the second stage of the multiplier unit. The execute stage delivers the result of
the operation in the form of the output from the ALU or multiplier unit together with
new CCS settings.

The result from the execute stage is used by the write back stage which is responsible
for storing the result back in the register bank.

2.4.2.1 Prefetch Unit

A 256-bit data bus is used towards the instruction cache allowing for load of up to
32 bytes of instruction words in each clock cycle. A prefetch unit is used to hide
the instruction cache load latency when execution crosses a cache line boundary. The
prefetch unit uses a 48-byte prefetch buffer and when less than 10 bytes are available
the buffer is automatically filled up with the next sequential 32 bytes and rotated by
the CPU. The prefetch unit assures that no extra stall cycles are inferred when fetching
sequential program code as long as no instruction cache misses occur.

The prefetch buffer is always cleared at any jump or branch instruction causing the line
to be fetched from the instruction cache again.

2.4.2.2 Branch Prediction Unit

The flags in the CCS register are not known until the instruction has passed the execute
stage in the pipeline. When a conditional branch instruction is to be executed the exe-
cution would have to be stalled until the preceding instruction had passed the execute
stage unless this was handled by the pipeline.

The CRIS v32 CPU uses a dynamic branch prediction unit to guess whether a condi-
tional branch is to be taken or not. The predicted branch direction is executed spec-
ulatively and when the previous instruction passes the execute stage the prediction is
checked with the actual flag settings. If the prediction is found to be correct no extra
stall cycles are inferred but if the prediction was wrong the current execution has to be
aborted and two extra stall cycles are needed to start executing the other direction of
the branch.

The prediction unit uses a two-bit prediction scheme that requires that the predic-
tor misses twice before being changed. This improves the predictor performance on

202 CHAPTER 2. CPU

branches that strongly favours taken or not taken. The branch prediction unit uses
a direct mapped 256-entry prediction buffer that is addressed by the lower eight bits
of the program counter (PC). The prediction accuracy is normally well over 90% but
branches that are switching direction often will of course degrade the predictor perfor-
mance. The direct mapped buffer structure will also in rare cases degrade performance
when two conditional branch instruction are mapped to the same entry in the prediction
buffer and thus using the same two-bit predictor.

2.4.2.3 Memory Unit

A 256-bit data bus is used towards the data cache allowing for load or store of up to 32
bytes of data in each clock cycle. The data cache load and store latency is incorporated
in the pipeline and does not infer any extra penalty cycles in the normal case.

Besides normal cache stalls there are cases where the data cache will stall the cpu
pipeline. A load in any of the two cycles following directly after a store will stall the
cpu for two cycles. A store in any of the two cycles following directly after a store to a
clean cache line will also stall the cpu for two cycles. More information can be found
in the cache documentation [CACHE].

There are no alignment restrictions on the data that causes any extra stall cycles, but if
the data is larger than one cache line or crosses one or more cache line boundaries the
access will be split into several sequential accesses and the CPU is stalled meanwhile.

2.4.2.4 Pipelined Multiplier Unit

For multiply instructions a 2-stage pipelined multiplier that overlaps the memory and
execute stages is used. One multiplication can be started in the memory stage every
clock cycle and the result is delivered in the execute stage one cycle later. Sequential
multiplications are fully pipelined where the result of the first multiplication is deliv-
ered in the execute stage simultaneously as the first part of the second multiplication is
computed in the memory stage.

2.4.3 Pipeline Hazards

In general, one instruction is completed every clock cycle. In some cases, however,
dependencies between subsequent instructions as well as alignment of data and/or in-
structions may cause the execution of an instruction to use extra cycles. These excep-
tions are described in the sections below:

· Addresses

· Multiplication

· Jump with Register Operand

· Unaligned Data Accesses

· MOVEM

· Jump Targets

2.4. CRIS CPU CYCLE BEHAVIOR 203

2.4.3.1 Addresses

If an instruction accessing memory, i.e. [Rs] or [Rs+], uses a register (Rs) that is mod-
ified by the preceding instruction, an extra cycle is needed to execute the instruction
accessing memory.

This extra cycle is needed because the memory pipeline stage is placed before the
execution stage. As a result, the value of a modified register is not available until the
end of the execution stage while the instruction accessing memory needs the value at
the start of the memory stage.

The following sequence needs one extra cycle:

ADD.d R1,R2
OR.d [R2],R3

Fetch Decode Memory Execute Write Back

cycle n OR.d [R2],R3 ADD.d R1,R2

cycle n+1 OR.d [R2],R3 <stall> ADD.d R1,R2

cycle n+2 OR.d [R2],R3 <stall> ADD.d R1,R2

Observe that autoincrement is performed in the memory stage, so there is no need for
extra cycles when the autoincremented register is used as an address in the next cycle.
The following sequence does not require extra cycles:

ADD.w [R1+], R2
ADD.w [R1+], R2
ADD.w [R1+], R2
ADD.w [R1+], R2

2.4.3.2 Multiplication

As multiplication starts in the memory pipeline stage, the same dependency as de-
scribed in section2.4.3.1applies. If any of the two multiplication operands are modi-
fied by the preceding instruction, with the exception of autoincrement, an extra cycle
is needed to execute the multiplication.

2.4.3.3 Jump with Register Operand

Jumps need the target address in the decode stage. For immediate operands this is not
a problem since immediate data is always available in the decode stage. For register
operands, however, the register used has to have a valid value in the decode stage.
This means that if the preceding instruction modifies the register used by the jump
instruction, one extra cycle is needed. This applies to both regular and special registers.

This sequence needs one extra cycle:

204 CHAPTER 2. CPU

ADD.d R1,R2
JUMP R2

Fetch Decode Memory Execute Write Back

cycle n JUMP R2 ADD.d R1,R2

cycle n+1 JUMP R2 <stall> ADD.d R1,R2

cycle n+2 JUMP R2 <stall> ADD.d R1,R2

This sequence needs one extra cycle:

MOVE R1,SRP
JUMP SRP

Fetch Decode Memory Execute Write Back

cycle n JUMP SRP MOVE R1,SRP

cycle n+1 JUMP SRP <stall> MOVE R1,SRP

cycle n+2 JUMP SRP <stall> MOVE R1,SRP

2.4.3.4 Unaligned Data Accesses

Accesses spanning over a 32-byte cache line boundary require an extra cycle. The
following accesses will cause an extra cycle:

· word access to address A, where (A & 0x1f) == 0x1f

· dword access to address A, where (A & 0x1f)>= 0x1d

2.4.3.5 Restarting After Data Cache Stalls

Two sequential memory operation instructions require an extra cycle for the second
instruction if the first instruction causes a cache miss.

2.4.3.6 MOVEM

The MOVEM instruction may take between 1 and 3 cycles depending on the address
and how many registers that are saved or restored. The following rules apply:

N Number of registers

A Address

· 1 cycle if A >> 5 == ((A + 4 * N) - 1) >> 5

· 2 cycles if A>> 5 == (((A + 4 * N) - 1) >> 5) - 1

2.4. CRIS CPU CYCLE BEHAVIOR 205

· 3 cycles if A>> 5 == (((A + 4 * N) - 1) >> 5) - 2

The MOVEM Rs,[Rd/Rd+] instructions depend on Rd as well as R0..Rs, i.e. poten-
tially a lot of registers. This makes forwarding of register values impractical. The
requirement is that all registers saved must have valid values in the write back stage
of the pipeline. In practice this means that if any of the two preceding instructions
modifies any of the registers saved by MOVEM, extra cycles are inserted.

This sequence needs two extra cycles:

ADD.d R1,R3
MOVEM r7, [R10+]

Fetch Decode Memory Execute WB

cycle n MOVEM r7,[R10+] ADD.d R1,R3

cycle n+1 MOVEM r7,[R10+] <stall> ADD.d R1,R3

cycle n+2 MOVEM r7,[R10+] <stall> <stall> ADD.d R1,R3

cycle n+3 MOVEM r7,[R10+] <stall> <stall>

This sequence needs one extra cycle:

ADD.d R1,R3
ADD.d R1,R12
MOVEM R7, [R10+]

Fetch Decode Memory Execute WB

cycle n MOVEM R7,[R10+] ADD.d R1,R12 ADD.d R1,R3

cycle n+1 MOVEM R7,[R10+] <stall> ADD.d R1,R12 ADD.d R1,R3

cycle n+2 MOVEM R7,[R10+] <stall> ADD.d R1,R12

The destination registers loaded by the MOVEM [Rs/Rs+],Rd instructions are not prac-
tical to forward to e.g. the memory or execution stage. Registers loaded by MOVEM
can thus not be used by other stages in the pipeline until after they have been written to
the register bank. Extra cycles are inserted if registers loaded by MOVEM are used by
any of the three instructions following the MOVEM.

This sequence requires three extra cycles:

MOVEM [R10],R7
SUBQ 1,r1

Fetch Decode Memory Execute WB

cycle n SUBQ 1,r1 MOVEM [R10],R7

cycle n+1 SUBQ 1,r1 <stall> MOVEM [R10],R7

206 CHAPTER 2. CPU

cycle n+2 SUBQ 1,r1 <stall> <stall> MOVEM [R10],R7

cycle n+3 SUBQ 1,r1 <stall> <stall> <stall>

cycle n+4 SUBQ 1,r1 <stall> <stall>

This sequence requires two extra cycles:

MOVEM [R10],R7
SUBQ 1,r8
ADD.d r1,r12

Fetch Decode Memory Execute WB

cycle n ADD.d r1,r12 SUBQ 1,R8 MOVEM [R10],R7

cycle n+1 ADD.d r1,r12 <stall> SUBQ 1,R8 MOVEM [R10],R7

cycle n+2 ADD.d r1,r12 <stall> <stall> SUBQ 1,R8

cycle n+3 ADD.d r1,r12 <stall> <stall>

This sequence also requires two extra cycles, for any S=b,w,d:

MOVEM [R10],R7
MOVE.d r8,r1
SUBQ 1,R1

Fetch Decode Memory Execute WB

cycle n SUBQ 1,R1 MOVE.d r8,r1 MOVEM [R10],R7

cycle n+1 SUBQ 1,R1 <stall> MOVE.d r8,r1 MOVEM [R10],R7

cycle n+2 SUBQ 1,R1 <stall> <stall> MOVE.d r8,r1

cycle n+3 SUBQ 1,R1 <stall> <stall>

However, this sequence requires no extra cycles:

MOVEM [r10],r7
MOVE.d r8,r1
SUBQ 1,r8

This sequence requires one extra cycle:

MOVEM [R10],R7
ADD.d r8,r9
SUBQ 1,R9
SUBQ 1,R1

2.4. CRIS CPU CYCLE BEHAVIOR 207

Fetch Decode Memory Execute WB

cycle n SUBQ 1,R1 SUBQ 1,R9 ADD.d r8,r9 MOVEM [R10],R7

cycle n+1 SUBQ 1,R1 <stall> SUBQ 1,R9 ADD.d r8,r9

cycle n+2 SUBQ 1,R1 <stall> SUBQ 1,R9

2.4.3.7 Jump Targets

If the instruction, at the address to which a JUMP instruction jumps, spans a cache line
boundary, an extra cycle is needed to execute that instruction. This can only happen
for instructions with word or dword immediate operands since two cache lines have to
be fetched to get a complete instruction.

An extra cycle is needed for the following cases (A is the address of the instruction
jumped to):

· instruction with word immediate, when A & 0x1f == 0x1e

· instruction with dword immediate, when A & 0x1f>= 0x1c

These sequences need one extra cycle:

JUMP 0x1e
nop
...

0x1e: ADD.w 34, R3 ;; 2 cycles
...

ba 0x1c
nop
...

0x1c: ADD.d 1000000, R3 ;; 2 cycles
...

No extra cycles are needed for corresponding sequential cache-line-straddling
code sequences.

2.4.4 Self modifying code in the pipeline

It is generally not a problem to use self modifying code in the CRIS CPU. The instruc-
tion cache is part of the on-chip cache coherence mechanism. Cache lines that exist
in the instruction cache will be automatically invalidated when they are written in the
data cache.

The 48-byte prefetch buffer is not part of the cache coherence mechanism. Therefore,
self modifying code that modifies code within 48 bytes of the current PC will not
take effect in the pipeline until the prefetch buffer is updated as well. The simplest
way of updating the prefetch buffer is to issue any type of jump or branch instruction.
When jumping to self modified code, at least two nops must be inserted between the
modifying of code and a following jump or branch to the same modified code:

208 CHAPTER 2. CPU

; change immediate value
move.d instr + 2, r1
clear.d [r1]
nop
nop
jsr instr
nop

2.5 Assembly language syntax

2.5.1 Assembly language syntax

The syntax for the assembly language is covered by the [GAS] GNU assembler manual,
specifically the chapter named ”CRIS Dependent Features”. This document is available
from the GNU project (http://sourceware.org/binutils), and is also installed as part of
the Axis compiler tools package known as cris-dist.

2.6 CRIS v32 Compiler specifics

2.6.1 GCC Compiler options

This section is an edited extract of the GCC documentation [GCC] (See section2.1.1),
where compiler -m options for different target processors are described.

These specifications are subject to change with future revisions of the CRIS v32 port
of GCC.

For the reader familiar with the CRIS pre-v32 GCC port, the definitions are the same
for all applicable parts.

The following -m options are defined for the CRIS architecture family:

-mcpu=CPU_MODEL
-march=CPU_MODEL

The two options above produce code that runs on CPUMODEL. Values for CPUMODEL
are etrax4, etrax100, etrax100lx, and vN, where N is in the range from 0..32 are rec-
ognized. When vN is specified, N denotes the version-register contents of the targeted
CPU model. The default is equivalent to -march=v32 when targeting the CRIS v32.

-mconst-align
-mdata-align
-mstack-align
-m16bit
-m32bit

http://sourceware.org/binutils

2.6. CRIS V32 COMPILER SPECIFICS 209

-m8bit
-mno-const-align
-mno-data-align
-mno-stack-align

Align constants, data and stack respectively, to 16-bit (two bytes) data boundary by
alignment directives, or by rounding up the size of the stack frame. Only individual
variables are affected; the (unaligned) ABI is unaffected. Saying -m16bit is equivalent
to all of -mconst-align, -mdata-align, and -mstack-align. This is the default when the
base (v0) instruction set is specified. Saying -m32bit means rounding them up to a 32-
bit data boundary. This is the default for the v8 instruction set and up, including CRIS
v32. Specifying -m8bit means do not align anything. The no- option variant disables
alignment of that entity.

-mmax-stack-frame=SIZE

Warn when the stack frame exceeds SIZE bytes.

-mprologue-epilogue
-mno-prologue-epilogue

Do (do not) output a prologue and epilogue for any function. For code compiled with
the -mno-prologue-epilogue option, it is necessary to add a function prologue and epi-
logue through asm statements. The default is equivalent to -mprologue-epilogue.

2.6.2 C Preprocessor macros

The CRIS GCC port sets the following preprocessor macros:

__cris__
__CRIS__
__GNU_CRIS__

These three macros are always defined to 1.

__arch_X

The archX macro is defined to 1 for the options -mcpu=X and -march=X (where the
variable X is the value entered for CPUMODEL). See section2.6.1for an explanation
of these options. For CRIS v32, the macroarchv32 is defined to 1.

__CRIS_arch_version

210 CHAPTER 2. CPU

The CRIS archversion is defined to the numeric value N corresponding to the option
-march=vN. For CRIS v32, the macroCRIS archversion is defined to 32.

__tune_X

The tuneX macro is set for the option -mtune=X in the same way as the macro
archX is for -march=X.

The underlining at the beginning and end of the macros above represents two underline
characters.

2.6.3 The ABI

2.6.3.1 Introduction

This is a description of the Application Binary Interface (ABI), the binary-level con-
ventions for the CRIS architecture family as implemented in the GCC port. An appli-
cation binary interface defines some conventions common to all compiled programs.
Among the conventions that an ABI establishes are register usage, calling conventions
and layout of data. These specifications are subject to change with future revisions of
the CRIS ABI. For the reader familiar with the pre-v32 CRIS ABI, the conventions
in the CRIS v32 version are the same, with the addition of the call-clobbered register
ACR for CRIS v32, and increased variation of the location of the return address in the
stack frame. (See sections2.6.3.4and2.6.3.5.)

2.6.3.2 Fundamental C data types

The following list shows how C and C++ data types correspond to CRIS data types.
See table2.7:

· A signed, unsigned, or plain char is a signed or unsigned byte (or 8-bit integer).
The plain type ”char” is signed.

· A signed or unsigned short int is a signed or unsigned word (or 16-bit integer).

· A signed or unsigned int and long is a signed or unsigned dword (or 32-bit inte-
ger).

· Pointers to any type are represented as 32-bit integer entities.

· Enumerated types in C and C++, enum, are represented as integer objects, 32-bit
dwords.

· The floating point type float is represented as 32-bit IEEE-754 floating point
numbers.

· The types double and long double are represented as a 64-bit IEEE-754 floating
point number, with the lower part of the mantissa in the dword at the lower
address.

2.6. CRIS V32 COMPILER SPECIFICS 211

31 0
Sign
Bit Exponent Bits Mantissa Bits

23 22

Figure 2.14:32-bit floating point number

31 0

Mantissa Bits

63 0
Sign
Bit Exponent Bits Mantissa Bits

52 51

msb

Figure 2.15:64-bit floating point number

2.6.3.3 C Object memory layout

The memory layout of a structure has each member at increasing addresses, without
any alignment padding in between members. The size of the structure is, therefore, the
sum of each of the sizes of the elements (with the exception of zero bitfields, which
align to the next byte boundary).

· Example: of the structure layout of the CRIS ABI

struct example
{

char c; /* 1 Byte, offset 0 */
short s; /* 2 Bytes, offset 1 */
int i; /* 4 Bytes, offset 3 */
long l; /* 4 Bytes, offset 7 */
float f; /* 4 Bytes, offset 11 */
double d; /* 8 Bytes, offset 15 */
long double ld; /* 8 Bytes, offset 23 */
char s[6]; /* 6 Bytes, offset 31 */

};

The size of struct example is 37 bytes.

Bitfields span over any byte, word or dword boundaries. The first declared field is in
the lowest bits of the lowest address of the bitfield.

Compiler options specify whether objects have byte, word or dword alignment. Code
must not assume that objects are laid out at stricter alignments than bytes. Compiler
options specify the actual alignment. For example, -m8bit specifies that objects are
always byte-aligned, while the default is 16-bit alignment. Note that options specifying
a processor-version also implicitly control the alignment of objects. No target options
affect structure layout or size.

212 CHAPTER 2. CPU

2.6.3.4 C Calling conventions

Arguments shorter than or equal to 64 bits are passed by value. Integral types smaller
than 32 bits are promoted to the corresponding 32-bit types by the same rules as in ISO
C 1998-1999. Entities larger than 64 bits or declared to have varying size (regardless
of the size at the time of the call) are passed by reference by passing a pointer to a
read-only value. This means that the callee has to copy that value if it wants to modify
it.

The first parameters to a function are passed (by value or reference) in registers R10..R13,
starting with the first parameter in R10. If R13 is in turn for a 64-bit parameter, it is
passed partially in R13 (the least significant 32 bits) and partially on stack (the most
significant 32 bits). Parameters passed on stack are located at offset zero from SP upon
entry to the called function (not including any space allocated for the return address).

A return value shorter than or equal to 64 bits is returned with the least significant 32
bits in register R10, and (if applicable) with the most significant 32 bits in R11. For
structure return values, the caller allocates an area on the stack and passes the address
of that area in R9 to the called function. Thethispointer in C++ is passed as an invisible
first argument in R10 (i.e. the first argument to a non-static member function ends up
in register R11 and so on).

Registers R9..R13, SRP, ACR and MOF (except any return values in register R10 and
R11) are assumed to contain garbage upon return from the function. Registers R0..R8
must have the same contents upon return from, as before the call to the function.

2.6.3.5 Stack frame layout

As can be seen below, the stack does not have a static layout except for the order of
its components. It may, in fact, be collapsed and empty (not even contain a return
address). For simplicity it is assumed in figure2.16below that all parameters are 32
bits or smaller. A function must not depend on the actual stack frame layout of its
caller or callee for proper execution, only on the location of incoming and outgoing
parameters.

Very few functions need a frame pointer. When a frame pointer is needed, the called
register R8 is used. The frame pointer value is derived from the stack pointer value at
the beginning of the function.

For functions with a variable number of parameters, the called function itself is respon-
sible for storing any necessary portion of registers R10..R13 as indicated in figure2.16.
The calling function passes parameters exactly as to a function with a fixed number of
parameters. The valist type is a pointer to an array of parameters or (for each case the
calling convention above indicates pass-by-reference) pointers to parameters.

The location of the return address varies depending on the function. If the function does
not call any other functions (i.e. it is a ”leaf function”) and register SRP is not used by
the function itself, the return address is kept there until the return. Other common cases
include keeping the return address in another register or in the dedicated stack position
in the figure2.16.

2.7. ETRAX FS AND ETRAX 100LX CPU COMPARISON 213

(Higher Address)
[...]

Parameter #7

Parameter #6

Parameter #5

Parameter #4 (R13)

Parameter #3 (R12)

Parameter #2 (R11)

Parameter #1 (R10)

Return Address

Saved fp (R8)

Local variables and internal temporaries

Preserved register values, R0...R7/R8

Variables of variable size
and alloca() storage

Parameter storage when calling
for parameter #5 and up

(Lower Address)

If more than four parameters

Only if variable-arguments function,
for those parameters not named

Only if non-leaf function, and if no
register is suitable

Only in a function needing a frame pointer

If used

If modified, and R8 only
when no frame pointer is needed

If used

If used

Stack pointer value
at function entry

Frame pointer value

Stack pointer value

Figure 2.16:Stack frame layout

2.7 ETRAX FS and ETRAX 100LX CPU comparison

2.7.1 Introduction

Some properties of the instruction set in the CRIS v10 CPU (present in ETRAX 100LX)
were not suitable for efficient pipelining (most notably the addressing mode prefixes).
Binary compatibility has thus been dropped to allow adjustments to the instruction set
to make it more pipeline friendly. Below is a summary of the differences between the
CRIS v10 and CRIS v32 CPUs.

214 CHAPTER 2. CPU

2.7.2 Registers

2.7.2.1 General registers

General register R15 is no longer PC. It is replaced by ACR (Address Calculation
Register) which is used by the instructions replacing the Addressing Mode prefixes.
There are two differences between R15 (ACR) and the other general registers:

1. R15 can not be used as address in the Autoincrement Mode. Specifying [R15+]
still means [PC+].

2. Instructions that replace the addressing mode prefixes use ACR as an implicit
destination.

2.7.2.2 Special registers

2.7.2.2.1 Removed special registers

The following ETRAX 100LX registers have been removed from the ETRAX FS CPU:

Register Description

16-bit CCR (former P5) 16 bit Condition Code Register.

BAR (former P12) Breakpoint Address Register.

BRP (former P14) Breakpoint Return Pointer.

Table 2.78:Removed ETRAX 100LX special registers

2.7.2.2.2 New special registers

The following registers, which do not exist in the ETRAX 100LX , have been added to
the ETRAX FS CPU:

Register Description

PID (P2, Process/Page ID) PID is an 32-bit register that is used, for example, by the
TLB to know whether or not a mapping is valid for the
current process.

SRS (P3, Support Register Select) SRS is an 8-bit register used to select the active support
register bank.

EXS (P5, Exception Status) EXS is a 32-bit register for holding status information
about the current Exception.

EDA (P6, Exception Data Address) EDA is a 32-bit register for holding the data address used
when an exception triggers (if any).

NRP (P12, NMI Return Pointer) NRP is a 32-bit register used to store the return address for
NMI exceptions.

Table 2.79:New ETRAX FS special registers

2.7. ETRAX FS AND ETRAX 100LX CPU COMPARISON 215

2.7.2.2.3 Renamed or modified special registers

The following ETRAX 100LX registers have been renamed or modified in the ETRAX
FS CPU:

Register Description

IBR (P9) IBR has been renamed EBP (Exception Base Pointer).

IRP (P10) IRP has been renamed ERP (Exception Return Pointer).

DCCR (P13) DCCR has been renamed CCS and the 16-bit CCR has been removed.
The bits in the CCS have changed as well.

USP (former P15) USP has been moved to P14.

Table 2.80:Renamed or modified ETRAX 100LX special registers

2.7.2.3 Support function registers

The possibility of having banks of support function registers has been added to the
ETRAX FS CPU. Registers on the current bank, selected by the SRS register, can be
accessed by moving to or from a general register. There are up to 16 registers with 32
bits on each bank.

2.7.3 Addressing modes (Prefixes)

The address mode prefixes have been removed and replaced by stand alone address
calculation instructions. The prefixes are unsuitable for a pipelined architecture.

The instructions that replaces the prefixes always assign the result of the address cal-
culation to ACR (R15). ACR can then be used by subsequent instructions.

2.7.4 Instructions

2.7.4.1 Removed instructions

The following ETRAX 100LX instructions have been removed:

Instructions Description

Address Mode Prefixes BDAP, BIAP, DIP.

MSTEP Multiply STEP. MULS and MULU can be used instead.

JMPU Transfer to User mode is now made through setting the U flag
in the CCS.

JIR, JIRC, JBRC Jump to Interrupt Routine, Jump to Interrupt Routine with
Context and Jump to Bus fault Routine with Context.

RBF, SBFS Return from Bus Fault, Save Bus Fault Status.

MOVE Ps/Rs,PC All move instructions with PC as destination operand are
removed.

BOUND with memory operands. BOUND with register and immediate operands is still present.

Table 2.81:Removed ETRAX 100LX instructions

216 CHAPTER 2. CPU

2.7.4.2 Modified instructions

The following ETRAX 100LX instructions have been modified in the ETRAX FS CPU:

Instructions Description

JUMP, JSR, JSRC Addressing modes support has been reduced to register and
immediate [PC+] only. A delay slot is also added to all jump
instructions. The JSRC instruction is moved to a separate opcode
due to the changed meaning of the op2 field in the JAS instruction.
All jumps with immediate [PC+] are also moved to new opcodes.

MOVEM The order in which the registers are saved has been changed. R0
is saved to or read from the lowest address.

NOP NOP is redefined to SETF without parameters. The ADDI
R0.b,R15 sequence used before is now a legal instruction.

RET, RETB, RETI The return instructions all use the new JUMP Ps instruction since
MOVE Ps,PC no longer exists.

All but ADD, SUB,
CMP, TEST and
specific flag-
changing instructions

V and C flags are no longer cleared.

Table 2.82:Modified ETRAX 100LX instructions

2.7.4.3 New instructions

The following instructions, which do not exist for the ETRAX 100LX , have been
added to the ETRAX FS CPU:

Instructions Description

JUMP Ps Jump to special register.

BA ao 32-bit relative jumps added.

BRS ao

BSRC ao

LAPC k,Rd PC relative address calculation instructions.

LAPCQ qo,Rd

RFE Restore From Exception. Shift the CCS register right to restore flags
when returning from an exception.

RFG Restore From Guru Exception. Restore CCS and registers used
when returning from a Guru mode Exception.

RFN Restore From NMI Exception. Shift the CCS register right to
restore flags when returning from an exception. Set M flag.

SFE Save For Exception. Shift the CCS register left to save the flags
when faking an exception.

HALT Stop and wait for exception. Continue after exception has been
server.

ADDC Add with carry.

MCP Multiply Carry Propagation. MCP is for efficient large number
multiply.

FIDXI Cache flush instructions.

FTAGI

FIDXD

FTAGD

Table 2.83:New ETRAX FS instructions

2.7. ETRAX FS AND ETRAX 100LX CPU COMPARISON 217

2.7.4.4 Address mode prefix replacements

The following address mode prefixes have been replaced:

Instructions Description

ADDOQ o,Rs,ACR Replaces the quick immediate BDAP prefix.

ADDO.m [Rs],Rd,ACR

ADDO.m [Rs+],Rd,ACR Replaces the indirect BDAP prefix.

ADDI Rs.m,Rd,ACR Replaces the BIAP prefix.

Table 2.84:New ETRAX FS instructions

2.7.5 Exception handling

The interrupt and bus fault mechanisms have been unified to one single exception
mechanism. The only exception handled differently is NMI since this may occur at
any time, even in the very start of a normal exception service routine.

One single vector table, pointed out by EBP, is used for all exceptions. When an ex-
ception occurs, the flags in the CCS are automatically saved by shifting the CCS left.
Interrupts are automatically turned off and instructions that modify or read from the
special registers or the flags no longer temporarily inhibit interrupts. When returning
from an exception service routine the flags in the CCS should be restored by the RFE
instruction.

218 CHAPTER 2. CPU

Chapter 3

Cache

3.1 References

Reference Description

[MACROS] CRIS v32 support function register access macros,
http://developer.axis.com

[DEFS] CRIS v32 support function register constants and data types,
http://developer.axis.com

Table 3.1:References

3.2 Overview

A cache is a fast local memory connected between a CPU and main memory. Caches
are used to hold frequently used data close to the CPU in order to hide main memory
access time. Local data that can be found in a cache can be accessed in one cycle while
main memory access time is in the order of several tenths of CPU cycles.

The CPU uses two separate caches, one 16-kbyte instruction cache and one 16-kbyte
data cache. For more information about the CPU see the CRIS v32 documentation,
chapter2. Both caches have the same behavior and this description can be applied to
both the instruction and the data cache. The instruction cache is a read-only cache, so
sections discussing the CPU write behavior are not applicable to the instruction cache.

The cache is physically addressed. The CPU address is, therefore, always translated
by the MMU before being used in the cache. For more information about translating
virtual addresses into physical addresses see the MMU documentation, chapter7.

Each cache is connected to the CPU via a separate 256-bit local CPU bus that allows
read or write one single byte up to a maximum of 32 bytes per cycle. If the CPU tries
to access data that can not be found in a cache memory, the cache will halt the CPU and
start to fetch the data from main memory. This is done via a separate 256-bit shared
memory bus. When data is available, the CPU will resume the access.

The caches are designed to work in a shared memory system where several units have

219

http://developer.axis.com
http://developer.axis.com

220 CHAPTER 3. CACHE

access to main memory. Therefore, each cache might have local copies of portions
of the main memory that are shared between several units. When other units access
these shared portions, a cache coherence mechanism will automatically handle any
upcoming consistency problems and make sure that main memory and local copies in
any cache always are coherent. The cache coherence mechanism also applies between
the local instruction and data caches within one single CPU.

3.3 Functional description

3.3.1 Cache organization

The 16 kbytes of each cache are divided into 512 cache lines. The cache line size is 32
bytes, which is the quantity a cache works on against main memory. For each cache
line there is a corresponding entry in a local tag memory, indicating the address and
state of the data currently present in the cache line.

Each cache is a 2-way set associative memory meaning that the cache is divided into
two banks. Data from a specific memory address can only be placed into two alternative
locations in the cache, one in each bank. Each of the two banks are 8 kbytes large,
which means that the specific addresses ’a’ and ’a + n * 8 kbyte’ will have the same
two possible positions in the cache.

When the CPU writes to a cache, data is only written in the cache and not to main
memory. This is commonly known as a copy-back cache mechanism. The modified
data is not written to main memory until it is replaced by some other data, or there is a
request for the same data from another unit in the shared memory system.

3.3.2 Cache coherence

The cache coherence protocol is a mechanism for making sure that all accesses to
memory read or write the proper data in the presence of one or more caches. The pro-
tocol used for these caches is called MESI. This is an acronym for Modified, Exclusive,
Shared and Invalid and reflects the four states that each cache line might be in.

The states can be explained as:

Modified Valid-and-written-to-more-than-once-by-this-CPU

Exclusive Valid-and-not-present-in-any-other-caches

Shared Valid-and-never-written-to-by-any-CPU

Invalid Not-valid

The state transitions are automatically handled by each cache and are totally invisible
for the programmer. State transitions will normally not affect the performance, but
there are situations where sharing of data between several units in the shared memory
system may affect performance.

3.3. FUNCTIONAL DESCRIPTION 221

Only one cache in the system is allowed to have a specific cache line in the modified
state at the same time, which is assured by the MESI protocol itself. However, if
another unit requests the same cache line, the modified line must first be written to
main memory before the other unit can access the line. If this mechanism is triggered
too often this will seriously degrade performance.

3.3.3 Cache hits

A cache hit is when the CPU tries to access data that can be found in a cache. There is
normally no penalty for the CPU during read or write hits in a cache. Sequential reads
and writes will be pipelined to one access per cycle.

If the CPU tries to flush or read from a cache in either of the two cycles following
directly after a write to the same cache, the CPU will be stalled for two cycles caused
by internal pipelining of the writes in the cache.

A cache line that the CPU has never written to is commonly known as a clean cache
line. A clean cache line is marked as shared in the MESI protocol. In order to keep
all caches coherent a write to a shared line will cause a write-through operation and
update main memory as well. The write-through operation will assure that shared
(clean) copies of the same cache line in any other caches will get invalidated. The CPU
will be stalled until the write-through operation has finished. The cache line will then
enter the exclusive state and future writes to the same cache line will not be stalled.

A cache line that is present in one single cache and still coherent with main memory
is marked as exclusive. A write operation to an exclusive line will cause a state update
to modified in the cache to indicate that the cache line is no longer coherent with main
memory. Any request in either of the two cycles following a write to an exclusive cache
line will be stalled for two cycles caused by the internal cache line state update in the
tag memory.

3.3.4 Cache misses

A cache miss is when the CPU tries to access data that can not be found in a cache. On
a cache read miss or write miss, the CPU is stalled and the mechanism of replacing one
cache line is started. The cache has the possibility to replace a line in any of the two
banks. This selection is made by a Least Recently Used (LRU) algorithm.

If the cache line that is selected to be replaced is clean, the new cache line is fetched
immediately from main memory. If not, the current data present in the cache line is
first written to main memory before the new line is read into the cache.

3.3.5 Non-cached accesses

Accesses with address bit 31 set will bypass the cache and directly access main mem-
ory. There is of course a performance penalty for doing non-cached accesses. This is
caused by shared memory bus arbitration and slow main memory access time.

Care must be taken when doing non-cached accesses of data that are present in any
cache, or the cache and main memory might not be consistent anymore. Non-cached

222 CHAPTER 3. CACHE

accesses will not trigger the cache coherence mechanism so any data that has been
modified inside any cache in the system should never be referred to in a non-cached
manner. A non-cached read of modified data will cause the wrong value to be read
by the CPU while a non-cached write will cause the cache and main memory to be
inconsistent.

Therefore, data that is referred to in a non-cached manner must first be assured to be
nonexistent in all caches in order to avoid these kinds of inconsistency problems. This
can be done by special flush operations.

3.3.6 Conditional write operation

The cache supports conditional write operations to make sure that the CPU is able to do
atomic read-modify-write cycles to portions of main memory that are shared between
several units in the system.

A conditional write that results in a cache hit will succeed and result in a normal write
in the cache. A conditional write that causes a cache miss will be ignored and thus fail,
and the missing data will not be fetched from main memory.

A conditional write to an non-cached region, i.e., address bit 31 set, is always treated as
a hit and will thus never fail. Non-cached accesses will not trigger the cache coherence
mechanism and is therefore useless for atomic read-modify-write operations.

By using the conditional write operation, an atomic read-write operation in main mem-
ory can be achieved by the following pseudo-code sequence:

retry: read
modify
conditional write
retry if write failed

The first read operation assures that data is present in the local cache. After data has
been modified, it must be written by a conditional write. If any other unit has written
to the same data during the read-modify sequence, data will no longer be present in
the local cache. In this case, the following conditional write will fail and the whole
sequence must be restarted. If data is still in the local cache during the conditional
write, this means that no other unit has written to this data and the sequence is assured
to be atomic.

For a description of the conditional write mechanism in the CPU, see2.1.14.

3.3.7 Flush operations

In some cases it is desirable to make sure that certain data is not present in a local
cache. This can be done by two different types of flush operations, flush index and
flush tag, controlled by the CPU. Both flush operations can be used to set a specific
cache line to the invalid state.

3.3. FUNCTIONAL DESCRIPTION 223

3.3.7.1 Flush index

Flush index is used to unconditionally flush any line in one of the banks in the cache.
If the line is modified, data will be written to main memory before the line is flushed.
The address used during a flush index operation is divided into two parts, index and
bank. The rest of the address is unused.

address[12:5] - select which index in tag memory to flush

address[4] - select which bank to flush

Flush index can be used to unconditionally flush all cache lines. In order to flush all
cache lines, the CPU must loop through all possible indexes in both banks.

Flush index is also used to initialize the tag memory into a well defined state after
system reset with the cache disabled. In this mode the tag contents are ignored and any
modified data will not be written to main memory.

3.3.7.2 Flush tag

Flush tag is used to flush a certain cache line in the cache. The address used during
a flush tag operation is used to compare with the tag memory contents in order to
only flush the line if it exists in the cache. If the line is modified, data will be written
to main memory before the line is flushed. Address bit 31 is ignored during a flush
tag operation, and there is no difference between a cached and non-cached flush tag
operation. When the cache is disabled, the flush tag operation is ignored and will not
have any effect on the cache.

One case where the flush tag operation is useful is when the CPU has produced cached
modified data to be used in, for example, a DMA transfer with very strict latency
requirements. If the data is modified in the cache when the DMA is started, a lot of
coherence traffic will be generated in order to update main memory. In this case it
might be beneficial to flush the affected cache lines in advance in order to write the
modified data to main memory.

Another case where flush tag operations are useful is when parts of main memory are
updated by mechanisms other than by writes through the normal main memory system.
One example is that some types of flash memories are written by a separate serial
protocol. To avoid inconsistency problems after writes, the updated region should be
flushed from all caches.

3.3.7.3 Flushing other caches

If there are other caches connected to the same on-chip shared memory system these
might in some cases need to be flushed as well.

It is possible to force all other caches to write any modified data to main memory by
issuing a normal read operation on the specific address.

In order to make sure that no caches have any modified data, the normal read should be
followed by a flush tag operation in the local cache on the specific address.

224 CHAPTER 3. CACHE

3.3.8 Enable/disable the cache

The cache operation mode is controlled by the CPU support function registerrw gc cfg
as defined in25.9. General information about support function registers can be found
in the CPU documentation, chapter2. To access the registers, fields and register con-
stants from a C program, a set of macros and data types are defined in [MACROS] and
[DEFS].

After reset, the caches are disabled by default. In this mode all CPU accesses are
treated as non-cached accesses (irrespective of address bit 31). This is not visible for
normal program code in ETRAX FS. The internal boot ROM will initialize and enable
the caches before jumping to normal program code.

3.3.8.1 Initialization

Before a cache can be enabled, the tag memory must be initialized to a well defined
state. This is done by looping through all indexes in both banks by the flush index
operation while the cache is disabled. The internal boot ROM in ETRAX FS handles
this initialization before enabling the caches.

3.3.8.2 Disabling the cache

Care must be taken if a cache is to be disabled during normal operation. All cache lines
must then be flushed before the cache is disabled in order to assure that any cached
modified data will be consistent with main memory. The program that handles the
flushing and disabling of the cache must of course not modify any cached data itself.

3.4 Software examples

The functions fidxi(), fidxd(), ftagi() and ftagd() are used in the examples below to issue
flush index and flush tag operations to the instruction and data caches. In the CPU
this is done by issuing the FIDXI, FIDXD, FTAGI and FTAGD instructions. More
information about these instructions can be found in the CPU documentation, chapter
2.

3.4.1 Initialize instruction cache (while disabled)

This code shows the part of the internal boot ROM in ETRAX FS that is used for
initializing the instruction cache.

#define BANK_SIZE 8192
#define LINE_SIZE 32
void icache_init() {

int idx;
// Address bit 4 is used to select which bank to flush. The

3.4. SOFTWARE EXAMPLES 225

// loop variable is therefore increased by half of the cache
// line size in each round to flush all lines in both banks
for(idx = 0; idx < BANK_SIZE; idx += (LINE_SIZE / 2)) {

fidxi(idx);
}

}

3.4.2 Flush whole data cache

#define BANK_SIZE 8192
#define LINE_SIZE 32
void dcache_flush_all() {

int idx;
// Address bit 4 is used to select which bank to flush. The
// loop variable is therefore increased by half of the cache
// line size in each round to flush all lines in both banks
for(idx = 0; idx < BANK_SIZE; idx += (LINE_SIZE / 2)) {

fidxd(idx);
}

}

3.4.3 Flush specific address region in data cache

#define LINE_SIZE 32
void dcache_flush_region(unsigned from, unsigned to) {

unsigned a;
// Increase loop variable by cache line size to loop through
// all cache lines in the region.
for(a = from; a < to; a += LINE_SIZE) {

ftagd(a);
}

}

3.4.4 Flush specific address in data cache

void dcache_flush_addr(unsigned a) {
ftagd(a);

}

226 CHAPTER 3. CACHE

Chapter 4

Bus interface

4.1 References

Reference Description

[BOOTROM] Chapter6

[BIF REGS] Chapter25.4

[BIF MACROS] http://developer.axis.com

[EXTDMA REGS] Chapter25.5

[EXTDMA MACROS] http://developer.axis.com

[MEMARB] Chapter14

[SLAVE REGS] Chapter25.6

[SLAVE MACROS] http://developer.axis.com

[EXT REGS] Chapter25.7

[EXT MACROS] http://developer.axis.com

[STRMUX] Chapter10

[DMA] Chapter5

[PINMAP] Chapter16

Table 4.1:References

4.2 Overview

The bus interface implements the interface between on-chip functions and an external
memory bus. The bus interface can operate in two main modes:

1. master mode

2. slave mode

227

http://developer.axis.com
http://developer.axis.com
http://developer.axis.com
http://developer.axis.com

228 CHAPTER 4. BUS INTERFACE

4.2.1 Master mode

In master mode, the on-chip functions control the external memory bus via two differ-
ent methods: Through the central memory arbiter, and through the internal DMA via
the external DMA block.

In master mode the bus interface controls external memory modules. The supported
memory modules are SRAM types (SRAM/flash/peripheral units), SDRAM and NAND
flashes.

4.2.2 Slave mode

In slave mode, the on-chip functions are controlled from the external bus. In this mode,
the chip looks like an I/O device to the external bus master. The internal functions are
controlled via two different methods: Through the central memory arbiter, and through
the internal DMA via the external DMA block.

4.3 Functional description

4.3.1 General

The bus interface has a 32-bit data bus, a 25-bit address bus, and 12 internally decoded
chip select outputs. The bus interface also supports 8 Synchronous DRAM (SDRAM)
banks without external logic.

The bus interface works with bursts of data. These bursts can be 1-8 bus cycles with
32-bit data bus width, and 1-16 bus cycles with 16-bit data bus width.

The general functionality of the bus interface is controlled by a set of mode registers,
see25.4. Register, field and register constant names in sections4.3.3- 4.3.11refer to
this set of registers. The Bus arbitration, external DMA and slave mode operation have
separate sets of mode registers, described in the respective sections.

4.3.2 Data bus

The data bus shown in figure4.1 is 32 bits wide, but also supports 16-bit wide mem-
ories. The data bus is organized with the least significant byte at the lowest address
(”little endian”).

4.3.3 Address and chip selects

The external address bus consists of 25 pins,a25- a1. The internal address bits 30 - 26
are decoded in the bus interface to generate the 12 different memory chip select outputs
and the selection of SDRAM banks.

Address bit 31 is ignored by the bus interface since it is used to select whether the
cache should be used or bypassed by CPU accesses.

4.3. FUNCTIONAL DESCRIPTION 229

32-bit Mode

16-bit Mode

MSB

31 24 23 16 8 015 7

LSB

Data bit:

Address: A + 3 A + 2 A + 1 A

Data bit: 8 015 7

A + 3

A + 1 A

A + 2

LSB

MSB

Figure 4.1:Data bus width

The names of the different chip selects arecse0n, cse1n, csr0 n, csr1 n, csp0n,
csp1n, csp2n, csp3n, csp4n, csp5n, csp6n andcssn.

A memory map is given in the table below.

Address range MByte Name Usage

00000000-03FFFFFF 64 cse0n EPROM/flashPROM select 0.

04000000-07FFFFFF 64 cse1n EPROM/flashPROM select 1.

08000000-0BFFFFFF 64 csr0 n SRAM select 0.

0C000000-0FFFFFFF 64 csr1 n SRAM select 1.

10000000-13FFFFFF 64 csp0n Peripheral select 0.

14000000-17FFFFFF 64 csp1n Peripheral select 1.

18000000-1BFFFFFF 64 csp2n Peripheral select 2.

1C000000-1FFFFFFF 64 csp3n Peripheral select 3.

20000000-23FFFFFF 64 csp4n Peripheral select 4.

24000000-27FFFFFF 64 csp5n Peripheral select 5.

28000000-2BFFFFFF 64 csp6n Peripheral select 6.

2C000000-2FFFFFFF 64 cssn Slave chip select.

30000000-3FFFFFFF 256 - Not used by the bus interface.1

40000000-7FFFFFFF 1024 - SDRAM interface select.

80000000-AFFFFFFF 768 - 00000000-2FFFFFFF but non-cached.

B0000000-BFFFFFFF 256 - Not used by the bus interface.1

C0000000-FFFFFFFF 1024 - 40000000-7FFFFFFF but non-cached.

Table 4.2:Memory map

1 30000000-3FFFFFFF and B0000000-BFFFFFFF are used for mode registers and on-chip memory.
Accesses to these will not be routed through the bus interface.

230 CHAPTER 4. BUS INTERFACE

The memory banks are separated in five different groups:

Group Chip selects

Group 1 cse0n, cse1n

Group 2 csr0 n, csr1 n

Group 3 csp0n, csp1n, csp2n, csp3n

Group 4 csp4n, csp5n, csp6n, cssn

Group 5 SDRAM banks

Table 4.3:Memory bank groups

Configuration of wait states, bus width etc. can be made separately for each group, but
all banks in the same group have the same configurations.

4.3.3.1 Gated chip select

In chip select group 3 and group 4 the individual chip select signalscsp0n - csp6n
can be gated internally with either thewr0 n or therd n signal. This is controlled in
the registersrw grp3 cfg andrw grp4 cfg.

In figure4.2, cspxn can be any of the signalscsp0n - csp6n.

cspx_n

wr0_n

Signals on pins after gated chip select (with wr0_n):

cspx_n

wr0_n

Internal signals:

Figure 4.2:Gated chip select

4.3.4 Internal priority in master mode

In master mode, the bus interface arbitrates between normal memory cycles, external
DMA cycles and SDRAM refresh cycles.

SDRAM refresh cycles have the highest priority. External DMA (as a whole) and nor-
mal memory accesses have the same priority. If both are requested, they will alternate.

External DMA will break up SRAM/flash/peripheral bursts, but it will not break up
SDRAM bursts. If the external DMA is configured for burst accesses, its bursts will
not be broken up by the normal memory cycles or SDRAM refresh cycles.

4.3. FUNCTIONAL DESCRIPTION 231

4.3.5 Bus width

In master mode, the bus width of each group of memory banks, see table4.3, can be
configured to either a 32-bit or 16-bit bus width. The bus width is controlled in registers
rw grp1 cfg, rw grp2 cfg, rw grp3 cfg andrw grp4 cfg.

The bus width of group 1 is initialized from the boot ROM at system reset. This is
described in6.

The external DMA bus width is configurable for 8, 16 or 32 bits. This is true for both
master and slave mode.

In non-DMA slave mode, the bus width is always 32 bits.

4.3.6 Bus states

The SRAM/flash and peripheral interface bus sequence is divided into different bus
states. The bus states Ta, Td and Tz are always present in a burst. The other bus states
can be set with wait states inrw grp1 cfg, rw grp2 cfg, rw grp3 cfg andrw grp4 cfg.
The wait states are described in sections4.3.6.1to 4.3.6.6. The bus states are listed
below:

Ta Activate state. Therd n andwr0 n - wr3 n signals are asserted in this state.

Td Data state. Data input is sampled at the end of this state.

Tz Data bus turn-off state. This state is inserted between bursts, to allow the bus inter-
face and external units to turn off their outputs before the data bus is driven by
another source. This state may overlap with a Taw state, a Tew state or a Tewb
state.

Tew Early wait state. This bus state is inserted before Ta and may overlap with a Tz
state or a Tzw state.

T lw Late wait state. This bus state is inserted between Ta and Td.

Tzw Turn-off wait state. This bus state is inserted after Td. Tzw may overlap with a
Taw state, a Tew state or a Tewb state.

Tdw Data setup wait state. The Tdw state holds data valid before Ta. This bus state is
inserted between Tew and Ta or before Ta if no Tew is present.

Taw Address recovery wait state. The Taw state holds the address valid after the Td
state. This bus state is inserted after Td and may overlap Tzw and Tz but not
Tew or Tewb.

Tewb Early wait state burst. This bus state is inserted before Tew in the first data cycle
in a burst or before Ta in the first data cycle in a burst if no Tew is present. Tewb
may overlap with Tz state or Tzw state.

In the figures below,cs n denotes any of the chip selectscse0n, cse1n, csr0 n,
csr1 n, csp0n - csp6n or cssn, andwr n denotes any of the write signalswr0 n
- wr3 n.

Diagram4.3 is an example of a write cycle showing the different bus states.

232 CHAPTER 4. BUS INTERFACE

cs_n

addr

rd_n

wr0_n

data

Tew Tdw Ta Tlw Td Tzw
Taw

Tz

10 ns

Figure 4.3:Write cycle

4.3.6.1 Early wait state (ew)

The early wait state is inserted before the activate state. The time added with early wait
state is ew * 10 ns. The range for ew is 0-7.

4.3.6.2 Late wait state (lw)

The late wait state is inserted between the activate state and data state. The time added
with late wait state is lw * 10 ns. The range for lw is 0-63.

4.3.6.3 Turn-off wait state (zw)

The turn-off wait state is inserted after the data state. The time added with turn-off wait
state is zw * 10 ns. The range for zw is 0-7.

4.3.6.4 Address recovery wait state (aw)

The address recovery wait state is inserted after the data state. The time added with
address recovery wait state is aw * 10 ns. The range for aw is 0-3.

4.3.6.5 Data setup wait state (dw)

The data setup wait state is inserted between the early wait state and and the activate
state or before the activate state if no early wait state is present. The time added with
data setup wait state is dw * 10 ns. The range for dw is 0-3.

4.3. FUNCTIONAL DESCRIPTION 233

4.3.6.6 Early wait state burst (ewb)

The early wait state burst is inserted before the first early wait state in the first data
cycle in a burst or before the first activate state in the first data cycle in a burst if no
early wait state is present. The time added with early wait state burst is ewb * 10 ns.
The range for ewb is 0-3.

4.3.6.7 External wait input

The externalwait n pin can be used by external devices to insert extra late wait states.
Thewait n pin is sampled 30 ns before the end of the bus cycle. It can only be used
if ew+lw >= 3. The bus interface adds late wait states untilwait n is deasserted. See
figure4.4below.

Bus State Tew Ta Tlw Tlw Tlw Td Tz

cs_n

rd_n

data

wait_n

wait_n
sampled
low

(note)

Note: Added late wait state due to wait_n asserted.

wait_n
sampled
high

Figure 4.4:External wait input example

4.3.7 SRAM/Flash/peripheral timing

The bus cycles for SRAM/Flash/peripheral are controlled with wait states described in
4.3.6. See the timing diagram4.5for a read burst with and without early wait states:

cs_n

addr

rd_n

din

Tew Ta Td Tew Ta Td Tew Ta Td Tz Ta Td Ta Td Ta Td Tz

(a) Burst with one early wait state.
(b) Turn-off cycle.
(c) Burst with zero early wait state.

a b c b

Figure 4.5:Read burst cycle

234 CHAPTER 4. BUS INTERFACE

See the timing diagram4.6for a write burst with and without early wait states.

cs_n

addr

wr0_n
- wr3_n

dout

Tew Ta Td Tew Ta Td Tew Ta Td Tz Ta Td Ta Td Ta Td Tz

(a) Burst with one early wait state.
(b) Turn-off cycle.
(c) Burst with zero early wait state.

a b c b

Figure 4.6:Write burst cycle

4.3.8 Read and write modes

The read and write modes are used for units on the SRAM/flash and peripheral inter-
faces. The modes are controlled in registerrw grp1 cfg, rw grp2 cfg, rw grp3 cfg and
rw grp4 cfg.

4.3.8.1 Common write enable and bytewise write enable modes

The SRAM/flash/peripheral interface operates in two different modes: common write
enable mode (cwe) and bytewise write enable mode (bwe).

Bytewise write enable uses four write enable signals in 32-bit mode and two write
enable signals in 16-bit mode. This is the normal mode and the external pins are named
after this mode.

Common write enable uses one common write enable (cwe n) signal and four byte
enable signals (be0 n - be3 n) in 32-bit mode and two byte enable signals (be0 n -
be1 n) in 16-bit mode.

In common write enable mode, the byte enable signals and common write enable signal
are mapped to the output pins according to the table below. The first column lists the
pin name, the second column shows the signal to pin mapping for 32-bit mode, and the
third column shows the mapping for 16-bit mode.

Pin name (32-bit mode) cwe (16-bit mode) cwe

wr0 n be0 n be0 n

wr1 n be1 n be1 n

wr2 n be2 n not used

wr3 n cwe n (common
write enable)

cwe n (common
write enable)

a1 be3 n a1

rd n rd n rd n

Table 4.4:Signal to pin mapping in common write enable mode

4.3. FUNCTIONAL DESCRIPTION 235

The signals are described below.

rd n Read strobe, common to all four bytes of the data bus. This signal is not active
during SDRAM access.

wr0 n-wr3 n Write strobes, one for each byte in the data bus.

be0 n-be3 n Byte enable strobes, one for each byte in the data bus.

cwe n Common write enable strobe, common to all four bytes of the data bus.

a1 Address bit 1, not used as address in 32-bit mode.

be0 n - be3 n have the same timing as the address signals.cwe n has the same timing
as thewr0 n - wr3 n signals.

4.3.8.2 Normal and extended write modes

In normal mode thewr0 n - wr3 n or cwe n signals go high 5 ns before the end of the
bus cycle. If set to extended write mode thewr0 n - wr3 n or cwe n signals go high at
the end of the bus cycle.

4.3.8.3 Normal and early read complete modes

In normal mode the shortest read pulse width is 20 ns. In early read complete mode the
rd n signal goes high one clock cycle before the end of the read cycle. The shortest
read pulse width in early read complete mode is 10 ns.

See figure4.7 for an example of a read cycle with early read complete, and no wait
states.

cs_n

addr

rd_n

data

10 ns 10 ns

Figure 4.7:Early read complete

4.3.9 NAND flash

A NAND flash can be connected to the bus interface with its ren and wen signals
connected to any two of the chip select signalscsp0n to csp6n. The other control
signals to NAND flash are connected to general I/O pins.

236 CHAPTER 4. BUS INTERFACE

Figure4.8below, is example of a NAND flash connected to the bus interface.

Bus Interface

d
csp0_n

(*) gio

csp1_n

gio
gio
gio
gio
gio

NAND - flash

i/o
re_n

ce_n

we_n

ale
cle
se_n (**)
wp_n (**)
ry/by_n

*)
**)

General I/O
Optional

Figure 4.8:NAND flash to bus interface connection

The signals connected to general I/O are controlled via software. The read/write is con-
trolled via reading/writing to the different memory areas associated with the respective
chip select signals.

· Example: READ

10000000-13FFFFFF 64 csp0_n Peripheral select 0 -> READ
14000000-17FFFFFF 64 csp1_n Peripheral select 1 -> WRITE

1. ce n -> low

2. cle -> high

3. read data CMD (write to 0x14000000)

4. cle -> low

5. ale -> high

6. write ADDR (3 writes to 0x14000000)

7. ale -> low

8. wait by n

9. read data (0x10000000)

10. ce n -> high

· Example: WRITE

10000000-13FFFFFF 64 csp0_n Peripheral select 0 -> READ
14000000-17FFFFFF 64 csp1_n Peripheral select 1 -> WRITE

1. ce n -> low

2. cle -> high

4.3. FUNCTIONAL DESCRIPTION 237

3. input data CMD (write to 0x14000000)

4. cle -> low

5. ale -> high

6. write ADDR (3 writes to 0x14000000)

7. ale -> low

8. wait by n

9. write data (0x14000000)

10. cle -> high

11. page program CMD (write to 0x14000000)

12. cle -> low

13. ce n -> high

4.3.10 SDRAM interface

The SDRAM interface is configured with three registersrw sdramcfg grp0, rw sdramcfg grp1
andrw sdramtiming. Commands to the SDRAM memory modules during initializa-
tion is controlled byrw sdramcmd.

The SDRAM interface clock frequency is 100 MHz.

4.3.10.1 Connecting the SDRAM

The SDRAM interface signals are mapped on the following bus interface pins.

Bus interface pins SDRAM signals

a1 - a16 row, col address 16-bit mode

a2 - a16 row, col address 32-bit mode

a17 ba0 bank address

a18 ba1 bank address

a19- a22 dqm0 - dqm3

a23 we n

a24 cas n

a25 ras n

d0 - d31 d0 - d31

csd0n - csd1n csd0 n - csd1 n

wr0 n dqm4 (wide module mode)

wr1 n dqm5 (wide module mode)

wr2 n dqm6 (wide module mode)

a1 dqm7 (wide module mode)

Table 4.5:SDRAM interface signal to bus interface pin mapping

These examples use 2x16-bit SDRAMs. There is no difference if 8x4-bit, 4x8-bit or
1x32-bit is used.

The SDRAM banks are combined into two groups where each group is controlled by a

238 CHAPTER 4. BUS INTERFACE

separate chip select signal. See figure4.9.

dqm0
d0-d7

Group 0
csd0_n

Group 1
csd1_n

dqm1
d8-d15

dqm2
d16-d23

dqm3
d24-d31

D3D1

D2D0

Figure 4.9:2 rows x 16-bit SDRAMs

When using 64-bit wide SDRAM modules, one chip select is assigned to each group
and controls all 64-bits. The eight dqm signals are used to select the different bytes
within the word. Upper and lower 32 bits are tied together. In other words, bit 0 and
bit 32 (bit 1 and bit 33, bit 2 and bit 34, etc.) are tied together, and one at a time they
drive the data bus. See figure4.10.

dqm0
d0-d7

csd0_n csd1_n

dqm1
d8-d15

dqm2
d16-d23

dqm3
d24-d31

D3D1

D2D0

D5

D4

D7

D6

dqm4

dqm5

dqm6

dqm7

Figure 4.10:2 rows 64-bit wide modules with 16-bit SDRAMs

4.3.10.1.1 Address shift in 16-bit mode

It is possible to shift the address bits up one step in 16-bit mode. In 16-bit shifted
address mode the internala16 address bit is not used. 16-bit mode is described in
section4.3.10.3.1.

Internal address signal External pin in normal
16-bit mode

External pin in shifted
16-bit mode

a1 a1 a2

a2 a2 a3

...

a15 a15 a16

a16 a16 -

Table 4.6:Address shift in 16-bit mode

4.3. FUNCTIONAL DESCRIPTION 239

4.3.10.2 SDRAM timing parameters

SDRAM timing parameters are set in the registerrw sdramtiming. These timing pa-
rameters are common for both SDRAM groups.

The SDRAM timing parameters are measured in SDRAM bus cycles where one cycle
is 10 ns.

The following configurations for SDRAM timing parameters are available for the SDRAM
interface.

Refresh interval (ref) The selectable interval for SDRAM refresh is 15620 ns, 7800
ns and disable.

Row cycle time (rc) The refresh cycle time is rc + 6.

RAS precharge delay (rp) The time between precharging a bank and activating a row
in the same bank. Number of delay cycles will be rp cycles.

RAS to CAS delay (rcd) After a row in a specific bank is activated, read and write
operations can only be initiated on this activated bank after the minimum rcd
cycles has elapsed. Number of delay cycles will be rcd cycles.

CAS latency (cl) The time from a read command until the data arrives. Number of
latency cycles will be cl cycles.

Power save select (ps)Enter power save mode. SDRAM banks will enter power save
mode immediately after each auto refresh cycle, and will stay in the power save
mode until an SDRAM access or a new auto refresh cycle occurs.

Power down exit delay (pde)When the CKE signal goes high after a power down
there is a penalty of one or two clock cycles before a new command can be
issued. Number of delay cycles will be pde + 1.

240 CHAPTER 4. BUS INTERFACE

4.3.10.3 SDRAM configuration

This configuration of RAS/CAS address size, wide module mode and bus width for the
SDRAM interface is controlled via the registersrw sdramcfg grp0andrw sdramcfg grp1,
one for each group.

SDRAM banks are combined into two groups where each group can use either two-
bank or four-bank chips. The following configurations are common for all banks:

Width Width selects either a 16-bit or 32-bit SDRAM bus width.

Group Select Mode The group select mode determines how to select a group of SDRAM
banks. When using only one group, the group select mode value must be set to
either 0 or 1.

Row Address Shift During activate bank commands, the row portion and the bank
select bits of the address are shifted down to the lower address outputs to which
the SDRAM address pins are connected.

Column Address RangeThe column address range determines how many address
bits that are used in the column address.

Bank Type Mode Bank type mode selects either the two-bank or four-bank mode.

Bank Decode ModeThe bank decode mode determines which address bit that selects
between bank 0 and 1 in a group. In the four-bank mode, bank 2 and 3 will be
selected by the next higher order address bit.

Wide Module Mode This mode supports 64-bit wide SDRAM modules where all 64-
bits are controlled by the same chip select signal. dqm0 to dqm7 are used to
control the individual bytes within both groups of SDRAM banks.

4.3. FUNCTIONAL DESCRIPTION 241

· Example: Address output in 32-bit mode during RAS and CAS cycles (Figure
4.11.

In this example the setting of the fields inrw sdramcfg grp0are:

Field Value

banksel bit22

ca 10

type bank4

bw bw32

sh 2

Table 4.7:Example values

Internal
Address

bank_select

23 22 21 11 10 2 1 0

row address column address

12 2 1 0

row addressExternal Row
Address

13

12 2 1 0

column addressExternal Column
Address

13

bank_select

11 10

AP

Note:

AP = Auto Precharge

A12 is used for A10/AP during column address cycles.

20 19 18 17 16 15 14 13 12

18 17 16

bank_select

18 17 16

Figure 4.11:SDRAM address output example

4.3.10.3.1 16-bit mode

In 16-bit mode the row address is shifted down to address pina1 and the column
address start ata1. The bank address signalsba0 andba1 are still on address pinsa17
anda18.

Auto precharge (A10/AP) bit is on address pina11 in column address cycles.

In 16-bit mode it is possible to shift the address pins up one bit as described in section
4.3.10.1.1. If this is done the Auto precharge (A10/AP) bit is on address pina12 in
column address cycles.

The 16-bit mode is controlled inrw sdramcfg grp0andrw sdramcfg grp1. Thebw
field selects 16-bit or 32-bit bus width, and thesh16field selects normal or shifted
16-bit mode.

4.3.10.4 SDRAM Power up and initialization commands

SDRAM commands are issued through the registerrw sdramcmd. The SDRAM com-
mands are:

242 CHAPTER 4. BUS INTERFACE

· NOP (nop)

· Precharge All (pre)

· Auto Refresh (ref)

· Mode Register Set (mrs)

These commands are used during SDRAM power up and initialization.

4.3.10.5 Power up and initialization

The SDRAM interface is disabled after reset. It is started by the first write to the
rw sdramtiming register.

The SDRAM memories have an internal configuration register that must be written to
with the Mode Register Set command during initialization.

The explicit SDRAM commands should only be used during power up and initializa-
tion of the SDRAM banks. A typical SDRAM initialization sequence is:

1. Configure the banks by writing torw sdramcfg grp0andrw sdramcfg grp1.

2. Configure the SDRAM timing parameters and enable the master clock by writing
to rw sdramtiming. Set theref to off.

3. Issue NOP command by writing to thecmdfield in rw sdramcmd.

4. Wait for 200µs.

5. Issue Precharge All command by writing to thecmdfield in rw sdramcmd.

6. Wait 80ns.

7. Issue Auto Refresh command by writing to thecmdfield in rw sdramcmd.

8. Wait 80ns. Repeat step 7-8 seven more times, totalling eight times.

9. Issue Mode Register Set command by writing to thecmdandmrs datafields in
rw sdramcmd. The burst length shall be set to one.

10. Wait 80ns.

11. Configure the refresh time parameterref field in rw sdramtiming.

4.3.10.6 SDRAM self refresh mode

The SDRAM can be entered into self refresh mode to save power when the system is
idle. While the SDRAM is in self refresh mode, accesses to the SDRAM area are not
allowed.

To enter self refresh mode,slf should be written to thecmdfield in registerrw sdramcmd.
The SDRAM interface will then deassert thesdckeoutput and issue the self refresh
command to the SDRAM. To exit the self refresh mode,slf should again be written to
cmd in registerrw sdramcmd. This will assert thesdcke, and the SDRAM resumes
normal operation. See figure4.12.

4.3. FUNCTIONAL DESCRIPTION 243

sdclk

cmd

sdcke

enter self
refresh mode

exit self
refresh mode

SLF NOP

Figure 4.12:SDRAM self refresh mode

4.3.10.7 PLL bypass mode

When the chip PLL is disabled the SDRAM controller must still generate refresh cycles
often enough to ensure that the 15.625µs or 7800 ns refresh interval is met. This is
controlled by settingcpdin rw sdramtiming to yeswhen the PLL is bypassed. When
turning the PLL on again, the missed refresh cycles during the PLL lock time can be
compensated by keeping thecpd field set toyesfor at least 25µs after the PLL lock
time has expired.

If the software does not need to access the SDRAM during PLL bypass mode, an
alternative is to use the self refresh mode to maintain data retention.

4.3.11 SDRAM timing

In the diagrams4.13, 4.14, 4.15and4.16below, cmd denotes the signalsras n, cas n
andsdwe n, which are output on pinsa25to a23.

cmd

sdclk

addr

data

dqm

NOPNOP NOP

col

d0

CL = 2

READ

Figure 4.13:Read burst, CAS latency 2

244 CHAPTER 4. BUS INTERFACE

cmd

sdclk

addr

data

dqm

tRCD

NOP NOP

CL = 2

col

ACT

row

NOP READ NOP

d0

Figure 4.14:Activating a bank and a read to that bank, CAS latency 2

Trcd

sdclk

cmd

bank

data

dqm

d1

CL = 3

addr

CL + BL - 2

Trc

NOP NOP PRE NOP

0

d0 d1

ACT

0

row

ACT READ READ

0 0

row column

0

col + 1

Figure 4.15:Activating a bank, two reads to that bank then precharge that bank, CAS latency 3

cmd

sdclk

addr

data

dqm

WRITE NOPNOP

d0

col

Figure 4.16:SDRAM write

4.3.12 Bus arbitration interface

4.3.12.1 Overview

The bus interface implements a bus arbitration protocol that allows several different
units to arbitrate and gain access to one shared external bus.

The figure4.17below shows an example system with four units sharing the bus:

A unit in this system may be an instance of the bus interface or any other chip or
sub-system that participates in the bus arbitration.

4.3. FUNCTIONAL DESCRIPTION 245

brin brout

Unit 1

bg

brin brout

Unit 2

bg

brin brout

Unit 3

bg

brin brout

Unit 4

bg

Memory and I/O
gnd

+ + + +

Figure 4.17:Four units sharing the same system bus

4.3.12.2 Bus arbitration interface mode registers

The mode registers for the bus arbitration and the slave mode interface are combined
together and specified in25.6.

There are six mode registers for the bus arbitration interface:

1. rw arb cfg: Configuration register.

2. r arb stat: Status register.

3. rw intr mask: Interrupt mask register.

4. rw ack intr: Interrupt acknowledge register.

5. r intr: Interrupt register.

6. r maskedintr: Masked interrupt register.

4.3.12.3 Arbitration signals

The bus interface has three three dedicated signals for the bus arbitration. These are:

1. brin : Bus request input.

2. brout : Bus request output.

3. bg: Bus grant input/output. This signal is driven by the current bus master. The
bg signal will need a pull-up to keep it stable during the hand-over between
different bus masters.

In a typical application, thebrout pin of one chip is connected to thebrin pin of the
next chip circularly, and allbg pins are connected together. This will result in a round-
robin priority scheme. Other priority schemes can be implemented if the arbitration
pins are instead connected to an external arbiter.

246 CHAPTER 4. BUS INTERFACE

The default polarity of the bus arbitration signals is active high, but the polarity of each
signal can be configured separately through therw arb cfg register. It is also possible
to control thebrout andbg outputs directly through therw arb cfg register, and to read
back the value on all three pins via ther arb statregister.

4.3.12.4 Arbitration protocol

This section specifies the arbitration protocol supported by the bus interface. The re-
quirements in this section should be fulfilled by all units that participate in the bus
arbitration.

4.3.12.4.1 Bus request

A slave asserts itsbrout when it wants to get access to the bus, or when it sees its
brin active. Thus, a bus request anywhere in the chain will ripple all the way down
to the current bus master. The slave must not activate itsbrout because of an internal
bus request after it has detectedbg active, but must always forward incoming requests
from brin to brout .

4.3.12.4.2 Bus grant

The current bus master keeps itsbrout inactive and keepsbg inactive as long as it holds
the bus. When the master releases the bus, it assertsbg for 3-20 ns and then sets it to
high-z. Now the slave that has itsbrin inactive and itsbrout active takes over the bus
and becomes the new bus master.

4.3.12.4.3 Start-up

At system reset, the units participating in the bus arbitration have to start up in a well
defined order. During reset, all units put theirbrout andbg signals in high-z. One unit,
the initial bus master, has a pull-down on itsbrin . The other units, the initial slaves,
have pull-up resistors on theirbrin signals.

After reset, the initial bus master drives itsbrout andbg low. The bus release mecha-
nisms should initially be disabled in all units, and have to be enabled by software. Once
a unit has acquired the bus it will not release it unless the software has changed the bus
release mode. This makes it possible to start the units one by one in a controlled way.

To decide whether to be the initial master or an initial slave, the unit has to look at both
brin andbg. It becomes the initial master only if it seesbrin low andbg high when
reset is released.

4.3.12.4.4 Bus release timing

This timing specification relates to a master that releases the bus and becomes a slave.
See figure4.18.

4.3. FUNCTIONAL DESCRIPTION 247

brin

bg (out)

brout

Bus signals

t1 t2

t3

t4

Figure 4.18:Bus release timing

Symbol Explanation Min Max Unit

t1 brin to bg delay. 0 - ns

t2 bg turn off time. 3 20 ns

t3 Bus turn off time frombg. - 20 ns

t4 brout inactive hold time frombg. 83 - ns

Table 4.8:Bus release timing

4.3.12.4.5 Bus acquirement timing

This timing specification relates to a slave that acquires the bus and becomes the new
master. See figure4.19.

brin

bg (out)

brout

Bus signals

t3

t2

t7

bg (in)

t4
t1

t5

t6

Figure 4.19:Bus acquirement timing

248 CHAPTER 4. BUS INTERFACE

Symbol Explanation Min Max Unit

t1 brout valid frombg (latest time a
slave may assertbrout because of
its own bus request. Forwarding
of requests onbrin may occur
later).

- 30 ns

t2 brin valid from bg (earliest time a
slave may samplebrin to become
the new master).

50-c2 - ns

t3 brin hold time frombg (latest
time a slave may sample brin to
become the new master).

- 80 ns

t4 brout hold time frombg. 80 120 ns

t5 bg enable time frombg. 50-c2 100 ns

t6 Bus enable frombg. 50-c2 - ns

t7 brin valid frombrout inactive
(earliest time the new master is
allowed to take notice of a new
bus request).

- 50 ns

Table 4.9:Bus acquirement timing

4.3.12.4.6 Request forward timing

Request forward timing, figure4.20, relates to a slave that forwards a bus request from
another slave.

brin

brout

t1t1

Figure 4.20:Bus request forward timing

Symbol Explanation Min Max Unit

t1 brin to brout delay. - 10 ns

Table 4.10:Request forward timing

2The parameter c is 0 by default,but the protocol allows it to be configurable between 0 and 30 ns. This
makes it possible to optimize the bus hand-over timing depending on the real delays in the system. In a
system with only two units, the slave will always see a valid (inactive)brin . Therefore, with only two units
it works with c = 30 ns. In the bus interface, this can be configured by thesettletime field in therw arb cfg
register, see also4.3.12.6below.

4.3. FUNCTIONAL DESCRIPTION 249

4.3.12.4.7 Initial master start up timing

See figure4.21.

Internal reset

brout

t3

t1

bg

t2

Note: Internal reset is shown active high.

Figure 4.21:Initial master start up timing

Symbol Explanation Min Max Unit

t1 Internal reset tobrout driven.3 0 - ns

t2 Internal reset tobg low 0 - ns

t3 bg low to brout low.4 30 - ns

Table 4.11:Initial master start up timing

4.3.12.5 Bus release modes

The bus release behavior can be configured in thereleasefield of therw arb cfg reg-
ister. The following alternatives are available:

· Don’t release the bus (default after reset)

· Release the bus at the end of the current bus burst

· Release the bus when the bus interface becomes idle

4.3.12.6 Arbitration settle time and bus acquirement time

The arbitration protocol specified in4.3.12.4requires a minimum time from when the
old master releases the bus until the new master acquires the bus, to allow the arbitration
to settle.

The maximum allowed arbitration settle time in the system, and thus also the minimum
time before a new master may acquire the bus, can be configured in thesettletimefield
of therw arb cfg register. The configurable range is 20 - 50 ns. A shorter settle time
will give faster switch over between bus masters, but will on the other hand limit the

3 t1 is allowed to be longer than t2 + t3. In that case,brout will go directly from high-z to 0.
4 This minimum time is there to ensure that no unit falsely identifies itself as the initial master because

of different internal reset timing in the different units.

250 CHAPTER 4. BUS INTERFACE

number of units that can participate in the bus arbitration. The initial value for the settle
time is 50 ns.

The actual bus acquirement time will be in the range of 0-20 ns longer than the con-
figured settle time, depending on the relative clock skew between the old and the new
master.

4.3.12.7 Bus acquirement modes

There are two modes for when the bus interface tries to acquire the bus. The default
mode is to only try to acquire the bus if there is a pending memory access to be per-
formed.

The interface can be configured to arbitrate for the bus even if there is no memory
access pending. This mode can be useful e.g. in systems where timing critical appli-
cations run from the internal RAM and the external bus may be occupied by another
master for a long time.

The bus acquirement mode is configured in theacquirefield of therw arb cfg register.

4.3.12.8 SDRAM control in slave mode

The bus interface can be configured to either switch over SDRAM control between bus
masters, or to maintain the control of the SDRAM while in slave mode. In the latter
case, the slave will continue to generate the SDRAM clock during slave mode, and
drive other SDRAM specific signals to their inactive state. For details on the different
signals, see4.4.1.

4.3.12.9 Bus release and acquirement detection

The modefield in r arb stat indicates whether the bus interface is in master or slave
mode.

The bus arbitration also generates thebus releaseand busacquireinterrupts. The
bus releaseinterrupt is generated whenever the bus is released to another master, and
thebusacquireinterrupt is generated when the bus is re-acquired.

4.3.13 External DMA

4.3.13.1 General

The external DMA operates in a so-called ”pseudo DMA” fashion. This means that the
memory accesses are separated from the I/O accesses of a DMA transfer, and the data
is temporarily stored in the DMA FIFOs. There are two input channels and two output
channels. Each external DMA channel is connected to an internal DMA channel. The
relation between external and internal DMA channel numbers is described in10.

The external DMA channels are:

4.3. FUNCTIONAL DESCRIPTION 251

ext dma0 Output channel

ext dma1 Input channel

ext dma2 Output channel

ext dma3 Input channel

4.3.13.2 External DMA bus width

The external DMA can operate with a bus width of 8, 16 or 32 bits. With 8-bit and
16-bit bus width, the least significant bits of the data bus are used.

With common write enable mode and 32-bit external DMA transfers in master mode,
the group of memory banks used by the DMA cycles must be configured for 32-bit bus
width. The configured bus width of the used memory bank group does not matter for
8-bit or 16-bit external DMA transfers, or when bytewise write enable mode is used.

4.3.13.3 External DMA burst length

Each external DMA channel can be individually configured for a bus burst length of
one or eight bus cycles.

4.3.13.4 External DMA handshake signals

The bus interface has eight handshake signals that are shared between the external
DMA and the slave mode interface. The signals can be configured to different functions
depending on whether the chip is in master or slave mode.

When the pins are controlled by the external DMA, each pin can be configured as DMA
request, DMA acknowledge, terminal count input or terminal count output. Each pin
can be configured to any of the functions for any of the channels, see25.5. For detailed
timing of the signals refer to section4.4.3.3.

dreq DMA request input. Each channel can be configured to take its DMA request
from any of the eight handshake signals, or to take it from the configuration
mode register for the channel. The polarity of thedreq can be configured as
well. Whendreq is active, the associated external DMA channel arbitrates for
the external bus. The channel will continue to issue new bus bursts as long as
dreq is active. The external unit can pause the DMA transfer by settingdreq
inactive.

dack (master mode only) DMA acknowledge output. Thedack output is activated at
the beginning of the external DMA bus burst, and deactivated at the end of the
burst. The polarity of thedack can be configured to active high or active low.
DMA acknowledge may not be needed in all applications, since a chip select
output can be used instead.

tc in Terminal count input. If enabled, an active signal ontc in causes the associated
external DMA channel to stop. If the channel is in continuous transfer mode,

252 CHAPTER 4. BUS INTERFACE

see section4.3.13.8below,tc in will not stop the channel, but will generate an
interrupt, and will result in end of packet in an input channel. The polarity of the
tc in can be configured to active high or active low.

An inactive to active transition ontc in will take action immediately (after com-
pletion of the ongoing bus burst, if any). Iftc in is kept constantly active, it will
take action after the first burst of each transfer. A special case occurs if the unit
alternates between master mode and slave mode, and the pin selected fortc in
is not configured to maintain the same function in both modes. In this case, the
terminal count signal in to the external DMA channel will be turned off while the
chip is in the opposite bus mode to what the channel is configured for. The result
will be that with a constantly activetc in (or with tc in modeset toforce), the
change of bus masters in the system may causetc in to take effect even though
no DMA transfer has occured.

tc out Terminal count output. The polarity of thetc out can be configured to active
high or active low. Thetc out signal becomes active in four cases:

1. Thetc out will be active during a bus burst in which the transfer counter
will expire. Thetc out is active during the whole burst.

2. Thetc out will become active at the start of the last bus cycle of a trans-
fer that is terminated by an end of packet from the internal DMA (output
channels only). Thetc out stays active until the end of the burst.

3. Thetc out becomes active whentc in is activated. Iftc in is constantly
active,tc out becomes active at the first burst of each transfer. Iftc in
occurs within a burst,tc out will be active until the end of the burst. When
tc in is activated outside a burst,tc out will be active for 20 ns.

4. Thetc out becomes active when the channel is stopped by software. The
tc out will remain active until the end of the ongoing bus burst. If there is
no ongoing burst,tc out will be active for 20 ns.

4.3.13.5 External DMA address

The I/O cycles of the DMA transfers are directed to a constant, configurable address.
The wait states and cycle behavior are the same as for the normal memory accesses
to the same address. Each of the channels has its own address register,rw ch0 addr
- rw ch3 addr. Bits 31, 30, 1 and 0 of the address are not used, since external DMA
always performs 32-bit aligned accesses to non-DRAM non-cached area.

The external DMA address is not used when the external DMA channel is used in slave
mode.

4.3.13.6 Transfer counter

Each external DMA channel has a 16-bit transfer counter. The counter is initialized to
the configured start value when the channel is started, and counts down with one for
each external DMA cycle. An external DMA cycle is one, two or four bytes in size,
depending on the configured bus width. Note that writingyesto run in rw ch0 start
will re-initialize the counter even if the channel is already running.

4.3. FUNCTIONAL DESCRIPTION 253

When the transfer counter counts down to zero, it stops the channel, generates an inter-
rupt and, for input channels, signals end of packet to the internal DMA.

In the continuous transfer mode, the counter is re-initialized with the start value imme-
diately after it counts down to zero, and the DMA transfers continue. The interrupt is
still generated, and the end of packet is set for an input channel. While in continuous
transfer mode, atc in, or for out channels an end of packet from the DMA channel,
will also cause the transfer counter to be re-initialized.

The transfer counter can also be configured to not cause any actions at all (including
not being re-initialized) when it reaches zero. The transfer counter will still be re-
initialized when the channel is started, or when atc in is received or an end of packet
is signalled from an out DMA channel in continuous transfer mode.

4.3.13.7 Bus burst behavior in 8-cycle burst mode

With 8-cycle burst length, the transfer counter may expire in the middle of a bus burst.

For in channels, end of packet will be set immediately, resulting in a packet length
corresponding to the transfer counter start value. The bus burst will however run to
completion before the channel is stopped.

The enddiscardfield in registerrw ch1 ctrl or rw ch3 ctrl selects whether the ex-
cess data will be discarded or forwarded to the internal DMA. If the excess data is
received, and the channel is in continuous transfer mode, the transfer counter will be
re-initialized immediately. If the transfer counter expires a second time within the same
burst, the data coming in after the second expiration will be lost. If the excess data is
received and the channel is not in continuous transfer mode, the transfer counter will
not be re-initialized, but will instead wrap around and continue. The transfer counter
will only count cycles that result in data written to the internal DMA.

For out channels, theendpadfield in registerrw ch0 ctrl or rw ch2 ctrl selects whether
the remaining cycles in a burst, after the expiration of the transfer counter, will be read
out from the internal DMA or will be padded with 0’s. An end of packet from the
internal DMA in the middle of a bus burst will always cause padding with 0 for the rest
of the burst. If the channel is in continuous transfer mode, and excess data is read from
the internal DMA, the transfer counter will be re-initialized immediately. If excess data
is read from the internal DMA, and the channel is not in continuous transfer mode, the
transfer counter will not be re-initialized, but will instead wrap around and continue.
The transfer counter will only count cycles that result in reading data from the internal
DMA.

For out channels, a burst will only be started if there is either enough data for a full
burst available from the internal DMA, or the internal DMA signals ends of packet.

4.3.13.8 Start and stop of external DMA transfers

The channel will pause without stopping for the following reasons:

· dreq is inactive

· Internal DMA FIFO full (input channels) or FIFO empty (output channels)

254 CHAPTER 4. BUS INTERFACE

Each channel may be started and stopped by therunfield in therw ch0 start... rw ch3 start
register. The channel will stop if therunfield is cleared. Clearing therunfield will also
generate an interrupt and, for input channels, signal an end of packet to the internal
DMA. The runfield can be cleared by the software, or the external DMA interface can
clear it for the following reasons:

· transfer counter expired

· tc in is activated

· Internal DMA channel signals end of packet (output channels only)

Note that stopping the channel by software or by usingtc in may result in atc out
signal that occurs after the last access rather than during it.

Therw ch0 start... rw ch3 startregister will go to the stopped state immediately when
a stop condition occurs. This may happen before the last bus burst is completed. To
see if the channel is really stopped, therun field of ther ch0 stat... r ch3 statregister
should be used instead.

4.3.13.9 Continuous transfer mode

Each external DMA channel can be individually configured to stop and clear therun
bit of the rw ch0 start ... rw ch3 start register at end of transfer, or to just generate
interrupt,tc out and end of packet at end of transfer. End of transfer is defined as any
of the following events:

· transfer counter expired

· tc in is activated

· Internal DMA channel signals end of packet (output channels only)

· runfield cleared by software

Clearing therun field by software will stop the channel even if it is in continuous
transfer mode.

4.3.13.10 Interrupts

The external DMA interface can generate the following interrupts:

ext dma0 Interrupt from external DMA channel 0.

ext dma1 Interrupt from external DMA channel 1.

ext dma2 Interrupt from external DMA channel 2.

ext dma3 Interrupt from external DMA channel 3.

4.3. FUNCTIONAL DESCRIPTION 255

Each channel generates an interrupt when the transfer counter expires, when an end of
packet is signalled, when atc in is received or when the software stops the channel.

If an interrupt event occurs during an ongoing DMA bus burst for the interrupting
channel, the interrupt will be delayed until the burst is completed.

The interrupts are cleared by writing to therw ack intr mode register. All interrupts can
be masked through therw intr maskregister. The masked and non-masked interrupts
can be read from ther maskedintr andr intr registers.

4.3.13.11 Priority between external DMA channels

The external DMA channels all have equal priority. A round-robin arbitration mecha-
nism is used.

4.3.13.12 Rate control

The external DMA interface contains a rate control mechanism that gives the possibility
to set a bandwidth limit for selected external DMA channels, and/or to stream out data
with a defined rate. The external DMA has one rate control input common to all four
channels. The rate control input is pinpa7.

If rate control is enabled for a channel, the channel will only perform a burst if the rate
control input is high or if there has been a positive pulse on the rate control input since
the last burst. The channel will still require an activedreq to run a burst, unless it is
configured to ignoredreq.

4.3.14 Slave mode operation

4.3.14.1 Overview

The slave mode interface offers a method for an external bus master to access the
internal RAM within the slave5. While in slave mode, the bus interface looks like
an I/O device to the external bus master. The communication takes place over four
channels, where each channel is reached through a set of five registers accessible over
the external bus. See figure4.22.

4.3.14.2 Slave channels

There are four unidirectional slave channels, two in and two out:

1. slavech0: Output channel

2. slavech1: Input channel

3. slavech2: Output channel

5Internal mode registers may also be accessed, provided that no other unit performs any mode register
accesses concurrently. Other units that could access the mode registers are the internal CPU and the I/O
processor.

256 CHAPTER 4. BUS INTERFACE

Master

address

data

control

Bus interface
master mode functions
(idle during slave mode)

r_ch0_seq_data register

r_ch0_data register

rw_ch0_addr register

rw_ch0_ctrl register

r_ch0_stat register

rw_ch1_seq_data register

slave_ch0

slave_ch1

External
DMA

Internal
DMA

Mode
registers

Internal
bus

arbiter

Internal
RAM

data

address

Figure 4.22:Slave mode operation overview

4. slavech3: Input channel

Each slave channel can operate in two different modes:

1. Address register mode

2. DMA mode

4.3.14.3 External slave mode registers

Each slave channel has five 32-bit registers that can be accessed by an external bus
master. These registers are not accessible as mode registers from inside the slave. The
external slave mode registers are described in more detail in25.7.

The external slave mode registers, and the address map for them as seen from the
master, are as follows:

slave_ch0:

offset + 0x00: r_ch0_seq_data
offset + 0x04: r_ch0_data
offset + 0x08: rw_ch0_addr
offset + 0x0c: rw_ch0_ctrl and r_ch0_stat

slave_ch1:

4.3. FUNCTIONAL DESCRIPTION 257

offset + 0x10: rw_ch1_seq_data
offset + 0x14: rw_ch1_data
offset + 0x18: rw_ch1_addr
offset + 0x1c: rw_ch1_ctrl and r_ch1_stat

slave_ch2:

offset + 0x20: r_ch2_seq_data
offset + 0x24: r_ch2_data
offset + 0x28: rw_ch2_addr
offset + 0x2c: rw_ch2_ctrl and r_ch2_stat

slave_ch3:

offset + 0x30: rw_ch3_seq_data
offset + 0x34: rw_ch3_data
offset + 0x38: rw_ch3_addr
offset + 0x3c: rw_ch3_ctrl and r_ch3_stat

Whereoffset is the start address for the external slave mode registers. The offset can
either be set completely by address decoding external to the slave, or the slave can set
bits 6 - 8 of the offset in an internal mode register, see section4.3.14.9.

4.3.14.4 Internal slave mode registers

The internal mode registers for the bus arbitration and the slave mode interface are
combined together and specified in25.6.

There are six mode registers for the slave mode operation:

1. rw slavecfg: General configuration register.

2. r slavemode: Operation modes for the channels.

3. rw ch0 cfg: Configuration register for slavech0.

4. rw ch1 cfg: Configuration register for slavech1.

5. rw ch2 cfg: Configuration register for slavech2.

6. rw ch3 cfg: Configuration register for slavech3.

4.3.14.5 Slave chip selects

The slave mode registers are selected by thecssn signal, which is an input in slave
mode. Ifcssn is connected tocssn of the master, the slave mode register start address
(not considering slave identification bits described in4.3.14.9) will be 0xac000000.

There is a possibility to configure the signalscsp0n - csp3n as chip selects for the
r ch0 seqdata- rw ch3 seqdataregisters, without further address qualification. The
slave identification bits are ignored when these chip selects are used. The use ofcsp0n
- csp3n is configured in thedatacs fields of internal mode registersrw ch0 cfg -
rw ch3 cfg.

258 CHAPTER 4. BUS INTERFACE

4.3.14.6 Address register mode

In the address register mode, the external bus master should first write to the address
register for the channel,rw ch0 addr... rw ch3 addr, to set the internal address to be
accessed within the slave.

The slave channel can be configured to either increment its address register by 4 for
each access to the sequential data registerr ch0 seqdata... rw ch3 seqdata, or to
keep the address register constant.

For an output channel, the write to therw ch0 addror rw ch2 addrregister initiates an
internal read within the slave, and the result is placed in the data register (r ch0 dataor
r ch2 data) and in the sequential data register (r ch0 seqdataor r ch2 seqdata) of the
channel. When the internal read cycle is completed, thedavfield in the status register
(r ch0 stator r ch2 stat) is set, to indicate to the external master that the data is valid.
The external master can now read the data either from the data register or from the
sequential data register of the channel. In the latter case, the read will initiate a new
internal read within the slave.

For an input channel, a write to the the data register (rw ch1 dataor rw ch3 data) or to
the sequential data register (rw ch1 seqdataor rw ch3 seqdata) initiates an internal
write within the slave. A write to the sequential data register will increment the ad-
dress registerrw ch1 addror rw ch3 addrby 4 if the channel is configured for address
increment, whereas a write to the (plain) data register will never increment the address
register. When the master writes to the data register or the sequential data register of
the channel, thedatardy field in the status register (r ch1 stator r ch3 stat) is cleared.
Thedatardy field is set again when the internal write is completed.

Bit 31 in the address register is not used in the internal memory map. Instead, this bit is
used to select whether the cache coherence mechanism of the internal memory arbiter,
see14, will be applied or not. Normally the slave mode accesses to e.g. internal RAM
will participate in the cache coherence protocol, but this can be prevented by setting bit
31 of the address to 1.

Bit 1 and 0 in the address register will not be used by the slave interface, but are present
in the address register.

4.3.14.7 DMA mode

In the DMA mode, the slave channel is connected to an external DMA channel within
the slave. The slavech0 can be connected to extdma0, slavech1 to extdma1 and so
on.

The bus width and burst length configurations of the external DMA channel are effec-
tive in this mode, as well as thetc in, tc out, transfer counter etc.. The external DMA
address anddack configurations of the external DMA interface are not applicable in
slave mode.

In slave mode operation, the actual DMA request signal in the system is thesreq signal
going from the slave to the master, see4.3.14.8. Thedreq functionality of the external
DMA channel can still be used, but the only function of it is thatdreq (either from a
pin or permanently set in the configuration register) must be active to allow a transition

4.3. FUNCTIONAL DESCRIPTION 259

from inactive to active state on thesreq of the channel.

For an output channel, data is read from the sequential data register (r ch0 seqdataor
r ch2 seqdata). A read from this register will read out 1, 2 or 4 bytes from the asso-
ciated internal DMA channel, depending on the configured bus width of the external
DMA channel. The address register of the channel will be incremented by 4 if address
increment is configured, but the address will not be used internally in the DMA mode.
Data can also be read from the data register (r ch0 dataor r ch2 data), but this will not
cause the internal DMA to advance to the next data and will not cause any address in-
crement. Thedavfield in the status register of the channel (r ch0 stator r ch2 stat) will
go inactive when a data read burst is started, but will be set active again after the burst
as soon as there is enough data available from the internal DMA for a new complete
bus burst of the configured burst length.

For an input channel, data is written to the sequential data register (rw ch1 seqdata
or rw ch3 seqdata). This will enter 1, 2 or 4 bytes of data into the associated internal
DMA channel, depending on the configured bus width of the external DMA channel.
The address register of the channel will be incremented by 4 if address increment is
configured, but the address will not be used internally in the DMA mode. Data can
be written to the data register (rw ch1 dataor rw ch3 data) instead. This will have the
same effect as writing to the sequential data register, except that the address register will
not be incremented. Thedatardy field in the status register of the channel (r ch1 stat
or r ch3 stat) will go inactive when a data write burst is started, but will be set active
again after the burst as soon as the internal DMA is ready to receive a new complete
bus burst of the configured burst length.

4.3.14.8 External handshake pins

There are eight handshake pins,hsh0 - hsh7, that are shared between the external
DMA interface and the slave mode interface. When configured for use by the slave
mode interface, these pins will outputsreq (slave request) signals, which reflect the
status of thedavor datardy fields in the status registersr ch0 stat- r ch3 stat.

Any of the twodatardy and the twodav bits can be configured to be output as an
sreq signal on any of the eight handshake pins. The polarity of each pin is also con-
figurable. Configuration of thesreq signals is done in the external DMA interface
registersrw pin0 cfg - rw pin7 cfg.

4.3.14.9 Slave identification

The slave mode interface can be configured to have a 3-bit slave identification number.
When the slave identification number is enabled, the identification number is compared
with address bitsa6 - a8 to qualify an access from the master to the slave mode reg-
isters. Thus, up to 8 different slaves can be separately addressed without any external
address decoding. The slave identification number is configured in therw slavecfg
register.

The slave identification number is disabled after reset. There are different possible
methods for slave identification resolution after reset, depending on how the system is
designed. Here is one example, where all chips boot up from the same flash PROM:

260 CHAPTER 4. BUS INTERFACE

1. The initial master after reset starts to execute code from the flash PROM. It
knows that it is the initial master by readinginit mode, and therefore sets its
own slave ID to 0. It also writes its slave ID (= 0) to a predefined position in the
external RAM. Thereafter it enables its bus arbitration.

2. The next chip in line will now win the bus and start to execute from the flash
PROM. It knows that it was an initial slave by readinginit mode. Therefore, it
knows that it can read the slave ID of the previous master from the predefined
position in the RAM. It takes this value + 1 as its own slave ID, and updates the
RAM position. Thereafter it enables its bus arbitration.

3. The third chip in the line will now win the bus, and will repeat the procedure of
the second chip.

4. ... and so on until all chips have been initialized.

4.3.14.10 Boot methods

While in slave mode, a chip may boot up with any boot method that does not require
access to the external bus. For a description of the available boot methods see6.

Two of the boot methods,Master chip boots slaveandSlave chip boots master, involve
both a master and a slave chip. Both these boot methods use theboot rdy field in the
rw slavecfg register to handshake the boot progress between the master and the slave.
Theboot rdy field is also available for read in thebootfields of the external slave mode
registersr ch0 stat- r ch3 stat.

4.3.14.11 Loop back mode and slave mode disable

The slave mode interface is by default enabled only while the bus interface is in slave
mode. The slave mode interface can be set to be constantly enabled through theloop-
backfield of therw slavecfg register. A master with theloopbackfield set will be
able to access its own slave mode interface via the external bus. Accesses to the slave
mode interface will still be qualified by the slave identification number if the slave
identification number is enabled.

The slave mode interface can be completely disabled by setting thedis field in the
rw slavecfg register. When disabled, accesses to the slave interface from the current
bus master will not take effect. Disabling the slave mode does however not affect the
participation in the bus arbitration, since this is controlled throughrw arb cfg.

4.4 Hardware interface

4.4.1 Interface signals

The direction of the bus interface signals in master and slave modes is given in the
tables below. Explanations:

I/O Bidirectional signal that changes direction during operation.

4.4. HARDWARE INTERFACE 261

In Input signal.

Out Output signal.

Off The signal is not used and is not driven.

The mapping of the signals to package balls is described in16.

4.4.1.1 Data bus

Description Data bus.

External pin Master mode
direction

Slave mode
direction

d0-d31 I/O I/O

4.4.1.2 Address bus

Description Address bus.

Address bita1 is also used as byte enable 3 in 32-bit common write enable mode,
and used as data mask 7 in SDRAM cycles in 64-bit module mode.

Address bitsa2-a8 are also used as address inputs for register addressing and
slave selection in slave mode.

Address bitsa19-a22are also used as as data qualify mask outputs in SDRAM
cycles.

Address bitsa23-a25also serve as write enable, CAS and RAS signals for the
SDRAM.

External pin Master mode
direction

Slave mode
direction

Also used as:

a1 Out Off be3 n anddqm7

a2-a8 Out In -

a9-a18 Out Off -

a19-a22 Out Off dqm0-dqm3

a23 Out Off sdwe n

a24 Out Off cas n

a25 Out Off ras n

4.4.1.3 Chip selects signals

Description Chip select outputs.

In slave mode, thecssn pin is used as the chip select input, and thecsp0n-
csp3n signals can be configured as data chip select inputs.

Pinscsp2n, csp3n, csp5n andcsp6n are multiplexed on the general I/O pins
pa0-pa3, see16. When used as chip selects, these signals need to have pull-up
resistors to have a defined value at reset.

262 CHAPTER 4. BUS INTERFACE

External pin Master mode
direction

Slave mode
direction

cse0n Out Off

cse1n Out Off

csr0 n Out Off

csr1 n Out Off

csp0n Out In

csp1n Out In

csp2n Out In

csp3n Out In

csp4n Out Off

csp5n Out Off

csp6n Out Off

cssn Out In

4.4.1.4 Read signal

Description Read signal.

External pin Master mode
direction

Slave mode
direction

rd n Out In

4.4.1.5 Write signals

Description Write signals.

The write signalswr0 n-wr2 n also serve as byte enables for bytes 0-2 in com-
mon write enable mode, and are used as data qualify masks 4-6 in SDRAM
cycles in 64-bit wide module mode.

The write signalwr3 n is also used as common write enable output in common
write enable mode, and as common write enable input in slave mode.

External pin Master mode
direction

Slave mode
direction

Also used as:

wr0 n Out Off be0 n anddqm4

wr1 n Out Off be1 n anddqm5

wr2 n Out Off be2 n anddqm6

wr3 n Out In cwe n

4.4.1.6 SDRAM signals

Description SDRAM chip select, clock and clock enable outputs.

In slave mode with shared DRAM control, these signals are used to detect if
the current master accesses the SDRAM, to be able to decide if the stored row
address is valid or not. In non-shared SDRAM mode, the signals are driven
during slave mode.

4.4. HARDWARE INTERFACE 263

External pin Master mode
direction

Slave mode
direction

Description

csd0n-csd1n Out Out/In SDRAM chip selects

sdclk Out Out/In SDRAM clock

sdcke Out Out/In SDRAM clock enable

4.4.1.7 Handshake signals

Description Handshake signals for the external DMA interface and the slave mode
interface.

Pinshsh4-hsh7are multiplexed on the general I/O pinspa4-pa7, see16.

External pin Master mode
direction

Slave mode
direction

hsh0-hsh7 Out/In Out/In

In master mode, each signal can be configured as:

Signal Description Direction

dreq DMA request In

dack DMA acknowledge Out

tc in Terminal count In

tc out Terminal count Out

In slave mode, each signal can be configured as:

Signal Description Direction

dreq DMA request qualifier In

sreq Slave request Out

tc in Terminal count In

tc out Terminal count Out

264 CHAPTER 4. BUS INTERFACE

4.4.1.8 Wait signal

Description Wait input. Makes it possible for external units to generate extra wait
states.

External pin Master mode
direction

Slave mode
direction

wait n In Off

4.4.1.9 Bus arbitration signals

Description Bus arbitration signals.

External pin Master mode
direction

Slave mode
direction

Description

brin In In Bus request input

brout Out Out Bus request output

bg Out In Bus grant signal

4.4.2 Reset behavior

In master mode, the dedicated chip select outputs and therd n andwr0 n - wr3 n pins
are driven to the inactive (high) state immediately at system reset. The address bus is
driven to an undefined value. The data bus and thehsh0 - hsh3 pins are turned off
immediately at reset.

During the start up sequence, thesdclk pin is cycled 5 times withsdckehigh, to ter-
minate any command that may have been initialized in the SDRAM before the reset.
After this, thesdclk andsdckepins are set low until the SDRAM interface is enabled.

In slave mode, all bus interface signals are turned off immediately at reset.

4.4. HARDWARE INTERFACE 265

4.4.3 Detailed timing

4.4.3.1 SRAM/Flash/peripheral timing

4.4.3.1.1 Read cycle

Tew Ta Td Tew Ta Td Tz Ta Td Ta Td Tz

Burst with one early waitstate Burst with no early waitstate

active
cs_n

rd_n

addr

data in

inactive
cs_n

t1

t8

t12 t4

t2 t3 t11t9

t10t7

t6

t5t1

Figure 4.23:SRAM/Flash/peripheral read timing

Parameter Description Min Nom Max Add with wait
states

Unit

t1 Address and chip select delay from
clock.

2 - 8 - ns

t2 Read low delay from clock. 2 - 8 - ns

t3 Read high delay from clock. 2 - 7 - ns

t4 Chip select high to read low. 8 - - - ns

t5 Read high to chip select low. 10 - - - ns

t6 Data in setup time to clock. 0 - - - ns

t7 Data in hold time from read. 0 - - - ns

t8 Read inactive width within burst. -2 - - 10*ew ns

t9 Read active width. 16 20 - 10*lw ns

t10 Read cycle. - 20 - 10*(lw+ew) ns

t11 Read inactive after burst. 8 - - 10*zw ns

t12 Read inactive time after chip select or
address.

-2 - - 10*ew ns

Table 4.23:SRAM/Flash/peripheral read timing

266 CHAPTER 4. BUS INTERFACE

4.4.3.1.2 Write cycle

Tew Ta Td Tew Ta Td Tz Ta Td Ta Td Tz

Burst with one early waitstate Burst with no early waitstate

cs_n

wr_n

addr

data out

t1 t2

t6

t12

t10 t9

t8

t7

t5

t3

t14 t13

t1

t4

t9

t11

Figure 4.24:SRAM/Flash/peripheral write timing

Parameter Description Min Nom Max Add with wait
states

Unit

t1 Address and chip select delay from
clock.

2 - 8 - ns

t2 Write low delay from clock. 7 - 13 - ns

t3 Write high delay from clock. 7 - 13 - ns

t4 Write pulse width. 6 - - 10*lw ns

t5 Write inactive width within burst. 9 - - 10*ew ns

t6 Write inactive width after burst. 19 - - 10*zw ns

t7 Write cycle time. - 20 - 10*(ew+lw) ns

t8 Chip select and address setup to write
low.

2 - - 10*ew ns

t9 Chip select and address setup to end of
write.

11 - - 10*(ew+lw) ns

t10 Address hold after write high. 3 - - - ns

t11 Data delay from clock. 6 - 13 - ns

t12 Data turn on time from clock. 6 - - - ns

t13 Data turn off time from clock. 6 - 10 10*zw ns

t14 Data valid to end of write. 6 - - 10*lw ns

Table 4.24:SRAM/Flash/peripheral write timing

4.4. HARDWARE INTERFACE 267

4.4.3.1.3 Extended write cycle

Tew Ta Td Tew Ta Td Tz Ta Td Ta Td Tz

Burst with one early waitstate Burst with no early waitstate

cs_n

wr_n

addr

data out

t1 t2 t6

t12

t9

t11

t8 t7

t5

t14 t13

t4

t15

t3

t10

Figure 4.25:SRAM/Flash/peripheral extended write timing

Parameter Description Min Nom Max Add with wait
states

Unit

t1 Address and chip select delay from
clock.

2 - 8 - ns

t2 Write low delay from clock. 7 - 13 - ns

t3 Write high delay from clock. 2 - 7 - ns

t4 Write pulse width. 11 - - 10*lw ns

t5 Write inactive width within burst. 4 - - 10*ew ns

t6 Write inactive width after burst. 13 - - 10*zw ns

t7 Write cycle time. - 20 - 10*(ew+lw) ns

t8 Chip select and address setup to write
low.

2 - - 10*ew ns

t9 Chip select and address setup to end of
write.

16 - - 10*(ew+lw) ns

t10 Data hold after end of write, within
burst.

2 - - 10*ew ns

t11 Data delay from clock. 6 - 13 - ns

t12 Data turn on time from clock. 6 - - - ns

t13 Data turn off time from clock. 6 - 10 10*zw ns

t14 Data valid to end of write. 11 - - 10*lw ns

t15 Data hold after end of write, at end of
burst.

2 - - 10*zw ns

Table 4.25:SRAM/Flash/peripheral extended write timing

268 CHAPTER 4. BUS INTERFACE

4.4.3.1.4 External wait input timing

The timing diagram shows an example with internal wait state configuration set to one
early wait state and two late wait states.

Tew Ta Tlw Tlw Tlw Td Tz

addr

rd_n

wait_n

t1 t2

()*

()* Late wait state added by wait input.

t1 t2

Figure 4.26:External wait input timing

Parameter Description Min Max Unit

t1 Wait input setup to clock. 3 - ns

t2 Wait input hold from clock. 0 - ns

Table 4.26:External wait input timing

4.4. HARDWARE INTERFACE 269

4.4.3.2 SDRAM timing

4.4.3.2.1 SDRAM read timing

Precharge Activate Read Read Deselect Deselect

sdclk

addr

csd0_n
or csd1_n

ras_n (a25)

cas_n (a24)

sdwe_n (a25)

data in

t1

t4 t5

t4

t4

t4 t5

t5

t5t4

t5

t7t6

t2 t3

Figure 4.27:SDRAM read timing

Parameter Description Min Nom Max Unit

t1 Clock period. - 10 - ns

t2 Clock high time. 3 - - ns

t3 Clock low time. 3 - - ns

t4 Setup time to clock. 2 - - ns

t5 Hold time from clock. 1 - - ns

t6 Data in setup time to clock. 0 - - ns

t7 Data in hold time from clock. 3 - - ns

Table 4.27:SDRAM read timing

270 CHAPTER 4. BUS INTERFACE

4.4.3.2.2 SDRAM write timing

sdclk

addr

csd0_n
or csd1_n

ras_n (a25)

cas_n (a24)

sdwe_n (a23)

dqm

t1

t4 t5

t4

t4

t4 t5

t5

t5t4

t5

Precharge Activate Write Write Deselect Deselect

data out

t4 t5

t6 t7 t8

t2 t3

Figure 4.28:SDRAM write timing

Parameter Description Min Nom Max Unit

t1 Clock period. - 10 - ns

t2 Clock high time. 3 - - ns

t3 Clock low time. 3 - - ns

t4 Setup time to clock. 2 - - ns

t5 Hold time from clock. 1 - - ns

t7 Data in hold time from clock. 3 - - ns

t6 Data out setup time to clock. 2 - - ns

t7 Data out hold time from clock. 1 - - ns

t8 Data out turn off time from clock - - 8 ns

Table 4.28:SDRAM write timing

4.4. HARDWARE INTERFACE 271

4.4.3.3 External DMA timing

4.4.3.3.1 External DMA read timing

dreq

dack

rd_n

wr0_n
to

wr3_n

tc_in

t1 t10 t2

t7

t6 t4

t9

t5 t8

t11 t12

t3

Figure 4.29:External DMA read timing

The timing diagram4.29 is shown with dreq, dack, tcin and tcout configured to be
active high.

Parameter Description Min Max Add with wait
states

Unit

t1 dreq to dack delay. 27 - - ns

t2 dreq hold time from dack. 0 - - ns

t3 dreq inactive time from rdn low to inhibit
next transfer (applies to the last rdn of a
bus burst).

- 17 10*lw ns

t4 dack active to rdn low delay. 2 - 10*ew+10*
ewb+10*dw

ns

t5 rd n high to dack inactive delay. 2 - 10*erc ns

t6 wr n high (extended write mode) or rdn
high to dack active delay.

2 - - ns

t7 wr n high (normal write mode) to dack
active delay.

7 - - ns

t8 dack inactive to rdn low delay. 2 - - ns

t9 dack inactive to wrn low delay. 7 - - ns

t10 dack inactive to dack active delay. 27 - - ns

t11 tc in active time from rdn low to inhibit
next transfer (applies to the last rdn of a
bus burst).

- 17 10*lw ns

t12 tc in active pulse width. 14 - - ns

Table 4.29:External DMA read timing

272 CHAPTER 4. BUS INTERFACE

4.4.3.3.2 External DMA write timing

dreq

dack

rd_n

wr0_n
to

wr3_n

tc_in

t1 t10 t2

t5

t7

t4 t9

t6 t8

t3

t11 t12

t5

Figure 4.30:External DMA write timing

The timing diagram4.30 is shown with dreq, dack, tcin and tcout configured to be
active high.

Parameter Description Min Max Add with wait
states

Unit

t1 dreq to dack delay. 27 - - ns

t2 dreq hold time from dack. 0 - - ns

t3 dreq inactive time from wrn low to
inhibit next transfer (applies to the last
wr n of a bus burst).

- 12 10*lw ns

t4 dack active to wrn low delay. 7 - 10*ew+10*
ewb+10*dw

ns

t5 wr n high (normal write mode) to dack
active or inactive delay.

7 - - ns

t6 wr n high (extended write mode) to dack
inactive delay.

2 - - ns

t7 wr n high (extended write mode) or rdn
high to dack active delay.

2 - - ns

t8 dack inactive to rdn low delay. 2 - - ns

t9 dack inactive to wrn low delay. 7 - - ns

t10 dack inactive to dack active delay. 27 - - ns

t11 tc in active time from wrn low to inhibit
next transfer (applies to the last wrn of a
bus burst).

- 12 10*lw ns

t12 tc in active pulse width. 14 - - ns

Table 4.30:External DMA write timing

4.4. HARDWARE INTERFACE 273

4.4.3.3.3 External DMA tc out timing

dack

wr0_n
to

wr3_n

rd_n

tc_in

t1 t3 t2 t4

tc_out

t5t2

Figure 4.31:External DMA tcout timing

Parameter Description Min Max Add with wait
states

Unit

t1 dack active to tcout active delay, when
tc out is triggered by transfer counter.

2 8 - ns

t2 dack inactive to tcout inactive delay,
when tcout is generated within an
external DMA bus burst.6

2 8 - ns

t3 tc out active to wrn low delay, when
tc out is triggered by outeop.

2 - 10*ew+ 10*dw ns

t4 tc in active to tcout active delay. 22 45 - ns

t5 tc out pulse width when generated outside
an external DMA bus burst.

17 23 - ns

Table 4.31:External DMA tcout timing

6If tc out is generated later than 15 ns before dack inactive, t5 applies instead.

274 CHAPTER 4. BUS INTERFACE

4.4.3.4 Slave mode timing

4.4.3.4.1 Slave mode read timing

css_n
or csp0_n
or csp2_n

addr

rd_n

data out

t6

t9
t6

t7
t2

t6t1

t4

t11

t2
t3

t10 t5

wr3_n

t5
t8

sreq

t12

t4

Figure 4.32:Slave mode read timing

The timing diagram4.32is shown with sreq configured as active high and the data chip
select inputs csp0n and csp2n configured as active low.

Parameter Description Min Max Unit

t1 Output enable time from rdn. 2 - ns

t2 Access time from rdn. - 12 ns

t3 rd n active pulse width. 6 - ns

t4 rd n inactive until next rdn or wr3 n. 6 - ns

t5 Read cycle time. 20 - ns

t6 Data hold after rdn low, chip select inactive or
address change, whichever occurs first, if data not
turned off due to rdn high.

2 - ns

t7 Data hold after rdn high if no new rdn low,
address change or chip select high occurs.7

2+10*rh - ns

t8 Data turn-off time after rdn high. 7 - 11+27*rh ns

t9 Data turn-off time after chip select high. - 12 ns

t10 Address and chip select setup time to rdn low. 5 - ns

t11 Address hold time from rdn low. 5 - ns

t12 sreq inactive delay after rdn low. 2 12 ns

Table 4.32:Slave mode read timing

7rh can be set to 0 or 1. Default is rh=1.

4.5. SOFTWARE INTERFACE 275

4.4.3.4.2 Slave mode write timing

css_n
or csp1_n
or csp3_n

addr

wr3_n

data in

t1

t3

t5

t5

t7t6

t4

t2

sreq

rd_n

t4

t8

t3

Figure 4.33:Slave mode write timing

The timing diagram4.33is shown with sreq configured as active high and the data chip
select inputs csp1n and csp3n configured as active low.

Parameter Description Min Max Unit

t1 Address and chip select setup time to write low. 5 - ns

t2 wr3 n active pulse width. 6 - ns

t3 wr3 n inactive until next wr3n or rd n. 6 - ns

t4 Write cycle time. 20 - ns

t5 Address and chip select hold time after wr3n
high.

0 - ns

t6 Data setup time to wr3n high. 2 - ns

t7 Data hold time from wr3n high. 0 - ns

t8 sreq inactive delay after wr3n low. 2 12 ns

Table 4.33:Slave mode write timing

4.5 Software interface

4.5.1 Bus interface general registers

The bus interface general mode registers are specified in25.4. To access the reg-
isters, fields and register constants from a C program, a set of macros is defined in
[BIF MACROS].

276 CHAPTER 4. BUS INTERFACE

4.5.2 External DMA

The external DMA mode registers are specified in25.5. To access the registers, fields
and register constants from a C program, a set of macros is defined in [EXTDMAMACROS].

Before an external DMA channel can be used, it has to be connected to an internal
DMA channel. The connections between external and internal DMA channels are de-
scribed in10.

The external DMA uses simple data descriptor lists for its operation. Thewait field
of the DMA descriptors should not be used with external DMA. For further details on
how to set up the internal DMA, see5.

4.5.3 Slave mode and master/slave arbitration

4.5.3.1 Internal mode registers

The internal mode registers for the slave mode and master/slave arbitration are specified
in 25.6. To access the registers, fields and register constants from a C program, a set of
macros is defined in [SLAVEMACROS].

4.5.3.2 External slave mode registers

The external slave mode registers are specified in25.7. To access the registers, fields
and register constants from a C program, a set of macros is defined in [EXTMACROS].

These registers are available to an external host directly via the slave mode interface.
They are not accessible from within the slave, but some of the functions are affected
also by internal mode registers.

4.5.4 Programming considerations

4.5.4.1 Race avoidance between mode registers and external bus cycles

External bus write cycles, as well as writes to internal registers, are buffered to allow
the CPU to continue execution without waiting for write completion.

Completion of external bus cycles and completion of accesses to internal mode registers
are independent of each other, and the order of completion may be different from the
order of the instructions in the program code. However, different accesses within the
address space of the external bus are always completed in order, and the same holds
valid for different accesses within the internal mode register address space.

In cases where internal mode register accesses and external bus cycles can interact with
each other, it is necessary to take care of this possible race condition. To make sure that
a write to an internal mode register is completed, it can be followed by a read from the
same or any other internal mode register. In the same way, to make sure that an external
bus write cycle is completed, it can be followed by a read from anywhere within the
address space of the external bus.

Chapter 5

DMA

5.1 References

Tables5.1 and5.2 lists references to other documents and terms defined elsewhere in
documentation.

[DMA REG DOC] DMA Register Documentation, chapter25.11

[IOP DMC IN] I/O Processor DMC In Register Documentation, chapter25.16

[IOP DMC OUT] I/O Processor DMC Out Register Documentation, chapter25.17

Table 5.1:References

References below are for SW development only.

[DMA REG MACROS] DMA Register Macros,http://developer.axis.com

[DMA MACROS] DMA Operation and struct Macros,http://developer.axis.com

Table 5.2:Software development references

5.2 Definitions

The following special definitions are used in this chapter:

DMA The unit that performs Direct Memory Access.

Client A hardware unit using a DMA to stream data to or from
memory.

Context Complete description of the current state of the DMA
including internal state and list position.

In channel DMA A DMA channel that transports data from a client to memory.

Out channel DMA A DMA channel that transports data from memory to a client.

dmax DMA channel number x.

Virtual channel Time multiplexed data streams on the same physical DMA
channel.

277

http://developer.axis.com
http://developer.axis.com

278 CHAPTER 5. DMA

eol End of descriptor list.

in eop In channel descriptor end of packet.

out eop Out channel descriptor end of packet.

tol Top of list. Current descriptor has no descriptor at the level
above. Pointer to upper level is not valid.

bol Bottom of list. Indicates there may be a context list attached.

wait ack Wait acknowledge sequence. Out channel specific behavior
issued by the wait bit of the data descriptor ctrl field.

Stream command Command controlling the DMA operation.

SW The software that runs on the system.

Byte 8 bits of data in a register or memory.

Word 16 bits of data in a register or memory.

Dword 32 bits of data in a register or memory.

Table 5.3:Definitions

5.3 Overview

The DMA is used to transport data efficiently between memory and DMA clients. Data
is read from and written to buffers in memory, linked together with data structures
called descriptors.

The data is transported between the DMA and memory in chunks of 32 bytes when-
ever possible, to take advantage of the 32 byte wide on-chip bus. Theoretically, each
physical DMA channel is able to handle an unlimited number of virtual channels, by
means of the advanced list structure shown by the figure5.3 in section5.4.3.

A DMA list is a list of descriptors keeping track of the list processing at three levels:
data, context and group. Each descriptor contains control data to keep track of the list
boundaries, interrupt positions, and level specific information that is read by the DMA.
The DMA writes necessary status information at each descriptor level.

All descriptors have a meta data field for communication between SW and the client.
When a group or context descriptor is loaded into the DMA registers, the meta data of
each type is sent to the client. The group or context meta data from the client to the
descriptor is sampled when the DMA receives a stream command that requires storing
the group or context descriptor.

A data descriptor keeps track of one data buffer in memory, and points to the next data
descriptor in a list of data descriptors. A context descriptor keeps track of the data
descriptor under process and its present data buffer position. This allows the DMA to
save and restore its list state in the context descriptor when commanded by its client or
by SW.

The context saved always represents what the DMA client sees. If the DMA inter-
nally buffers data or has other speculative behavior for e.g. performance reasons, the
DMA will automatically compensate for this to guarantee that it is the context seen by
the DMA client that is saved and later restored. To support virtual channels, context
descriptors may be linked together.

When needed, group descriptors are used to handle multiple context descriptor lists,

5.4. FUNCTIONAL DESCRIPTION 279

and to get a certain data transfer rate from virtual channels.

The traversing of DMA lists is primarily controlled by stream commands from the
client. This makes it possible to support both simple clients (e.g simple data streaming),
and more complex clients that need more control of the DMA operation (e.g. use virtual
channels).

The specific client may implement a subset of the complete functionality and list levels.
The client documentation will describe how the list is to be processed and in which
order descriptors are traversed.

SW initiates list pointers, starts or stops the DMA, and may read status information.
It is also possible for SW to give stream commands to assist a simple client requiring
advanced list traversing and SW workarounds.

An interrupt is generated when the DMA follows a link of a descriptor with the intr bit
set. If the intr bit of the last data descriptor of a list is set, a data descriptor interrupt
is generated when the data descriptor has been fully processed. Note that there may be
buffered data in the DMA at the time the interrupt is generated.

An in channel end of packet interrupt is generated after the DMA has written all the
data to the associated data buffer and the data descriptor has been updated with ineop.
A stream command interrupt is generated when a stream command given by the client
or the SW has been executed.

5.4 Functional Description

DMA operation is controlled by the DMA lists representing the data, stream commands
given by the stream client to control how the lists are processed, and register settings
where software do general configuration.

Before list processing and data transfers can start software must provide an initial
pointer to a root descriptor. The root descriptor may be a group or context descrip-
tor depending of the chosen list structure. A stream command is needed to load this
root descriptor and start processing the list structure and transfer data.

The following DMA registers are used to point to the root descriptor of the list structure.

rw group When starting at group level

rw group down When starting at context level

5.4.1 Data Level

The data descriptor is described in section5.5.6.1.

The simplest DMA list has a context descriptor as header of linked data descriptors.
When the context descriptor has been loaded into the DMA, the next step is to com-
mand the DMA to load the data descriptor pointed to by the context descriptor. When
the first data descriptor is loaded, the DMA automatically starts processing the buffer
also pointed to by the context descriptor.

280 CHAPTER 5. DMA

The following DMA registers are used for holding pointers:

rw saveddata Initially this register holds the pointer to the first data descriptor. The
register is updated during the processing of the data descriptor list. When the
DMA stores the context descriptor, the register content is stored.

rw saveddata buf Initially this register holds the pointer to the first byte of the data
buffer. The register is updated during the processing of the data buffer. When
the DMA stores the context descriptor, the register content is stored.

These pointers mark the position where the transfer is to be started or restarted. The
context descriptor is updated when the DMA receives a stream command that requests
storing the current DMA context. At restore, the DMA loads the latest saved values.

A packet can be split over several data buffers, linked together by the data descriptors.
The last data descriptor of the list is marked with eol. A list of data descriptors may
contain several packets. The first packet starts at the beginning of the list and ends at a
data descriptor marked by eop. The following packet begins at the next data descriptor.
See the example in figure5.1.

When the DMA reaches the end of the data descriptor list the context is disabled by the
DMA, and dataat eol is set in thelist statefield of the DMA status registerrw stat.
dis is set internally inrw ctxt stat, and when the DMA client gives a stream command
to save the context the corresponding bit in the context descriptor is set.

The client may give a stream command that updates the meta data field of the data
descriptor, (i.e. that stores meta data).

(null)

rw_group_down

packet 1 packet 2

context descr

saved_data

saved_data_buf

da
ta

bu
ffe

r

da
ta

bu
ffe

r

da
ta

bu
ffe

r

data
descr
intr

data
descr
eop

data
descr
eop
eol

Figure 5.1:Data descriptor list

See the section5.5.6.4.1, for an in and out channel descriptor setup example of this list.

5.4. FUNCTIONAL DESCRIPTION 281

5.4.1.1 Out Channel

Normally the out channel DMA continues from one buffer to the next without waiting
for all data in the first to be consumed by the client. If it is desired that the out channel
DMA should wait for all data in a buffer to be consumed by the client before contin-
uing, the wait bit in the data descriptor ctrl field should be set. When the DMA has
read all data in the first buffer and the wait bit is set, it stops and waits for the client
to acknowledge that it has read all data. The client acknowledges by giving a stream
command. This is called the waitack sequence.

There is a stream command to search for the start of the next packet, skipping the rest
of the current packet. When the next packet is found data streaming may be initiated
automatically.

The DMA only reads and propagates meta data from the first data descriptor of a packet
and after a waitack.

5.4.1.2 In Channel

When the last data of an incoming packet has been stored in the data buffer, the data
descriptor is updated with the following:

· The in eop status bit is set.

· The after field is updated with the pointer to the end of the buffer. The pointer
refers to the byte after the last byte written to the data buffer.

· The meta data field is updated with the meta data that was received from the
client with the last received word.

When proceeding to the next data descriptor an end of packet interrupt is gener-
ated.

5.4.2 Context Level

The context descriptor is described in section5.5.6.2.

Lists of context descriptors are always used together with data lists, and are used to
keep track of virtual channel contexts. To prevent the data of the data buffer to be unin-
tentionally overwritten, only one context descriptor should point to each data descriptor
list of an in channel.

The context descriptor holds 10 bytes of meta data.

The context descriptor list can be a singly linked circular list of context descriptors
with the last descriptor pointer set to the first context descriptor of the list. The context
descriptors may also be set up as an array to get random access.

The last descriptor in the list or array is marked by an end of list marker (eol). Enabled
context descriptors are marked with en.

For a descriptor setup example of this list see section5.5.6.4.4.

282 CHAPTER 5. DMA

rw_group_down

data
descr

context
descr

en

context
descr

context
descr

eol

Figure 5.2:Context descriptor list

The circular list of context descriptors is processed by the client giving a stream com-
mand that makes the DMA load the next context descriptor. An alternative for the
client is to give a stream command that loads the next enabled context descriptor. If
no enabled context descriptor is found, the DMA disables the group descriptor if the
group descriptor level exists, and the DMA stops at the context descriptor marked with
eol when passing the second time. Thebusyfield in therw streamcmdregister, dis-
cussed in section5.5.5.1is always released when the stream command has finished. To
be able to determine if an enabled context descriptor or not was found the client has to
observe the context meta data status and control fields.

To gain random access, a stream command is used that makes the DMA load a context
descriptor with a multiplied offset of the context descriptor memory size related to
therw groupdownaddress. This assumes the context descriptors to be in consecutive
memory locations and of the same size.

At random access, the DMA may also be commanded to find the next enabled context
descriptor by parsing each context descriptor of the list starting by the n:th context
descriptor until an enabled context descriptor is found.

When changing context (i.e. changing virtual channel), the context descriptor has to be
stored to be able to restore the state when returning to the particular virtual channel.

The DMA passes the last context descriptor of a list, if commanded to load the next
context descriptor when at the last context descriptor.

5.4.3 Group Level

The group descriptor is described in the section5.5.6.3.

Group descriptors are organized in a two dimensional group list structure, and are used
to keep track of other group descriptors and context descriptors.

A group descriptor may be an element in two lists at the same time:

1. Group descriptors may be organized at the same level in a singly linked list,
linked together by the next pointers.

5.4. FUNCTIONAL DESCRIPTION 283

2. Each group descriptor may be in a doubly linked list with upper and lower levels
pointed to by the up and down pointers.

The two dimensional list structure makes it possible to organize and keep track of
context descriptors in a flexible way. A typical example when this flexibility is useful
is when the DMA is working with a USB interface. See the somewhat simplified
example below.

5.4.3.1 A USB Example

A top level horizontal group list may be used with one group descriptor for each USB
traffic type (intr, iso, ctrl, bulk).

The group descriptor for bulk and ctrl traffic then points to a context descriptor in a
circular list of context descriptors for the respective traffic types. The function of these
group descriptors is to remember which context descriptor to be used when to send
data of that traffic type.

For iso and intr traffic the top level group descriptors point to an intermediate level
of group descriptors with their down pointer. These intermediate group descriptors
then point to the actual context descriptors. This intermediate level may be used for
transmission rate control. For each USB frame the next group descriptor are used to
locate which context to use as the first context in that frame.

With this arrangement it is possible to get different transmit intensity for different con-
texts, like different USB end points. For example, in the 0, 1, 2, 2, 0, 1, 2, 2, ...
sequence shown in figure5.3, context (2) can get twice as many transmission opportu-
nities ascontext (0) and (1).

down

down

up

down

down

group
descr
bol

tol,en
eol

group
descr

tol,en

nextnext

group
descr

bol,en

group
descr

bol,en
eol

context
descr

(2)

eol

context
descr

(1)

context
descr

(0)

context
descr

eol

next

Figure 5.3:USB Example

This is also an example of how to use the flexibility of the list structure. The specific

284 CHAPTER 5. DMA

client documentation will describe if and how to use this two dimensional group list
structure.

Group lists are always used together with context lists and data lists.

The DMA may be commanded to move between levels of the group descriptor hier-
archy and sideways at the current level. The up and down pointers may be modified
by the DMA as commanded. The DMA does not pass group descriptors marked with
tol along the up pointer, and does not pass group descriptors marked with bol along
the down pointer, but may pass descriptors marked with eol along the next pointer if
commanded to load the next group descriptor. In this case the next pointer of the group
descriptor with eol set must be valid.

The circular list of group descriptors is processed by the client giving a stream com-
mand that makes the DMA load the next group descriptor. An alternative for the client
is to give a stream command that loads the next enabled group descriptor. If no enabled
group descriptor is found, the DMA stops at the group descriptor marked with eol when
passing the second time. Thebusyfield in therw streamcmdregister, discussed in the
section5.5.5.1is always released when the stream command has finished. To be able
to determine if an enabled group descriptor or not was found the client has to observe
the group meta data status and control fields.

Note that the DMA does not disable group descriptors when searching for enabled
group descriptors, the DMA only disables group descriptors when searching for en-
abled context descriptors.

5.5 Software Interface

The software interface use a set of C structs to represent the DMA list descriptors, and
a set of macros for basic stream commands, and register configuration. These structs
and macros are defined in [DMAMACROS].

To access registers, fields, and register constants from a C program, a set of macros is
defined in [DMA REG MACROS].

The DMA registers are described in detail in25.11.

Figure5.4provides a brief summary of the DMA pointer registers. For a more detailed
description see25.11.

5.5.1 Pointer Registers and Descriptors

Each DMA channel has a set of list managing registers for pointers, status, ctrl and
meta data. Other registers such as general, interrupt, and the stream command registers
are used to control the DMA operation. The only registers in figure5.4 that should be
modified by SW are eitherrw groupor rw groupdown.

5.5. SOFTWARE INTERFACE 285

rw_group_next

rw_group

rw_group_up

rw_group_down

rw_ctxt

rw_ctxt_next

rw_saved_data

rw_data

rw_data_next

rw_saved_data_buf

rw_data_after

rw_data_buf

Group

Group Group

Context Context

Data

Data

Context

Buffer *

* rw_data_after points to the first byte after the data buffer

Figure 5.4:Pointer registers

Note that the pointer registers represent how far the DMA has processed the list, and
that this may differ from what the DMA client sees due to internal buffering of data
or other speculative behavior. However, when the DMA saves the current context it
automatically compensates for this and always saves the context seen by the DMA
client.

5.5.2 DMA List Pointers

5.5.2.1 DMA List Pointer Registers

The following pointer registers can be modified by software and are used for DMA list
pointer configuration:

Register Description

rw group Group descriptor register. This register holds the pointer to
the current group descriptor.

rw groupdown Group descriptor down register. This register holds the down
pointer of the current group descriptor.

Table 5.4:DMA List Pointer Registers

Note that the other DMA list pointer registers should not normally be used. If software
wants to examine the exact position of the current context, as seen by the DMA client,
SW must save the current context by a stream command and examine the contents of
the context descriptor in memory.

286 CHAPTER 5. DMA

5.5.2.2 DMA List Pointer Configuration

The following shows how to configurerw group and rw groupdown by using the
macro definitions in [DMAREG MACROS].

Set Group Start Pointer:

// Write the initial group pointer to the rw_group register.
//
REG_WR(dma, instance, rw_group, (unsigned int) *group);

Set Context Start Pointer:

// Write the initial context pointer to the rw_group_down register.
//
REG_WR(dma, instance, rw_group_down, (unsigned int) *context);

5.5.3 General DMA Operation

5.5.3.1 General DMA Operation Registers

5.5.3.1.1 rw cmd

Registerrw cmdis used by software after appending new data descriptors to a data list.
See25.11for register details, and [DMAMACROS] for macro definition.

// Set the continue_data-bit of rw_cmd.
//
DMA_CONTINUE_DATA(instance);

5.5.3.1.2 rw cfg

Registerrw cfg is used to start and stop DMA operation. See25.11for register details,
and [DMA MACROS] for macro definition.

// Set the en-bit of rw_cfg.
//
DMA_ENABLE(instance);

// Deassert the en-bit of rw_cfg.
//
DMA_RESET(instance);

// Set the stop-bit of rw_cfg.
//

5.5. SOFTWARE INTERFACE 287

DMA_STOP(instance);

// Deassert the stop-bit of rw_cfg.
//
DMA_CONTINUE(instance);

5.5.3.1.3 rw stat

Registerrw statis updated by the DMA hardware with information about the internal
operation. See25.11for register details.

5.5.3.1.4 Setup and Start a Data Level DMA List

The following sequence shows an example of setup and start of a data level DMA list.
See [DMA MACROS] and [DMA REG MACROS].

· Example:

// Build the list.
//
init_list();

// Reset DMA channel.
//
DMA_RESET(dma_x);

// Enable DMA channel.
//
DMA_ENABLE(dma_x);

// Load the first pointer of the list, into the DMA register.
//
REG_WR(dma, dma_x, rw_group_down, (unsigned int) *context);

// The transfer word size is 1 byte by default. In this example the
// transfer word size is changed to 4 bytes.
//
DMA_WR_CMD(dma_x, regk_dma_set_w_size4);

// Load the context descriptor.
//
DMA_WR_CMD(dma_x, regk_dma_load_c);

// Load the start position and start the data burst.
//
DMA_WR_CMD(dma_x, regk_dma_load_d | regk_dma_burst);

288 CHAPTER 5. DMA

5.5.4 Interrupt

5.5.4.1 Interrupt Registers

The following registers are used to handle the interrupts from group, context and data
descriptors, and in-channel eop and stream commands. When an interrupt is generated,
the DMA operation continues without waiting for the acknowledge.

Register Description

r intr

r maskedintr

rw intr mask Enable/disable interrupt generation.

rw ack intr Clear interrupts; streamcmd, eop, data, context,
and group

Table 5.5:DMA Interrupt Registers

5.5.4.2 Interrupt Signals

Table5.6 lists the DMA interrupt signals.

Interrupt Description

group A group descriptor interrupt is generated when a group
descriptor pointer is followed and the intr bit of the
current group descriptor is set.

ctxt A context descriptor interrupt is generated when a
context descriptor pointer is followed and the intr bit of
the current context descriptor is set.

data A data descriptor interrupt is generated when a data
descriptor pointer is followed and the intr bit of the
current data descriptor is set. Also generated when the
last data descriptor has been fully processed and the intr
bit of the last data descriptor is set.

in eop An in eop interrupt is generated when the status field of
the current data descriptor field is updated.

streamcmd A stream command interrupt is generated when a stream
command has been executed.

Table 5.6:DMA Interrupt Signals

All DMA interrupts listed in table5.6 are generated after the descriptor, data buffer,
and status registers are updated, i.e. it is safe for the interrupt handler to examine the
updated DMA list and registers.

5.5.5 Stream Commands Controlling the DMA List Operation

As described in section5.4, the traversing of DMA lists is primarily controlled by
stream commands. The client documentation will describe how to set up and command
the DMA for that specific client.

Some stream clients allow software to give stream commands and examine stream

5.5. SOFTWARE INTERFACE 289

command status, other clients do not have this feature. The rest of section5.5.5and
subsections assume the connected stream client has this feature, for other clients some
or all functionality described may be missing. Please refer to the appropriate stream
client documentation.

5.5.5.1 rw stream cmd

Therw streamcmdregister contains the last stream command given by SW. This reg-
ister is not updated with commands given by the DMA client. The client documentation
will describe if and when SW may write to this register to load and store descriptors
etc.

For all details see25.11.

5.5.5.2 Summary of Stream Commands

Table 5.7 gives a summary of the stream commands and the options which can be
used with each command. Each command and option are explained in greater detail
in the following sections below. Stream commands are written to thecmdfield in the
rw streamcmdregister.

Type of Command Command Options

General storedescr dis g, dis c, storeg, storec, storemd

General set reg storeg, storec, storemd

Group Level load g

Group Level load g next copy up, next en, array, storeg, storec,
storemd

Group Level load g up savedown, copy next, storeg, storec,
storemd

Group Level load g down saveup, storeg, storec, storemd

Context Level load c storeg, storec, storemd

Context Level load c next updatedown, next en, array, storeg, storec,
storemd

Context Level load c n updatedown, next en, array, storeg, storec,
storemd

Data Level ack pkt restore, storeg, storec, storemd

Data Level load d burst, next pkt, storeg, storec, storemd

Data Level setw size1 storeg, storec, storemd

Data Level setw size2 storeg, storec, storemd

Data Level setw size4 storeg, storec, storemd

Table 5.7:Summary of Stream Commands

5.5.5.3 Stream Command Option Descriptions

Table5.8 gives a detailed explanation of the options which can be used with stream
commands.

Option Description

290 CHAPTER 5. DMA

dis g Disable the current group descriptor. Assumes a group
descriptor already loaded into the DMA registers. Normally
used with thestoreg option. This changes the list structure
when the current group descriptor is stored to memory.

dis c Disable the current context descriptor. Assumes a context
descriptor already loaded into the DMA registers. Normally
used with thestorec option. This changes the list structure
when the current context descriptor is stored to memory.

copy up Copy up. Keeps the current pointer to upper descriptor,
rw groupup, when loading the next descriptor. Observe that
this changes the list structure if the current group descriptor is
stored to memory. Use withload g next.

next en Next enabled. If the next group or context descriptor is not
enabled its next group or context descriptor is loaded, and so
on, until an enabled descriptor is found, or the end of list is
visited for the second time. This assumes the last group
descriptor of the list has a valid pointer to its next group
descriptor. Use withload g next, load c next, andload c n.

array Array. Override thenext encircular list behavior and stop at
first end of list if no enabled group or context descriptor is
found. Only considered whennext enis true. Use with
load c next, andload c n.

savedown Save down. Copies the current group descriptor address,
rw group, to the lower group descriptor pointer register,
rw groupdown, and then keeps it when loading the upper
group descriptor. Observe that this changes the list structure if
the current group descriptor is stored to memory. Use with
load g up.

copy next Copy the next pointer of the current group descriptor.
Overridessavedown. Copies the current pointer to the next
group descriptor address, rwgroupnext, to the lower group
descriptor pointer register, rwgroupdown, and then keeps it
when loading the upper group descriptor. Observe that this
changes the list structure if the current group descriptor is
stored to memory. Use withload g up.

saveup Save up. Copies the current group descriptor address,
rw group, to the upper group descriptor pointer register,
rw groupup, and then keeps it when loading the lower group
descriptor. Observe that this changes the list structure if the
current group descriptor is stored to memory. Use with
load g down.

updatedown Update down. Makes the DMA register, rwgroupdown, point
to the loaded context descriptor. Observe that this changes the
list structure if the current group descriptor is stored to
memory. Use withload c nextandload c n.

restore Restore context. Restarts transfer at rwsaveddata and
rw saveddatabuf. All data received since the position was
last saved is discarded, and all transmitted data is resent.
Internally buffered data is discarded. Used withack pkt.

burst Start burst. Starts transfer from the buffer address in
rw savedbuf. Used withload d.

5.5. SOFTWARE INTERFACE 291

next pkt Find the next packet. Current packet, and data internally
buffered in the DMA, is discarded. The DMA finds the next
data descriptor with outeop set and loads the first data
descriptor of next packet. If the burst flag is set the transfer
starts from the buffer address in rwdatabuf. If eol is found
before the beginning of a new packet, the context is disabled.
Wait should be set in all data descriptors with outeop set, to
avoid multiple packets in the internal DMA buffer, since they
will be discarded. Used withload d.

storemd Store meta data. Stores meta data to the current data
descriptor. The meta data is sampled from the DMA client
when the stream command is sampled by the DMA. Used with
all stream commands exceptload g.

storec Store the current context in the context descriptor. Stores
status, the pointer to current data descriptor, the pointer to the
current buffer position and the meta data. The meta data is
sampled when the client strobes this stream command. Note
that the values stored in the descriptor may differ from the
values seen by SW in the DMA registers, due to internal
buffering and speculative behavior of the DMA. Used with all
stream commands exceptload g.

storeg Store the current group descriptor. Stores status, current
pointers to upper and lower descriptors, where the lower may
be a context descriptor or a group descriptor, and the meta data.
The meta data is sampled when the client strobes this stream
command. Used with all stream commands exceptload g.

Table 5.8:Stream Command Options

Note The storeg andstorec options are generally executed before a command. If
not, the exception to this rule is described with the detailed explanation of the
command.

5.5.5.4 General Stream Commands

Table5.9 explains the general stream commands and lists the options which can be
used with it. For an explanation of the options, see table5.8.

Stream Command Description Options

storedescr No operation unless the options are set. The
disable options are executed before the store
options.

dis g
dis c
storeg
storec
storemd

set reg Used to modify pointer registers, see section
5.5.5.4.1. For non pointer registers the
command is a no operation.

storeg
storec
storemd

Table 5.9:General Stream Command

292 CHAPTER 5. DMA

5.5.5.4.1 Pointer registers

The following registers are pointer registers:rw data, rw datanext, rw databuf, rw dataafter,
rw ctxt, rw ctxt next, rw saveddata, rw saveddatabuf, rw group, rw groupnext, rw groupup,
andrw groupdown. The value written is taken from the stream client, where it must be
accessible. Otherwise an unknown value will be used, making access to pointer regis-
ters useless. For a DMA channel connected to the I/O Processor the value is taken
from I/O Processor registeriop dmc in.rw ctxt descrmd1 for a DMA input chan-
nel, and fromiop dmc out.rw ctxt descrmd1 for a DMA output channel. The field
rw streamcmd.n* 8 select which register is updated according to the offset field in
25.11by theset regstream command.

5.5.5.5 Group Level Stream Commands

Table5.10explains the group level stream commands and lists the options which can
be used with them. For an explanation of the options, see table5.8.

Command Description Options

load g Load group descriptor. Loads group
descriptor from the address in rwgroup.
rw group must be preloaded.

load g next Load the next group descriptor. Loads group
descriptor from the address in
rw groupnext. This assumes a group
descriptor already has been loaded into the
DMA registers, and that the pointer to the
next group is valid. The store options are
executed before the loading of the next
group descriptor. Note that eol in the current
group descriptor is only used when the
next enoption is true.

copy up
next en
array
storeg
storec
storemd

load g up Load upper group descriptor. Loads group
descriptor from the address in rwgroupup.
This assumes a group descriptor already
loaded into the DMA registers, and that the
tol bit in current group descriptor is false. If
tol in the current group descriptor is true no
new group descriptor is loaded. The store
options are always executed, and are
executed before loading the upper group
descriptor.

savedown
copy next
storeg
storec
storemd

load g down Load lower group descriptor. Loads group
descriptor from the address in
rw groupdown. This assumes a group
descriptor already loaded into the DMA
registers, and that the bol bit in current
group descriptor is false. If bol in the current
group descriptor is true no new group
descriptor is loaded. The store options are
always executed, and are executed before
loading the lower group descriptor.

saveup
storeg
storec
storemd

Table 5.10:Group Level Stream Commands

5.5. SOFTWARE INTERFACE 293

5.5.5.6 Context Level Stream Commands

Table5.11explains the context level stream commands and lists the options which can
be used with them. For an explanation of the options, see table5.8.

Command Description Options

load c Load context descriptor. Loads context
descriptor from the address in
rw groupdown. If a group level descriptor
is not present, rwgroupdown must be
preloaded. The store options are executed
before the loading of the context descriptor.

storeg
storec
storemd

load c next Load the next context descriptor. Loads
context descriptor from the address in
rw ctxt next. This assumes a context
descriptor already has been loaded into the
DMA registers, and that the pointer to the
next context is valid. The store options are
executed before the loading of the next
context descriptor. Note that eol in the
current context descriptor is only used
when the nexten option is true.

updatedown
next en
array
storeg
storec
storemd

load c n Load the n:th context descriptor. Random
access in array of context descriptors.
Loads context descriptor from the address
in rw groupdown + sizeof(context
descriptor) * n. To load the first context
with this stream command, n must be zero.
Use this stream command with caution.
The store options are executed before the
loading of the next group descriptor. Note
that eol in the current context descriptor is
only used when thenext enoption is true.

updatedown
next en
array
storeg
storec
storemd

Table 5.11:Context Level Stream Commands

5.5.5.7 Data Level Stream Commands

Table5.12explains the data level stream commands and lists the options which can be
used with them. For an explanation of the options, see table5.8.

Command Description Options

ack pkt Acknowledge packet. Nop stream command
making the transfer continue. Normally used
to ack wait bit in data descr. Loads the next
data descriptor. Thestoreg andstoremd
options are executed before the loading of the
next data descriptor. Thestorec option is
executed after the loading of the next data
descriptor. If eol is true in the current
descriptor the context will be disabled and no
new data descriptor will be loaded. The
command options are executed in the
following order:
1. storeg
2. storemd
3. restoreor storec

restore
storeg
storec
storemd

294 CHAPTER 5. DMA

load d Load data descriptor. Loads data descriptor
from address rwsaveddata.load d assumes a
context descriptor already loaded into the
DMA registers. (note) The optionnext pkt
assumes a data descriptor already loaded into
the DMA registers. Thestoreg andstoremd
options are executed before the data descriptor
is loaded. When the optionnext pkt is used,
the optionstorec is executed after the new
data descriptor is loaded. The command
options are executed in the following order:
1. storeg
2. storemd
3. next pkt
4. storec
5. burst

burst
next pkt
storeg
storec
storemd

setw size1 Set word size to 1 byte (default). May only be
set at the packet boundary.

storemd
storec
storeg

setw size2 Set word size to 2 bytes. May only be set at
the packet boundary.

storemd
storec
storeg

setw size4 Set word size to 4 bytes. May only be set at
the packet boundary.

storemd
storec
storeg

Table 5.12:Data Level Stream Commands

Note: An alternative to load a context descriptor is to let software write torw saveddata,
rw saveddatabuf, andrw ctxt ctrl.

5.5.5.8 Stream command ready

When a stream command is given, the stream client must wait for the ready condition,
before evaluating status and examining meta data.

Table5.14defines how a stream client can detect when a stream command is ready, the
resulting status of the stream command, and how the stream command change meta
data.

In table5.14the following abbreviations of stream signals etc. are used. DMA registers
are described in25.11, and I/O Processor DMC registers are described in25.16and
25.17.

Abbreviations Definition

busy rw streamcmd.busy

grp.en rw groupctrl.en

grp.tol rw groupctrl.tol

grp.bol rw groupctrl.bol

grp.dis rw groupstat.dis

ctxt.en rw ctxt ctrl.en

ctxt.dis rw ctxt stat.dis

next en Stream command option, See table5.8

5.5. SOFTWARE INTERFACE 295

gmdv Group Meta Data Valid as seen by the stream client.
Eg. I/O Processor register field
iop dmc in.r streamstat.groupmd valid for a DMA input channel,
andiop dmc out.r streamstat.groupmd valid for a DMA output
channel.

cmdv Context Meta Data Valid as seen by the stream client.
Eg. I/O Processor register field
iop dmc in.r streamstat.ctxtmd valid for a DMA input channel,
andiop dmc out.r streamstat.ctxtmd valid for a DMA output
channel.

mdv Meta Data Valid as seen by the stream client.
Eg. I/O Processor register field
iop dmc in.r streamstat.datamd valid for a DMA input channel,
andiop dmc out.r streamstat.datamd valid for a DMA output
channel.

toggle First cleared then set, to always generate a positive transition.
If initially set: 1->0->1
If initially clear: 0->0->1

at eol DMA has used all of the data list

IN DMA input channel

OUT DMA output channel

Table 5.13:Abbreviations for Stream Command Ready table

Command Ready Status OK MD change, if any

storedescr !busy 1 dis g => gmdv toggle,
dis c => cmdv toggle,
storec & at eol => cmdv toggle

set reg !busy 1 storec & at eol => cmdv toggle

load g !busy 1 gmdv toggle,
cmdv cleared,
mdv cleared

load g next !busy !next en| (next en
& grp.en &
!grp.dis)

gmdv toggle,
cmdv cleared,
mdv cleared

load g up !busy !grp.tol gmdv toggle,
cmdv cleared,
mdv cleared

load g down !busy !grp.bol gmdv toggle,
cmdv cleared,
mdv cleared

load c !busy 1 cmdv toggle,
mdv cleared

load c next !busy !next en| (next en
& ctxt.en &
!ctxt.dis)

cmdv toggle,
mdv cleared,
next en & (!ctxt.en| ctxt.dis) =>
gmdv toggle

load c n !busy !next en| (next en
& ctxt.en &
!ctxt.dis)

cmdv toggle,
mdv cleared,
next en & (!ctxt.en| ctxt.dis) =>
gmdv toggle

ack pkt !busy + 20ns
NOT
TESTED

1 IN: mdv toggle,
OUT: mdv toggle at pkt start out of
internal buffer, see section5.5.5.8.1,
storec & at eol => cmdv toggle

296 CHAPTER 5. DMA

load d !busy + 20ns
NOT
TESTED

IN: 1 OUT:
!next pkt |
(next pkt & mdv)

mdv toggle

setw size1 !busy 1 storec & at eol => cmdv toggle

setw size2 !busy 1 storec & at eol => cmdv toggle

setw size4 !busy 1 storec & at eol => cmdv toggle

Table 5.14:Stream Command Ready

5.5.5.8.1 ack pkt and mdv

The mdv field toggles when the beginning of a new packet is visible to the stream
client . If ack pkt is given as response to a DMA request to the stream client , eg.
iop dmc out.r streamstat.cmdrq, the internal buffer is empty and mdv will toggle.
This is the normal case for a stream client.

5.5.5.9 rw stream cmd MACRO

See [DMA MACROS] and [DMA REG MACROS].

// Wait until the busy-bit is unset, then writes the command to
// rw_stream_cmd.
//
DMA_WR_CMD(instance, command);

5.5.6 Descriptor Format

5.5.6.1 Data Descriptor

A data descriptor has a 16 byte memory area which must be located within a single
cache line, i.e. if bit 4 in addr below is set, bits 3 to 0 must be zero.

Data descriptor format:

addr + 3 addr + 2 addr + 1 addr + 0

*(addr + 0)

*(addr + 4)

*(addr + 8)

*(addr + 12)after

md status ctrl

buf

next

Figure 5.5:Data descriptor format

Field Size Description

next dword Pointer to the next data descriptor.

5.5. SOFTWARE INTERFACE 297

buf dword Pointer to first byte of the data buffer.

ctrl byte Control field read by the DMA.

status byte Status field written to by the DMA.

md word Meta data. Sent to the client at the beginning of each
transfer. Stored when the client signals eop, or gives a
command that requires storage.

after dword Pointer to the byte after the last byte of the data buffer.

Table 5.15:Data Descriptor Format

Data descriptorctrl field format:

0 0 wait intr 0 0out_eop

7 6 5 4 3 2 1 0

eol

Figure 5.6:Data descriptor control field

Bit Name Description

7-6 Reserved.

5 wait Initiates waitack sequence. Makes the DMA stop and wait for
a stream command, after the last readable data of the DMA
buffer has been sent to the client. Out channel only. Ignored by
in channel.

4 intr Data descriptor interrupt generated when the next data
descriptor is loaded. If the eol bit in the ctrl field of this data
descriptor is set to one, i.e. there is no next data descriptor, the
interrupt is generated after this data descriptor is fully
processed.

3 out eop This is the last descriptor of packet to be transmitted. Out
channel only. Ignored by in channel.

2-1 Reserved.

0 eol Last descriptor of the list.

Table 5.16:Data Descriptor ctrl Field Format

Data descriptorstatusfield format:

0 0 0 0in_eop

7 6 5 4 3 2 1 0

00 0

Figure 5.7:Data descriptor status field

Bit Name Description

7-4 Reserved.

3 in eop This is the last descriptor of the received packet. In channel
only. Ignored by out channel

2-0 Reserved.

Table 5.17:Data Descriptor status Field Format:

298 CHAPTER 5. DMA

5.5.6.2 Context Descriptor

A context descriptor is a 32 byte memory area which must be located within a single
cache line, i.e. bits 4..0 in addr below must be zero.

General context descriptor format:

addr + 3 addr + 2 addr + 1 addr + 0

*(addr + 0)

*(addr + 4)

*(addr + 8)

*(addr + 12)md2

md0 status ctrl

md1

next

*(addr + 16)

*(addr + 20)

*(addr + 24)

*(addr + 28)

md3 (reserved)

md4 (reserved)

saved_data

saved_data_buf

Figure 5.8:General Context Descriptor Format

Field Size Description

next dword Pointer to the next context descriptor.

ctrl byte Control field read by the DMA.

status byte Status field written to by the DMA.

md0 word Meta data 0. Sent to the client when the DMA context
descriptor registers are updated. Stored when the
client gives a command that requires storage.

md1 dword Meta data 1. Sent to the client when the DMA context
descriptor registers are updated. Stored when the
client gives a command that requires storage.

md2 dword Meta data 2. Sent to the client when the DMA context
descriptor registers are updated. Stored when the
client gives a command that requires storage.

md3 dword Reserved.

md4 dword Reserved.

saveddata dword Pointer to saved data descriptor.

saveddatabuf dword Pointer to the last saved position of the data buffer.

Table 5.18:General Context Descriptor Format

General context descriptorctrl field format:

en

store_mode

0 intr 0 0

7 6 5 4 3 2 1 0

eol0

Figure 5.9:General context descriptor ctrl field format

5.5. SOFTWARE INTERFACE 299

Bit Name Description

7 en Indicates if this context descriptor is enabled.

6 storemode Indicates that the context descriptor may be stored at any
time during data transfer(1), or at waitack only(0). The
buffer space must be at least 68 bytes to guarantee full DMA
performance, when a context descriptor is to be stored at any
time. Out channel only. Ignored by in channel.

5 Reserved.

4 intr Indicates that an interrupt is generated when the next or n:th
context descriptor is loaded.

3-1 Reserved.

0 eol This is the last descriptor of the list.

Table 5.19:General context descriptor ctrl field format

General context descriptorstatusfield format:

dis 0 0 0 0

7 6 5 4 3 2 1 0

000

Figure 5.10:General context descriptor status field format

Bit Name Description

7 dis Disable. Indicates if this context descriptor has been disabled
by the DMA. This bit has higher priority than the en bit of the
ctrl field.

6-0 Reserved.

Table 5.20:General Context Descriptor status Field Format

5.5.6.3 Group Descriptor

A group descriptor has a 16 byte memory area which must be located within a single
cache line, i.e. if bit 4 in addr below is set, bits 3 to 0 must be zero.

Group Descriptor Format:

addr + 3 addr + 2 addr + 1 addr + 0

*(addr + 0)

*(addr + 4)

*(addr + 8)

*(addr + 12)down

md status ctrl

up

next

Figure 5.11:Group descriptor format

300 CHAPTER 5. DMA

Field Size Description

next dword Pointer to the next group descriptor at the same level of the
group descriptor hierarchy.

ctrl byte Control field read by the DMA.

status byte Status field written to by the DMA.

md dword Meta data. Sent to the client when the DMA group
descriptor registers are updated. Stored when the client
gives a command that requires storage.

up dword Pointer to group descriptor at level above the present group
in the group hierarchy.

down dword Pointer to group descriptor at level beneath the present
group in the group hierarchy. In a leaf group descriptor
down is a pointer to a context descriptor.

Table 5.21:Group descriptor format

Group descriptorctrl field format:

en 0 intr bol tol0

7 6 5 4 3 2 1 0

eol0

Figure 5.12:Group descriptor ctrl field format

Bit Name Description

7 en Indicates if the group descriptor is enabled.

6-5 Reserved.

4 intr Indicates that an interrupt is generated when the next, upper or
lower group descriptor is loaded.

3 Reserved.

2 bol Current group descriptor is at the lowest level.

1 tol Current group descriptor is at the highest level.

0 eol End of group descriptor list at the current level.

Table 5.22:Group Descriptor ctrl Field Format

Group descriptorstatusfield format:

dis 0 0 0

7 6 5 4 3 2 1 0

0000

Figure 5.13:Group descriptor status field format

Bit Name Description

7 dis Indicates if this group descriptor is disabled by the DMA. This
bit has higher priority than the en bit of the ctrl field.

6-0 Reserved.

Table 5.23:Group descriptor status field format

5.5. SOFTWARE INTERFACE 301

5.5.6.4 Examples

Examples of DMA descriptor and list initialization, and stream command usage. The
examples use the C structs and macros defined in [DMAMACROS].

5.5.6.4.1 Data Level List Setup

The following code shows the initialization of the in and out channel list described in
section5.4.1:

#define NBR_OF_CONTEXTS_IN_ARRAY 1
#define NBR_OF_DATA 3
#define BUFFER_SIZE 128
dma_descr_context c[NBR_OF_CONTEXTS_IN_ARRAY];
dma_descr_data data[NBR_OF_CONTEXTS_IN_ARRAY * NBR_OF_DATA];
char buffers[NBR_OF_DATA * BUFFER_SIZE];

Out channel data level list setup:

void init_out_channel_list() {
c[0].next = NULL;
c[0].eol = 0;
c[0].intr = 0;
c[0].store_mode = 1;
c[0].en = 1;
c[0].dis = 0;
c[0].md0 = Out_List_meta_data_0;
c[0].md1 = Out_List_meta_data_1;
c[0].md2 = Out_List_meta_data_2;
c[0].saved_data = &data[0];
c[0].saved_data_buf = &buffers[first_byte_of_packet_1];

data[0].next = &data[1];
data[0].buf = &buffers[first_byte_of_packet_1];
data[0].eol = 0;
data[0].out_eop = 0;
data[0].intr = 1;
data[0].wait = 0;
data[0].md = packet_1_meta_data;
data[0].after = &buffers[first_byte_of_packet_1 + BUFFER_SIZE];

data[1].next = &data[2];
data[1].buf = &buffers[first_byte_of_packet_1 + BUFFER_SIZE];
data[1].eol = 0;
data[1].out_eop = 1;
data[1].intr = 0;
data[1].wait = 1; // wait for client to give stream command
data[1].md = packet_1_meta_data;
data[1].after = &buffers[last_byte_of_packet_1 + 1];

302 CHAPTER 5. DMA

data[2].next = NULL;
data[2].buf = &buffers[first_byte_of_packet_2];
data[2].eol = 1;
data[2].out_eop = 1;
data[2].intr = 0;
data[2].wait = 1; // wait for client to give stream command
data[2].md = packet_2_meta_data;
data[2].after = &buffers[last_byte_of_packet_2 + 1];

}

In channel data level list setup:

void init_in_channel_list() {
c[0].next = NULL;
c[0].eol = 0;
c[0].intr = 0;
c[0].store_mode = 1;
c[0].en = 1;
c[0].dis = 0;
c[0].md0 = In_List_meta_data_0;
c[0].md1 = In_List_meta_data_1;
c[0].md2 = In_List_meta_data_2;
c[0].saved_data = &data[0];
c[0].saved_data_buf = &buffers[In_packet_buffer];

data[0].next = &data[1];
data[0].buf = &buffers[In_packet_buffer];
data[0].eol = 0;
data[0].intr = 1;
data[0].in_eop = 0;
data[0].md = In_List_meta_data;
data[0].after = &buffers[In_packet_buffer + 1 * BUFFER_SIZE];

data[1].next = &data[2];
data[1].buf = &buffers[In_packet_buffer + 1 * BUFFER_SIZE];
data[1].eol = 0;
data[1].intr = 0;
data[1].in_eop = 0;
data[1].md = In_List_meta_data;
data[1].after = &buffers[In_packet_buffer + 2 * BUFFER_SIZE];

data[2].next = NULL;
data[2].buf = &buffers[In_packet_buffer + 2 * BUFFER_SIZE];
data[2].eol = 1;
data[2].intr = 0;
data[2].in_eop = 0;
data[2].md = In_List_meta_data;
data[2].after = &buffers[In_packet_buffer + 3 * BUFFER_SIZE];

}

5.5. SOFTWARE INTERFACE 303

5.5.6.4.2 Data List Modification

This example assumes the DMA has stored one packet in data[0] and one packet in
data[1] above, it is also assumed SW has processed the contents of the packets of
data[0] and data[1]. The code below re-initializes data[0] and data[1] and append them
at the end of the list above. The resulting list then is data[2], data[0] and data[1].

In channel reuse processed data descriptors and buffers:

// Re-initialize the fields that were effected by the previous transfer

data[0].in_eop = 0;
data[0].md = In_List_meta_data;
data[0].after = &buffers[In_packet_buffer + 1 * BUFFER_SIZE];

data[1].in_eop = 0;
data[1].md = In_List_meta_data;
data[1].after = &buffers[In_packet_buffer + 2 * BUFFER_SIZE];

// Make data[1] the eol descriptor.

data[1].eol = 1;

// Update the former eol descriptor with next-pointer and unset eol.

data[2].next = &data[0];
data[2].eol = 0;

DMA_CONTINUE_DATA(dma_x); // Make the DMA reload the last descriptor.

Out channel allocate more data descriptors and buffers:

// Create a new list
dma_descr_data new_data;
char new_buffer[BUFFER_SIZE];

new_data.next = NULL;
new_data.buf = &new_buffer[0];
new_data.eol = 1;
new_data.out_eop = 1;
new_data.intr = 0;
new_data.wait = 1;
new_data.md = new_packet_meta_data;
new_data.after = &new_buffer[BUFFER_SIZE];

// Update the former eol descriptor, created by init_out_channel_list(),
// with next-pointer and unset eol.

data[2].next = &new_data;
data[2].eol = 0;

304 CHAPTER 5. DMA

// This should work independent of the current DMA state.

DMA_CONTINUE_DATA(dma_x);

5.5.6.4.3 Data List Modification and Multiple Contexts

When the DMA is working with multiple contexts the procedure to append new data
to a data list has to be extended to assure the DMA hardware and the DMA data and
context lists are synchronized. The procedure is as follows

// Tell DMA there is more data
DMA_CONTINUE_DATA(dma_x);

// Wait for continue data to take effect
reg_dma_rw_stat r;
r = REG_RD(dma, dma_x, rw_stat);
while(r.mode != regk_dma_running);

DMA_WR_CMD(dma_x, regk_dma_store_descr); // store_descr without options
// is a NOP, that is guaranteed
// to execute after continue data.

// Mark the context as "enabled"
//
// Here the DMA may already have consumed the new list and disabled
// the context, but it is OK to enable it anyway. In this case the DMA
// will try to run the falsely enabled context next time, and disable
// it again.
c[0].dis = 0;

5.5.6.4.4 Context Level List Setup

The following code shows the initialization of the list described in section5.4.2:

#define NBR_OF_CONTEXTS_IN_ARRAY 3
#define NBR_OF_DATA 1
#define BUFFER_SIZE 128

dma_descr_context c[NBR_OF_CONTEXTS_IN_ARRAY];

dma_descr_data data[NBR_OF_CONTEXTS_IN_ARRAY * NBR_OF_DATA];

void init_list() {
c[0].next = &c[1];
c[0].eol = 0;
c[0].intr = 0;
c[0].store_mode = 1;
c[0].en = 1;

5.5. SOFTWARE INTERFACE 305

c[0].dis = 0;
c[0].md0 = Context0_meta_data_0;
c[0].md1 = Context0_meta_data_1;
c[0].md2 = Context0_meta_data_2;
c[0].saved_data = &data[0];
c[0].saved_data_buf = NULL;

c[1].next = &c[2];
c[1].eol = 0;
c[1].intr = 0;
c[1].store_mode = 1;
c[1].en = 0;
c[1].dis = 0;
c[1].md0 = Context1_meta_data_0;
c[1].md1 = Context1_meta_data_1;
c[1].md2 = Context1_meta_data_2;
c[1].saved_data = NULL;
c[1].saved_data_buf = NULL;

c[2].next = &c[0];
c[2].eol = 1;
c[2].intr = 0;
c[2].store_mode = 1;
c[2].en = 0;
c[2].dis = 0;
c[2].md0 = Context2_meta_data_0;
c[2].md1 = Context2_meta_data_1;
c[2].md2 = Context2_meta_data_2;
c[2].saved_data = NULL;
c[2].saved_data_buf = NULL;

data[0].next = NULL;
data[0].buf = NULL;
data[0].eol = 0;
data[0].out_eop = 0;
data[0].intr = 0;
data[0].wait = 0;
data[0].in_eop = 0;
data[0].md = Data0_meta_data;
data[0].after = NULL;

};

5.5.6.4.5 Context List Modification

When modifying the context list the DMA should be stopped to prevent any modifica-
tion initiated by the DMA. See [DMAMACROS] and [DMA REG MACROS].

// Stop the DMA.

DMA_STOP(dma_x);

306 CHAPTER 5. DMA

// Check that the DMA has stopped.

reg_dma_rw_stat r;
r = REG_RD(dma, dma_x, rw_stat);
while(r.mode != regk_dma_stopped);

// The current context pointer may be examined.

REG_RD(dma, dma_x, rw_ctxt);

// Modify context list.

c[1].next = &c[2];
c[1].saved_data = &new_data_descr;

The next steps depend on the desired behavior.

One way is to simply start the DMA again.

DMA_CONTINUE(dma_x);

To check that the DMA is running again.

reg_dma_rw_stat r;
r = REG_RD(dma, dma_x, rw_stat);
while(r.mode != regk_dma_running);

5.5.6.4.6 Group Level List Setup

The following code shows the initialization of the list described in section5.4.3:

#define NBR_OF_GROUPS 4
#define NBR_OF_CONTEXTS 4
dma_descr_group g[NBR_OF_GROUPS];
dma_descr_context c[NBR_OF_CONTEXTS_IN_ARRAY];
dma_descr_data d[NBR_OF_CONTEXTS_IN_ARRAY * NBR_OF_DATA];
char b[NBR_OF_DATA * BUFFER_SIZE];

void init_list() {
g[0].next = &g[1];
g[0].eol = 0;
g[0].tol = 1;
g[0].bol = 0;
g[0].intr = 0;
g[0].en = 1;
g[0].dis = 0;
g[0].md = Group0_meta_data;
g[0].down.group = &g[2];

5.5. SOFTWARE INTERFACE 307

g[1].next = &g[0];
g[1].eol = 1;
g[1].tol = 1;
g[1].bol = 1;
g[1].intr = 0;
g[1].en = 1;
g[1].dis = 0;
g[1].md = Group1_meta_data;
g[1].down.context = &c[3];

g[2].next = &g[3];
g[2].eol = 0;
g[2].tol = 0;
g[2].bol = 1;
g[2].intr = 0;
g[2].en = 1;
g[2].dis = 0;
g[2].md = Group2_meta_data;
g[2].up = &g[0];
g[2].down.context = &c[0];

g[3].eol = 1;
g[3].tol = 0;
g[3].bol = 1;
g[3].intr = 0;
g[3].en = 1;
g[3].dis = 0;
g[3].md = Group3_meta_data;
g[3].down.context = &c[2];

c[0].next = &c[1];
c[0].eol = 0;
c[0].intr = 0;
c[0].store_mode = 1;
c[0].en = 0;
c[0].dis = 0;
c[0].md0 = Context0_meta_data_0;
c[0].md1 = Context0_meta_data_1;
c[0].md2 = Context0_meta_data_2;

c[1].next = &c[2];
c[1].eol = 0;
c[1].intr = 0;
c[1].store_mode = 1;
c[1].en = 0;
c[1].dis = 0;
c[1].md0 = Context1_meta_data_0;
c[1].md1 = Context1_meta_data_1;
c[1].md2 = Context1_meta_data_2;

c[2].eol = 1;
c[2].intr = 0;

308 CHAPTER 5. DMA

c[2].store_mode = 1;
c[2].en = 0;
c[2].dis = 0;
c[2].md0 = Context2_meta_data_0;
c[2].md1 = Context2_meta_data_1;
c[2].md2 = Context2_meta_data_2;

c[3].eol = 1;
c[3].intr = 0;
c[3].store_mode = 1;
c[3].en = 0;
c[3].dis = 0;
c[3].md0 = Context3_meta_data_0;
c[3].md1 = Context3_meta_data_1;
c[3].md2 = Context3_meta_data_2;

};

5.5.6.4.7 Group List Modification

When modifying the context list the DMA should be stopped to prevent any modifica-
tion initiated by the DMA. See [DMAMACROS] and [DMA REG MACROS].

// Stop the DMA.

DMA_STOP(dma_x);

// Check that the DMA has stopped.

reg_dma_rw_stat r;
r = REG_RD(dma, dma_x, rw_stat);
while(r.mode != regk_dma_stopped);

// The current group pointer may be examined.

REG_RD(dma, dma_x, rw_group);

// Modify group list.

g[1].bol = 0;
g[1].intr = 1;
g[1].md = New_meta_data;
g[1].down.group = &g[3];

The next steps depend on the desired behavior.

One way is to simply start the DMA again.

DMA_CONTINUE(dma_x);

5.5. SOFTWARE INTERFACE 309

To check that the DMA is running again.

reg_dma_rw_stat r;
r = REG_RD(dma, dma_x, rw_stat);
while(r.mode != regk_dma_running);

310 CHAPTER 5. DMA

Chapter 6

Boot Methods

6.1 Bootstrap Methods

There are several different methods to bootstrap the ETRAX FS. They are presented in
table6.1. The selection of bootstrap mode is done by pinsbs2-bs0which are sampled
upon reset going inactive. These values are also stored in the internal register field
config.r bootsel.bootmode. The boot sequence is performed by a program running in
ROM in the ETRAX FS.

Pinsbs2-bs0 Bootstrap method

000 NOR flash

001 Network rx

010 Network tx/rx

011 NAND flash

100 Serial

101 Master

110 Slave

111 No boot

Table 6.1:Overview of the Bootstrap Methods

6.2 Initialization

The following initialization is always performed:

· The caches are initialized and enabled.

· The clock region for the bus interface is always enabled in registerrw clk ctrl.

311

312 CHAPTER 6. BOOT METHODS

6.3 Flash

NOR and NAND flash boot is supported.

6.3.1 Empty flash

If the start of the chosen flash is six consecutive 0xff, indicating a MOVEM R15,0xffffffff
instruction which could normally only occur in empty flash, the boot mode will be
changed to Network rx.

6.3.2 NOR flash

Execution starts at cached address 0x0.

6.3.2.1 Bus width

NOR flash bus width is set from thebs6pin, sampled upon reset going inactive. This
value is also saved in the internal registerr bootsel.

bs6 Bus width

0 16

1 32

6.3.3 NAND flash

When booting from an 8-bit NAND flash the first 127 KB of the flash is copied to the
beginning of the internal RAM where it is called. If the NAND flash is a 16-bit device
the copying will only read the lower byte in each 16-bit word from the lower 254 KB
of the flash.

NAND flash memories that require a new page address for each new page read will
only supply the first page. This is not the normal behavior for NAND flash memories
though.

The spare area in the flash is not used.

6.3.3.1 NAND flash connection

The NAND flash has to be connected in the following way to facilitate boot:

NAND flash
pin

Connected to

CE pa4

RE csp0n

WE csp1n

SE pull up

6.4. NETWORK 313

CLE pa5

ALE pa6

WP pull up

RY pa7

Table 6.3:NAND flash connection

6.3.3.2 Address burst length

NAND flashes of different sizes may require different number of address bursts to read
data. This is shown in the data sheet for the flash.

bs3 bs4 Cycles

0 0 3

1 0 4

1 1 5

The bs3 pin is also used by network boot, and is only used for address burst length
when NAND flash boot is selected.

6.3.3.3 Read command end

Some NAND flashes require an extra command (0x30) to end a read command. This
is shown in the data sheet for the flash. Pinbs6 is used to select if this extra command
should be inserted at the end of a read command.

bs6 0x30 cmd

0 off

1 on

The bs6 pin is also used by NOR flash boot, and is only used for 0x30 command
insertion when NAND flash boot is selected.

6.4 Network

6.4.1 Initialization

If any of the network boot methods has been chosen the following initialization is done:

· The 25Mhz transceiver clock on pine0phyclk is started.

· The boot sequence will set pinphyrst n high at a time>200 µs and<300 µs
after the transciever clock has been started. This can be used to get a correct
reset of network transceivers that require a clock for some time before reset is
released.

314 CHAPTER 6. BOOT METHODS

6.4.2 Network rx

During network boot the ETRAX FS is listening for a specially formatted packet (ta-
ble 6.6) on Ethernet interface 0. The packet is downloaded to the internal RAM at
0x38000000 and the execution starts at the data part of the packet, at address 0x3800001e.

Byte nr Content (hex) Description

0-5 01 40 8c 00 02 00 Destination address. This is a multicast address
within the Axis Ethernet address block.

6-11 XX XX XX XX XX XX Source address. The address of the host
transmitting the bootstrap packet. This address is
not checked.

12-13 type-length This is currently not checked but it is
recommended that the contents follow the 802.3
standard.

14-21 AA AA 03 00 40 8C 88 56 A SNAP header featuring the Axis vendor code
(same as the Ethernet address block). This is the
Axis ether-type specifically assigned for this
purpose.

22-25 FF FF FF FF A tag signaling this packet as a bootstrap datagram.

26-29 00 00 00 00 The bootstrap packet sequence number. The
number must consist of only zeros in the first
packet in the bootstrap sequence.

30- XX ... Payload data to be executed. Max 1484 bytes long.

Table 6.6:Network bootstrap Ethernet header

6.4.3 Network tx/rx

The ETRAX FS can also transmit a specific packet during network boot to signal that
it is ready to accept a network boot packet. The transmission is repeated at about
0.1 second intervals for the first ten seconds after ETRAX FS reset and then at 1*n s
starting with n=1 until a boot packet is received. The reception works just as when
Network rx boot is selected.

Byte nr Content (hex) Description

0-5 01 40 8c 00 04 00 Destination address.

6-11 01 40 8c 00 02 00 Source address.

12-13 00 40 Length of the packet.

14-21 AA AA 03 00 40 8C 88 56 The SNAP header.

22-25 FF FF FF FF Bootstrap datagram tag.

26-29 00 00 00 00 The bootstrap packet sequence number. Increased
for each packet transmitted.

30-60 XX ... Random padding.

Table 6.7:Network boot transmitted Ethernet header

6.4.4 Duplex

Full/half duplex is selected withbs3.

6.5. SERIAL 315

bs3 Duplex

0 half

1 full

Table 6.8:Network duplex selection

6.5 Serial

Serial port 0 is used and is configured at 115200 baud, 8 bits with no parity, one start
bit and one stop bit. A total of 1024 bytes will be downloaded to the internal RAM
start plus offset 0x1e, to get the same code start address as during network boot, giving
0x3800001e where execution starts.

If the PLL is turned off, the configured baud rate will be 9600 for an input clock of 12
MHz.

6.6 Master chip boots slave

This is a bootstrap method for multi-chip designs where a chip configured as bus master
downloads a program to a slave chip. See chapter4 and4.3.12for more information
about master/slave bus interface.

A user program in the master downloads a program to a specific slave’s internal RAM
at 0x3800001e. After the boot program is loaded, the master setsboot rdy in the slave.

The boot ROM code in the slave pollsboot rdy, and jumps to 0x3800001e when the
bit is set.

The size of the data downloaded by the master must not be larger than 127 KB. There
is no minimum size.

6.7 Slave chip boots master

A user program in the slave puts a boot program for the master in the lower 127 KB of
the internal RAM of the slave, and then setsboot rdy in itself.

The boot ROM code in the master pollsboot rdy in the slave. When it is set, the boot
ROM program in the master copies the first 127 KB program from the slave over to its
own internal RAM and starts to execute it at 0x3800001e.

It is recommended that the loaded boot program in the master clears theboot rdy flag
in the slave to signal that the boot sequence is finished.

316 CHAPTER 6. BOOT METHODS

6.8 No boot and JTAG boot

Apart from the previously described boot methods it is possible to boot the ETRAX
FS via the JTAG interface and the guru mode code located in the same ROM as the
boot code. This is why there is aNo bootmode available which would be a appropriate
mode to use for that. This mode will just do an eternal nop loop.

The code for guru mode is described in17.

6.9 PLL mode

If the PLL should be turned on or not by the boot ROM is selected by pinbs5, sampled
upon reset going inactive. This value is also saved in registerrw clk ctrl.pll.

bs5 PLL

0 off

1 on

Chapter 7

MMU

7.1 References

Reference Description

[CRIS] CPU, chapter2

[REGS] Support registers, chapter25.37

[MACROS] CRIS v32 support function register access macros
http://developer.axis.com

[DEFS] MMU support function register constants and data types
http://developer.axis.com

7.2 Overview

The CPU is connected to two separate Memory Management Units (MMUs) that man-
ages the physical memory resources available in the system. An instruction MMU is
connected between the CPU and the instruction cache and a data MMU is connected
between the CPU and the data cache. Both MMUs use the same behavior and this
description can be applied to both the instruction and the data MMU.

The MMU has the following purposes:

· Protecting the code and data of one user-level application from other user-level
applications.

· Permitting user-level applications to share portions of the address space.

· Protecting the kernel-level code and data from user-level applications.

· Running applications that are partially resident in main memory. Only the most
recent part of such an application is normally stored in main memory: the rest
of the program is stored on disk until needed. This is more commonly known as
paging.

· Reference counting in support of e.g. a garbage collection mechanism.

317

http://developer.axis.com
http://developer.axis.com

318 CHAPTER 7. MMU

The MMU implements a virtual memory system where it creates the illusion of a very
large amount of memory exclusively available for each application. The MMU is used
to translate addresses within the virtual memory space into physical addresses that
maps to the physical memory available in the system.

7.3 Functional description

7.3.1 Non-protected mode

By default the MMU is disabled after reset. In this mode the CPU is considered to
be in non-protected mode and memory is accessed in the conventional manner. All
addresses are treated as physical addresses and will pass through the MMU without
any translation and protection mechanisms.

The MMU can be enabled in a general configuration register in the CPU. See the CPU
documentation2 for further details.

7.3.2 Physical memory

The caches in the system are physically addressed. A 32-bit virtual CPU address is
always translated by an MMU into a 32-bit physical address before being used in any
cache. The most significant bit of the translated physical address (bit 31) is used to
select between cached and non-cached accesses. Therefore it is only possible to address
2GByte of physical memory in the system. The physical memory space is divided
into several smaller regions to select between different types of external and internal
memory regions.

7.3.3 Virtual memory

The CPU uses the whole 32-bit address region to define a 4GByte virtual memory
space. Each application is given a separate 8-bit address space identifier that is used
by the MMU to separate its memory from other applications. Therefore 4GBytes of
virtual memory can be made available to each application.

The virtual memory is divided into 8 KByte pages which can be individually protected
and mapped to physical memory. The upper 19-bit part of the 32-bit CPU address is
known as the Virtual Page Number (VPN), while the lower 13-bit part is used as an
offset within each page. The VPN is translated into a 19-bit Physical Frame Number
(PFN) while the page offset remains unchanged through the MMU. The MMU uses the
CPU’s User and Kernel Modes to restrict access and select the appropriate mapping
from virtual to physical addresses in the virtual memory space.

Mapping from virtual address to physical address is handled by a Translation Looka-
side Buffer (TLB). The TLB is an on-chip cache that provides translations in the form
of TLB entries. Details about the TLB can be found in chapter7.3.4.

If a virtual-to-physical address translation is not found in the TLB, the MMU will
generate an exception to the CPU. The kernel software is then responsible for finding

7.3. FUNCTIONAL DESCRIPTION 319

a correct translation and update the TLB.

The MMU operates with two types of virtual memory areas:

· Kernel/user area - accessed in the CPU User and Kernel Modes, and mainly
contains user code and data structures.

· Kernel area - accessed in the CPU Kernel Mode only and may include kernel
code and data structures, I/O-buffers, DMA-buffers, mode registers, etc.

7.3.3.1 Kernel/User area

The kernel/user area is a uniform, virtual address area of 4 GBytes in size. It is divided
into 8 KByte pages that can be individually protected and mapped to physical mem-
ory. Mapping is executed through the TLB, which translates a virtual address into a
corresponding physical address.

Kernel/User virtual
memory area

4Gbytes arranged in
8Kbyte pages

TLB

0xFFFFFFFF

0x80000000
0x7FFFFFFF

0x00000000

Physical memory

Non-cached region

Cached region

Figure 7.1:Kernel/User virtual memory area

The lower 13 bits of the 32-bit virtual address is only used as an offset within each
8Kbyte page. The page offset is not changed by the translation while the 19-bit virtual
page number is translated into a 19-bit physical frame number.

320 CHAPTER 7. MMU

31 13 12 0

VPN Page offset

31 13 12 0

PFN Page offset

TLB

Figure 7.2:TLB Address translation

7.3.3.2 Kernel area

The kernel area is divided into sixteen 256 MByte segments designated seg0 to segf.
Each segment can be individually configured in therw mm cfg register to use either
page mapping or linear segment mapping.

Kernel virtual
memory area

4Gbytes
arranged in

16 x 256 Mbyte
segments

(seg_0 - seg_f)

TLB alternate
linrear

0xFFFFFFFF

0x80000000
0x7FFFFFFF

0x00000000

Physical memory

Non-cached region

Cached region

Figure 7.3: Kernel virtual memory area

Segments that use page mapping are divided into 8 KByte pages and translated by the
TLB.

The virtual addresses of segments that use linear segment mapping are converted to
physical addresses by translating the upper four bits of the 32-bit virtual address com-
ing from the CPU. The linear translation is defined in two registers,rw mm kbasehi
andrw mm kbaselo. The 4-bit base field in these registers becomes address bits 31
to 28 when translating to physical addresses. Bits 27 to 0 of the virtual address are
unchanged when translated to a physical address.

7.3. FUNCTIONAL DESCRIPTION 321

31 0

Virtual address

31 28 27 0

Base Physical address

Base

Virtual address from CPU

3 0

Translated physical address

Base field in register

Figure 7.4: Linear segment address translation

7.3.4 Translation lookaside buffer

The Translation Lookaside Buffer (TLB) is a 64-entry cache that maps a virtual address
to a physical address. If a translation cannot be found in the TLB (i.e. a TLB miss), an
exception is generated to the CPU and the software is required to load a new translation
into the TLB.

7.3.4.1 TLB Memory sets

The TLB comprises four 16-entry memory sets designated 0 to 3. The TLB is thus a
four-way set associative memory. This means that a VPN from the CPU can be stored
at only one location in each of the four TLB memory sets, and in each set the chosen
location is the same. An example of possible locations for different addresses in the
TLB is given in the table below.

Possible positions in TLB

VPN Set0 Set0 Set0 Set0

0 0 16 32 48

1 1 17 33 49

2 2 18 34 50

.

.

.

14 14 30 46 62

15 15 31 47 63

16 0 16 32 48

17 1 0 33 49

Table 7.2:Possible virtual address positions in the TLB

The selection of the TLB set in which a particular VPN will be stored must be config-
ured in software. The location at which the VPN will be placed within the TLB set is
determined by a 4-bit index comprising bits 13 to 16 of the incoming virtual address
from the CPU.

As an example, the address 0x400001af have bits 13 to 16 set to 0 and can therefore be
placed at address 0 in any of the four TLB sets (position 0, 16, 32 or 48 of the TLB).
Address 0x400021af have bits 13 to 16 set to 1 and can be placed at address 1 in any
of the four sets (position 1, 17, 33 or 49 of the TLB).

322 CHAPTER 7. MMU

In the event of a TLB miss, a 2-bit set selection number is provided by a random
number generator. The 2-bit random number is combined with the 4-bit index from
the CPU address to form a 6-bit index. This index is stored by the MMU in register
rw mm tlb sel, and can be used to choose which of the 64 TLB entries to replace. It
is also possible for the software to use another algorithm to select the entry to replace.
As shown below, bits 4 and 5 of the index provide the TLB set number and bits 3 to 0
denote the location within the set.

5 4 3 0

LocationSet

Figure 7.5:TLB entry select index format

7.3.4.2 TLB Entries

Entries stored in the TLB are 47 bits in width. They consist of a virtual to physical ad-
dress translation, a page identification, and control bits. All fields have a corresponding
field in the two registersrw mm tlb lo andrw mm tlb hi. Note that the bit positions
of the registers are not the same as within the TLB entry.

The format of a TLB entry is shown below.

PIDVPN PFN XWKVG

5 4 3 2 1 046 32 31 24 23

Figure 7.6:TLB entry format

VPN The virtual address expressed as a 15-bit Virtual Page Number. The remaining 4
bits are composed from the 4-bit TLB set index.

PID 8-bit page identification

PFN The translated address expressed as a 19-bit Physical Frame Number.

G Global bit. If set, the TLB ignores the page identification matching conditions for a
TLB hit.

V Valid bit. If set, it indicates that the TLB entry contains a valid address translation.

K Kernel bit. If set, it prevents access to the page during CPU User Mode.

W Write Enable bit. If cleared, the page is write protected.

X Execute bit. If clerared, the page is protected from execution.

7.3. FUNCTIONAL DESCRIPTION 323

7.3.4.3 TLB Lookup mechanism

When the CPU generates a new address, the four TLB sets are searched for a matching
VPN. The lower 4 bits of the VPN part of the address are used to index the four TLB
sets while the upper 15 bits are compared with the corresponding VPN fields in each
TLB set.

IndexTLB VPN Page offset

031 17 16 13 12

Set3

Set2

Set1

Set0

= Hit

Figure 7.7:TLB Lookup mechanism

If a matching entry is found, the PID field is compared to the lower 8 bits of the current
PID field stored in a CPU special register. If the global bit is cleared the PID fields
must match for the lookup to be treated as a hit in the TLB. If the global bit is set, the
matching of the PID fields is ignored and the page is treated as globally available for
all possible PID settings.

Only the lower 8 bits of the PID field in the CPU special register are compared to the
PID field in the TLB. Remaining bits are ignored by the MMU.

Do not store more than one translation for a page in the TLB. If a lookup results in more
than one hit in the TLB, the result will be undefined behavior of the address translation
in the MMU.

The valid, kernel, write enable and execute bits are checked and, if all of the conditions
below are met, a valid physical address is output to the CPU.

· valid bit is set

· kernel bit is cleared or the CPU is in Kernel mode

· write enable bit is set or the CPU access type is not a write

· execute bit is set or the CPU access type is a data reference

324 CHAPTER 7. MMU

If not all of the above conditions are met an exception is generated to the CPU and the
kernel software is responsible for taking the proper action.

7.3.4.4 MMU exceptions

An exception is generated if there is a mismatch in the output from one or more fields
of the TLB. In the event of an exception the kernel software is responsible for which
action that is to be taken.

Five different types of MMU exceptions can occur:

· Refill - The referenced address does not match any TLB entry, or the CPU PID
does not match the TLB index. A valid entry must be loaded by software.

· Write error - During a write operation, reference is made to a page that does not
have the write enable bit set in the TLB entry. This exception can be used for
write protection and dirty checks.

· Access violation - In User Mode, reference is made to a page with the kernel bit
set in the TLB entry. When set, the kernel bit prevents CPU User Mode access
to the page.

· Execute violation - An execute reference is made to a page with the execute bit
cleared in the TLB entry.

· Invalid page - Reference is made to a page with matching VPN and PID fields in
the TLB, but the valid bit is not set. This can be used for reference counting.

The MMU will store information about the exception in ther mm causeandrw mm tlb sel
registers. Ther mm causeregister holds the following information:

· VPN that generated the exception.

· PID of the application that generated the exception.

· Type of access that triggered the exception.

At a refill exception therw mm tlb selregister is loaded with a random value to suggest
a suitable entry to be replaced. For other types of exceptions therw mm tlb selregister
is loaded with a pointer to the entry that triggered the exception.

The write error, access violation, execute violation and invalid page exceptions can
all be disabled in therw mm cfg register. During normal operation the invalid page
exception is disabled unless a reference count is in progress. When disabled, an invalid
entry in the TLB will not match any address and will, thus, cause a TLB miss.

The nature of a refill exception is such that it does not allow any other exceptions to
occur simultaneously. However, a single memory reference may cause combinations
of write error, access violation, execute violation and invalid page exceptions at the
same time. The order of which multiple exceptions are taken can be found in the CPU
documentation2.

7.4. SOFTWARE INTERFACE 325

7.4 Software interface

The MMU is configured by a number of registers available as support function registers
in the CPU. These registers are read and written to by the CPU without passing through
the normal memory hierarchy system.

There are two important rules that have to be followed when using the MMU registers:

· Some of the registers are used to read and update the contents of the TLB. There-
fore it is important to never access a virtual memory area that is mapped through
the TLB while accessing the MMU registers. This means that the software must
run from an area that is not mapped by the TLB.

· The software must not access any virtual memory that is mapped by the TLB in
any of the three cycles following a TLB update.

General information about support function registers can be found in the CPU docu-
mentation2. To access the registers, fields and register constants from a C program, a
set of macros and data types are defined in [MACROS] and [DEFS].

7.4.1 Support function registers

The registersrw mm cfg, rw mm kbaselo andrw mm kbasehi are used to configure
the MMU at system start-up.

When an exception occurs, the cause of the exception can be read in ther mm cause
register. This register contains the VPN, PID, and the type of operation that triggered
the exception.

The TLB is controlled by registersrw mm tlb sel, rw mm tlb lo andrw mm tlb hi.
All entries in the TLB can be read and written to by the CPU through this set of reg-
isters. rw mm tlb sel is used to choose which entry is to be read or written to in the
TLB.

TLB entries are more than 32 bits in width, so an entry cannot be read or written to
by the CPU in one cycle. When writing to the TLB the CPU must first write the high
order part of the TLB entry to registerrw mm tlb hi. This contains the same fields
as ther mm causeregister. When writing torw mm tlb hi the data is stored at the
corresponding fields in ther mm causeregister.

The high order part of ther mm causeregister is not stored in the TLB until the low or-
der part is written in registerrw mm tlb lo. Registersr mm causeandrw mm tlb sel
are normally updated automatically by the MMU and do not require updating by the
software. To write a new translation in the TLB, for example after a TLB miss, the
software only has to write the translation into registerrw mm tlb lo.

The format of the MMU support function registers is described in25.37.

326 CHAPTER 7. MMU

7.4.2 Example of virtual memory configuration

Virtual memory configuration is essentially a matter of setting up the ratio of page
mapped kernel space to linear mapped kernel space. The kernel/user area will always
be a uniform 4Gbyte page mapped area.

For example, to set up the following virtual memory system, the MMU register config-
urations would resemble those described below.

· 5 x 256MByte segments of linear-mapped kernel space;

· 11 x 256MByte segments of page-mapped kernel space;

Kernel virtual
address space

linear

0xFFFFFFFF

0x80000000

0x00000000

Physical memory

Non-cached region

Cached region

seg_c - seg_f

seg_b

seg_0 - seg_a

TLB

0xCFFFFFFF
0xFFFFFFFF

0xBFFFFFFF
0xAFFFFFFF

Mapping

linear

0x7FFFFFFF

Figure 7.8: Kernel virtual memory configuration example

· rw mm cfg register settings

seg_f = linear
seg_e = linear
seg_d = linear
seg_c = linear
seg_b = linear
seg_a = page
seg_9 = page
seg_8 = page
seg_7 = page
seg_6 = page

7.5. DIFFERENCES COMPARED TO THE ETRAX 100LX MMU 327

seg_5 = page
seg_4 = page
seg_3 = page
seg_2 = page
seg_1 = page
seg_0 = page

· rw mm kbasehi register settings:

base_f = 0x7 // linear mapped to 0x70000000
base_e = 0x6 // linear mapped to 0x60000000
base_d = 0x5 // linear mapped to 0x50000000
base_c = 0x4 // linear mapped to 0x40000000
base_b = 0xb // linear mapped to 0xb0000000
base_a = 0x0 // don’t care
base_9 = 0x0 // don’t care
base_8 = 0x0 // don’t care

· rw mm kbaselo register settings:

base_7 = 0x0 // don’t care
base_6 = 0x0 // don’t care
base_5 = 0x0 // don’t care
base_4 = 0x0 // don’t care
base_3 = 0x0 // don’t care
base_2 = 0x0 // don’t care
base_1 = 0x0 // don’t care
base_0 = 0x0 // don’t care

7.5 Differences compared to the ETRAX 100LX MMU

The ETRAX FS MMU is very similar to the one used in the ETRAX 100LX chip.
The main difference is that the CRIS v32 CPU uses two separate MMUs, one for the
instruction cache and one for the data cache. The ETRAX FS CPU also has a more
direct connection to the MMU registers by using the support function registers.

The following changes have been made that affect ETRAX FS MMU functionality:

· The PID field of the TLB has been extended from 6 bits to 8 bits.

· An execute bit has been added to the TLB to protect pages from execution.

328 CHAPTER 7. MMU

Chapter 8

Clock generation and reset

8.1 References

Reference Description

[BOOT] Boot Methods, chapter6

[REGS] General configuration registers, chapter25.8

[MACROS] http://developer.axis.com

Table 8.1:References

8.2 Overview

The ETRAX FS uses a Phase Locked Loop (PLL) to generate an internal 400 MHz
clock from an external 12 MHz clock, supplied at theclk input. The 400 MHz clock is
divided into eight 100 MHz and two 200 MHz internal clocks, of which all except one
can be individually turned on or off. It is also possible to turn off and bypass the PLL,
in which case the chip will be clocked directly from the externalclk pin.

The ETRAX FS requires an active low reset signal on therst n input. The reset takes
effect asynchronously.

8.3 Functional description

8.3.1 Clock generation

8.3.1.1 Input clock

The ETRAX FS requires an external clock signal on theclk input. When the PLL is
used, the clock signal shall have a stabilized frequency of 12 MHz. With the PLL in
bypass mode, the operation is fully static and the clock can have any frequency between
0 and 100 MHz.

329

http://developer.axis.com

330 CHAPTER 8. CLOCK GENERATION AND RESET

8.3.1.2 PLL

The ETRAX FS uses a Phase Locked Loop (PLL) to generate an internal 400 MHz
clock from the 12 MHz clock supplied at theclk pin. The PLL requires an external 1.5
nF loop filter capacitor to be connected between theplllpf pin and ground.

Immediately after reset, the PLL is bypassed and turned off. Depending on selected
boot method, see6, the PLL will be started by the boot code or remain bypassed.

When the PLL is started, the internal clocks are silent for 8192 cycles of the external
clock (approximately 683µs) while the PLL is locking. The external clock must have
a stabilized 12 MHz frequency during the whole lock time and as long as the PLL is
enabled.

8.3.1.3 PLL bypass mode

The PLL can be turned off by writing to thepll field in therw clk ctrl register. Turn-
ing off the PLL will result in that the internal clock is reduced from 400 MHz to 12
MHz, and that the 100 MHz and 200 MHz clocks are reduced to 3 MHz and 6 MHz
respectively. The PLL will also be turned off to save additional power.

Entering the PLL bypass mode takes immediate action while turning on the PLL again
will take 683µs due to the PLL lock time.

All internal functionality in the ETRAX FS is available as usual when the PLL is
bypassed. However, external devices that are clocked by the ETRAX FS might not
operate correctly if the frequency is lowered, and the performance might not be enough
to handle all types of external devices correctly.

8.3.1.4 Internal clock distribution and configuration

The internal 400 MHz clock from the PLL is divided into eight 100 MHz and two
200 MHz internal clocks that are distributed to the internal blocks. Some parts in the
I/O Processor block can also use the external 12 MHz clock as an internal clock to
synchronize communication with external devices.

One 100 MHz clock which supports essential system functionality is always enabled.
The other internal 100 MHz and 200 MHz clocks can be individually turned on and off,
see table8.2. After reset, only the CPU clock region is enabled. Depending on which
boot mode that is used, different blocks will be turned on by the boot code, see6.

Internal clock region Clock frequency Clock enable

Memory arbiter, internal RAM and ROM, DMA
connection logic, pin multiplexer, general I/O, timers,
central interrupt logic and the clock and reset
configuration registers

100 MHz Always on

CPU, including caches, MMUs and debug support 200 MHz Configurable

I/O Processor 200 MHz Configurable

Ethernet port 0 and internal DMA channels 0 and 1 100 MHz Configurable

Internal DMA channels 2 and 3 100 MHz Configurable

Internal DMA channels 4 and 5 100 MHz Configurable

8.3. FUNCTIONAL DESCRIPTION 331

Internal DMA channels 6 and 7 100 MHz Configurable

The crypto accelerator and internal DMA channels 8
and 9

100 MHz Configurable

The external bus interface, including external DMA
channels and external bus arbitration

100 MHz Configurable

Synchronous and asynchronous serial ports, ATA and
Ethernet port 1

100 MHz Configurable

Table 8.2:Internal clocks

8.3.1.5 Turning off clocks

The configurable 100 MHz and 200 MHz clocks can be turned off by writing to the
rw clk ctrl register, see25.8.

There can be no communication with a block where the clock has been turned off. The
internal state of each block is kept while the clock is turned off and if the block is turned
on again it will continue as if nothing has happened. The user must make sure that the
block is in a safe state before turning off the clock so that no internal or external buses
will be blocked.

All configurable clocks except the CPU clock are turned off at the end of the internal
reset sequence, and the blocks are left in the reset state. Depending on the boot method,
see6, some clocks will remain turned off after reset while others will be turned on by
the boot code.

8.3.2 Reset

8.3.2.1 Reset input

The ETRAX FS requires an active low reset signal to be supplied on therst n input.
During power on,rst n should be kept low until the power supply voltages have sta-
bilized. While powered up, an active low pulse on therst n input can be used at any
time to reset the ETRAX FS.

The reset takes effect asynchronously, and no clock signal is required during reset.
However, if the PLL is used, the input clock should be stabilized at 12 MHz no later
than two clock cycles after reset has been released.

At power up, the TAP controller (15) also needs to be reset by applying an active low
reset signal to thetrst pin. This can be done either by tying therst n and trst pins
together or by tying thetrst pin to Vss.

8.3.2.2 Boot mode selection

On the positive edge of the reset input, the ETRAX FS samples the boot select inputs
bs0 - bs6 and starts initialization according to the selected boot method, see6. The
sampled boot select value is available in ther bootselregister.

332 CHAPTER 8. CLOCK GENERATION AND RESET

8.3.2.3 External reset output

The ETRAX FS provides an external software controlled output on thephyrst n pin.
This pin can be used as a delayed reset output for external circuits such as e.g. an
Ethernet transceiver. Thephyrst n pin goes low immediately at reset. When using
one of the network boot methods, the pin is set high after the 25 MHz clock on the
e0phyclk has been started. With other boot methods, thephyrst n pin remains low
until it is changed by user software.

The value onphyrst n can be controlled by writing to thephyrstn field in rw padctrl.

8.3.2.4 USB transceiver suspend

The internal USB transceiver, pinsu0vp and u0vm, is enabled after reset. If the
transceiver is not used, it can be suspended by writing to theusbsuspfield in rw padctrl.

8.4 Hardware interface

8.4.1 Clock and reset pins

The clock and reset pins are shown in the table below.

Pin name Direction Description

clk input Clock input

plllpf - PLL loop filter

rst n input Reset input, active low

phyrst n output Software controlled reset output

bs0- bs6 inputs during reset Boot select pins. These signals are
multiplexed with the Real Time Trace
functionality, wherebs0- bs5are used as
outputs.

Table 8.3:Clock and reset pins

8.5. SOFTWARE INTERFACE 333

8.4.2 Clock and reset timing

See figure8.1.

t3

t2

t1

t2

t5

t4

t7 t8

t6

clk pin

Internal
clocks

rst_n

All outputs
and I/O

except on eth0

Outputs
and I/O
on eth0

bs0 - bs7

Figure 8.1:Clock and reset timing

Parameter number Explanation Min Max Unit

t1 Input clock cycle time , PLL enabled. 83.3 83.4 ns

t1 Input clock cycle time , PLL bypassed. 10 - ns

t2 Input clock pulse width, PLL enabled. 33 50 ns

t2 Input clock pulse width, PLL bypassed. 4 - ns

t3 Input clock to internal clock delay. 7 16 ns

t4 Reset pulse width. 20 - ns

t5 Reset to output or tri-state delay, except
Ethernet interface 0 pins.

- 20 ns

t6 Reset to output or tri-state delay, pins on
Ethernet interface 0.

- 18*t1 ns

t7 Boot select setup time to rstn high 1 - ns

t8 Boot select hold time after rstn high 2 - ns

Table 8.4:Clock and reset timing

8.5 Software interface

The reset and clock configuration registers are specified in25.8. Macros for accessing
the registers from a C program are defined in [MACROS].

334 CHAPTER 8. CLOCK GENERATION AND RESET

Chapter 9

Crypto Accelerator

9.1 References

Reference Description

[DMA] DMA, chapter5

[DES] Data Encryption Standard (FIPS46-3),
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf

[DESMODES] DES Modes of Operation (FIPS81),
http://www.itl.nist.gov/fipspubs/fip81.htm

[AES] AES Advanced Encryption Standard (FIPS197),
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

[MD5] The MD5 Message Digest Algorithm (RFC1321),
http://www.ietf.org/rfc/rfc1321.txt

[SHA1] Secure Hash Standard (FIPS180-2),
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf

[RFC1071] RFC1071, Computing the Internet Checksum,
http://www.ietf.org/rfc/rfc1071.txt

[REGS] Strcop register description, chapter25.42

[STRCOPH] Strcop C register macros,http://developer.axis.com

Table 9.1:References

9.2 Definitions

Term Description

CA Abbreviation for Cryptography (Crypto) Accelerator.

dword A dword is 32 bits long.

word A word is 16 bits long.

DMA out DMA out means DMA out from memory into the CA, The terminology
comes from the CPU’s point of view, not the CAs.

DMA in DMA in is DMA from the CA to the memory. The terminology comes
from the CPU’s point of view, not the CAs.

EOP, WAIT The DMA data descriptor control bits eop and wait. In the text they are
referenced using capitals, like EOP and WAIT.

335

http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
http://www.itl.nist.gov/fipspubs/fip81.htm
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://www.ietf.org/rfc/rfc1321.txt
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
http://www.ietf.org/rfc/rfc1071.txt
http://developer.axis.com

336 CHAPTER 9. CRYPTO ACCELERATOR

Table 9.2:Definitions

9.3 Overview

The Cryptography Accelerator (CA) is connected to two DMA channels, one in each
direction, and operates on data streamed through it. It does not need to be a one-
to-one correspondence between incoming and outgoing bytes, but there can be only
one input data stream and one output data stream concurrently. CA operations are
chosen by encoding a configuration in the DMA data descriptor meta data fields, which
automatically synchronize the configuration between the CA and the data it operates
on.

Since almost all configuration comes from the DMA data descriptors, there is only one
configuration register associated with the CA. The configuration register it does have
is mainly for debugging modes and some configuration possibilities that normally do
not need to be changed very often.

System overview diagram:

System memory

Crypto AcceleratorDMA out DMA in

Figure 9.1:System overview

The CA supports three different cipher algorithms, two hash algorithms and IP check-
summing. The CA is very versatile and there are numerous configuration possibilities.
The CA supports running one cipher and one hash algorithm at the same time as the
data is being IP checksummed. The modules implementing each algorithm can be con-
figured to either process data in parallel or in series with the other enabled modules.
For instance, it is possible to configure the CA to AES encrypt plaintext data, SHA-1
hash the ciphertext and at the same time IP checksum the plaintext.

Below is a summary of the CA’s modules and some basic performance figures:

Module Description Performance

AES Advanced Encryption Standard, supports ECB/CBC
modes with 128/192/256-bit keys.

> 200 Mbps

DES/3DES Data Encryption Standard, supports ECB/CBC modes
with 56-bit keys for DES and up to 168-bit keys for
3DES.

540/230 Mbps

SHA-1 Secure Hash Algorithm is a hashing algorithm
producing 160-bit message digests.

640 Mbps

MD-5 Message Digest is a hashing algorithm producing
128-bit digests.

800 Mbps

9.4. FUNCTIONAL DESCRIPTION 337

IP checksum IP checksum calculates the ones-complement checksum
used in IP.

3.2 Gbps

Keystore Keystore is a general register used for downloading keys
to be used by the ciphers.

N/A

Table 9.3:CA submodules

9.4 Functional description

The CA operates mainly according to a configuration made in DMA data descriptor
meta data fields. The meta data configuration determines how the central crossbar of
the CA is set up. This means that the out channel data descriptors determine where data
is being dropped inside the CA and the in channel descriptors determine from where
inside the CA data is being fetched.

Internally, the CA consists of three parts:

1. A DMA frontend, containing DMA interface logic and configuration decoding

2. The cipher/hash modules

3. A crossbar, connecting the modules and the DMA channels according to the
chosen configuration

The following diagram shows the crossbar, the modules, and the associated data paths:

From DMA

SHA-1

MD-5

IP csum

Crossbar

DES/3DES

Keystore

AES

To DMA

Figure 9.2:System overview

In addition to the data paths between the crossbar and the modules, there is a connection
from the keystore supplying the cipher modules with keydata.

Since a crossbar is used, the modules can be connected either in parallel or in series. For
example, the DMA input can be connected to both the AES and the SHA-1 submodules
for simultaneous encryption and hashing or to the AES module followed by SHA-1
module for hashing of the encrypted data. See the examples section for more details.

338 CHAPTER 9. CRYPTO ACCELERATOR

As the incoming data can be routed through several modules in series, care must be
taken not to switch the configuration while data is still passing through the CA. If an out
channel descriptor has the WAIT bit set, the CA pauses the DMA at the end of the buffer
associated with that descriptor. So, whenever a change is made to the configuration that
might affect running data, the WAIT bit should be set. If in doubt, the WAIT bit can
always be set even though some cycles will be wasted between descriptors if they do
not contain any configuration changes. The CA resumes DMA operation when the last
dword of the buffer associated with that descriptor has been processed and output.

A configuration change (involving the WAIT bit) can be carried out at almost any
instance without setting EOP. However there is one case where extra care is needed.
When running algorithms in series, configuration is only allowed to change between the
first algorithm’s blocks. As an example of this, assume that CA is configured to cipher
data and then hash the cipher. In this case configuration is only allowed to change at
the end of a cipher block (the cipher is the first algorithm in the chain), meaning that
data sizes must be a multiple of the first algorithm’s blocksize.

Some of the modules, specifically the checksum and hash modules, need to know when
to stop processing the input and to start producing an output. This is specified using the
EOP bit in the incoming DMA descriptors. After receiving the last dword of a buffer
associated with a descriptor with that bit set, the modules stop accepting input data
until the result is read out.

Notice that an EOP does not imply a WAIT automatically. For example, if many blocks
are to be digested separately, they can be put sequentially in a DMA chain with EOP in
each descriptor. Moreover, since there are no configuration changes, no WAIT is nec-
essary. The other modules ignore any EOP flag, but still pass it through to succeeding
modules.

The EOP bit in the DMA in channel data descriptors should not be set by software.
Instead the EOP bit will be set by the CA when it has received an EOP bit from the
DMA out channel and has finished processing its current packet. The EOP will force
the DMA in channel to load new meta data as it moves on to the next descriptor.

9.4.1 Byte order, memory layout and block sizes

In general, all the modules expect the same byte order in memory as is given in the al-
gorithm specifications and handle any big/little endian conversions due to DMA fetches
automatically.

For example, if a key is specified in the standard as:

128-bit key: 95 0C DE B5 6F B2 DA CD 0A 5F DD 6E 0B B0 C2 24

then it should simply be placed in memory at consecutive byte addresses as:

unsigned char aeskey128[16] = {
0x95, 0x0C, 0xDE, 0xB5, 0x6F, 0xB2, 0xDA, 0xCD,
0x0A, 0x5F, 0xDD, 0x6E, 0x0B, 0xB0, 0xC2, 0x24

};

9.4. FUNCTIONAL DESCRIPTION 339

Any deviations from this example are specified under the separate usage instructions
below.

The input data sizes for all modules, except for checksum, must be a multiple of an
underlying block size, for example 16 bytes or 64 bytes. The data may be divided into
any number of memory buffers as long as the first data descriptor points at a buffer
containing at least 4 bytes of data. The input data sizes are described in detail in the
sections for the individual modules. The modules will not work as expected if an input
packet does not contain the correct number of bytes.

One notable exception is when running DMA loopback (i.e. memory to memory
DMA). In this case, any block size down to individual bytes is accepted provided that
no module with any other requirement is also connected to the CA DMA input and that
the first memory buffer contains at least 4 bytes.

9.4.2 ECB/CBC modes and IV’s

The ciphers can be run in ECB or CBC mode. The ECB mode stands for Electronic
CodeBook mode and implies that an input block encrypts to the same output block
given the same key under all circumstances (i.e. like a big old codebook). An at-
tacker could conceivably build a dictionary of useful plaintext ciphertext pairs when
eavesdropping on an ECB encrypted conversation.

To improve security, there is the Chained Block Cipher mode (CBC). When encrypting
more than one block with this mode, the previous resulting cipher block is XORed
with the next input block causing a dependency on previous input which removes the
possibility of building a dictionary since a single input does not cause the same output
every time. Similarly, when decrypting, the previous input ciphertext is XORed with
the output plaintext of the next block.

Because the CBC mode needs a previous block to XOR with, it is necessary to specify
what the very first block should use. This is called the IV, standing for Initial Vector,
and when running a CA cipher in CBC mode, the first block in a packet is the IV, in
both encryption and decryption modes.

When using the CBC mode on a cipher along with other parallel stream operations like
a hash or a checksum, it is necessary to download the IV using a separate descriptor
with a configuration set to only load it into the cipher module. This means that unless
the IV itself should be hashed, the descriptor should not have the EOP bit set and
no hash or checksum units enabled. This way the IV will be part of the incoming
datastream and stored inside the cipher unit but it will not be processed in any way.
After the IV has been stored, the next descriptor will be loaded and can enable one of
the hash units and the IP checksum unit if desired. An example of such a configuration
can be seen in section9.6.7.

A typical software example of how the metaout field of the descriptor containing the
IV can be adjusted to only download the IV is shown below. The configuration for the
actual computation is already set up in metaout, but is stripped to download the IV for
the initial descriptor into the cipher only:

struct strcop_meta_out mout = meta_out;

340 CHAPTER 9. CRYPTO ACCELERATOR

mout.hashsrc = src_none;
mout.csumsrc = src_none;

9.4.3 DES/3DES specific usage

DES works on 64-bit blocks, meaning that the data packets must be a multiple of 64
bits (8 bytes) in length. The key length is always 56 bits for DES and 168 bits for 3DES
(one 56-bit key for each 3DES round), and both ECB and CBC modes are supported.

However, because DES keys are normally specified with a parity bit for every seven
key bits, the 56-bit keys are really 64-bit keys with embedded parity bits. Likewise, the
three 56-bit keys (168 bits) for 3DES are really three 64-bit keys (192 bits). It is the
parity-embedded versions that should be downloaded into the keystore even though the
CA does not perform any consistency checks on the key using the parity bits.

There is no difference in speed between encryption and decryption, and the key is the
same in both cases. However 3DES is, because it consists of three sequential DES
operations, three times slower than DES.

When using 3DES, the software can choose the pattern of encryption/decryption for the
three DES operations using therw cfg register. However, in practice only the default
E.D.E. configuration is needed.

As a result, it is not specifiable inside the meta data configuration because it will, in
most cases, stay as the default. When decryption is specified in the meta data configu-
ration, the operations are the inverse (for example the default decryption sequence will
be D.E.D.).

9.4.4 AES specific usage

AES works on 128-bit blocks, meaning that the data packets must be a multiple of 128
bits (16 bytes) in length. The key lengths are 128, 192 or 256 bits, so the keystore needs
to be loaded with the appropriate key before AES processing. The speed differences
between the key lengths are 20 % slower for 192 bits and 40 % slower for 256 bits
compared to the 128-bit length. Both ECB and CBC modes are supported.

For decryption, the downloaded key needs to be preprocessed to match the last round-
key because the key generation runs backwards compared to the encryption case. This
needs to be done in software before downloading the key. Please refer to [AES] for
a pseudo-code example of how this is done. This means that decryption when using
completely new keys incurs a slight penalty compared to the similar encryption case,
but for the more common case with session keys, the preprocessing only needs to be
done once per session.

9.4.5 SHA-1 specific usage

The SHA-1 module calculates the message digest on the incoming data but needs to be
fed data in multiples of 16 dwords (64 bytes). If the data to be hashed is not an integral
multiple of this block size, the software needs to apply any necessary padding before
sending it to the CA. Usually this can be done easily by attaching an extra DMA data

9.4. FUNCTIONAL DESCRIPTION 341

descriptor after the real data descriptor. Please refer to [SHA1] for an example of how
this is done.

The message digest calculated by the SHA-1 module is 5 dwords (20 bytes) long and
can be read after an EOP arrives at the input. Until it is read, the module will not accept
any more data from the input.

Also, see the section on Hash IV’s,9.4.7.

9.4.6 MD-5 specific usage

The MD-5 module calculates the message digest on the incoming data but needs to be
fed data in multiples of 16 dwords (64 bytes). If the data to be hashed is not an integral
multiple of this block size, the software needs to apply any necessary padding before
sending it to the CA. Usually this can be done easily by attaching an extra DMA data
descriptor after the real data descriptor. Please refer to [MD5] for an example of how
this is done.

The message digest calculated by the MD5 module is 4 dwords (16 bytes) long and can
be read after an EOP arrives at the input. Until it is read, the module will not accept
any more data from the input.

Also, see the section on Hash IV’s,9.4.7.

9.4.7 Hash IV’s

The hashes can also run in an IV mode, where the internal state of the message digest
algorithm is downloaded as the first dwords in the block. This is needed when a partial
hash should be continued. The first part is hashed and the partial hash read out as
normal. Then when the next part is to be hashed, the partial hash value is downloaded
using a separate descriptor in front of the data body similar to the way CBC IV’s are
handled in the ciphers.

However, if there is no intervening hash calculation between the parts to be hashed, it
is not necessary to explicitly upload and download the hash IV since the modules keep
their internal state while other modules are configured to run.

9.4.8 IP-checksum specific usage

The IP checksum is calculated on the incoming data, and the result consists of a 16-
bit word that has to be read out after an incoming EOP, and before any new data is
accepted. The size of the incoming data must be a multiple of 2 bytes.

The endianness of the resulting word can be configured in the configuration register
(that is, not by the meta data configuration) in order to give more flexibility for the
software application. Sometimes the result might be used by the CPU, in which case
the endianness should stay default (host endian). However, sometimes the result might
be written directly into a network header, in which case it needs to have network endi-
anness.

342 CHAPTER 9. CRYPTO ACCELERATOR

9.5 Software interface

In the following sections a detailed description of how to configure and use the CA is
given.

9.5.1 DMA descriptor controlled configuration

Before any operation is initiated, software needs to setup the CA’s DMA channels to
use 32 bit wide transfers.

The bit fields and constants referred to in the following two sub-sections are available as
structures and enumerations in the [STRCOPH] C include file. Please refer to section
9.6for further information.

Both the DMA out and the DMA in descriptors use source fields to specify where to
read and write data inside the CA. The source definitions are the same for both channels
and are specified in the table below:

Nbr Description SW alias

0 No source src none

1 DMA out (from memory) src dma

2 DES/3DES src des

3 SHA-1 src sha1

4 Checksum src csum

5 AES src aes

6 MD-5 src md5

7 Reserved (do not use) src res

Table 9.4:DMA channel meta data field sources

9.5.1.1 DMA out channel meta data

The following table describes the CA usage of the DMA out meta data field (16 bits
total):

Bit Name Description

15 cbcmode Choose ECB (0) or CBC (1) mode for ciphers

14 dlkey When 1, the destination will be the keystore

13 decrypt Choose encryption (0) or decryption (1) for ciphers

12 hashmode Select explicit IV mode (1) or not (0) for hashes. During key
download, bits 13 and 12 together define the keysize as 00=64
bits, 01=128, 10=192, 11=256.

11 hashconf Select hash: 0=SHA-1, 1=MD-5

10-8 hashsrc Select source of hash (see table above)

7-6 ciphconf Select cipher: 0=DES, 1=3DES, 2=AES

5-3 ciphsrc Select source of cipher (see table above)

2-0 csumsrc Select source of checksum (see table above)

Table 9.5:DMA out channel meta data field

9.5. SOFTWARE INTERFACE 343

The three source fields ciphsrc, hashsrc and csumsrc defines how the internal crossbar
is configured, streaming data from one sub-module to another. Possible values for these
fields are defined in table9.4. The other fields should be self explanatory, please refer
to section9.6 for examples of how to configure the out channel descriptor meta data
field.

9.5.1.2 DMA in channel meta data

The following figure describes the CA usage of the DMA in channel meta data field:

15 4 3 2 0

Reserved

sync

dmasrc

Figure 9.3:CA usage of the DMA meta data field

The dmasrc field selects the source of the DMA in channel as specified in table9.4.
Memory-to-memory DMA is possible by simply choosing the DMA out as the source
for the DMA in.

The sync field is used to synchronize data transfers at the out channel with the in chan-
nel. When the sync field is set, it indicates that after the current in channel descriptor
a change of DMA in channel configuration might take place. The bit should be set
whenever it is necessary to disable the CA from writing data to the DMA in channel.
Examples might be when the in channel source is changed or between two packets.
Failing to configure this bit can result in data produced by the out channel ending up in
the wrong in channel data buffer. If synchronization is not needed, the CA can be con-
figured to ignore the synchronization bit. By setting theignoresyncbit in therw cfg
register the CA will not try to synchronize the in channel with the out channel. For ex-
ample, if processing many packets after each other with the same algorithm, you do not
need to synchronize the data transfers. In this case the performance can be optimized
by setting theignoresyncbit.

9.5.2 Register controlled configuration

The CA only has one configuration register, therw cfg register. The register contains
6 fields. Some examples of configuration that is used with the register are, enabling
the CA, configuring each round in the 3DES algorithm to decrypt or encrypt data and
endianness used by the IP checksum. For a full description of the configuration register,
please refer to25.42.

Briefly, this is a typical code example for initial configuration of the CA:

// Configure the CA to use 3DES EDE mode and // use
little-endian result for the IP checksum.

reg_strcop_rw_cfg rw_cfg;

rw_cfg.en = 1;

344 CHAPTER 9. CRYPTO ACCELERATOR

rw_cfg.ignore_sync = 0;
rw_cfg.ipend = regk_strcop_little;
rw_cfg.td1 = regk_strcop_e;
rw_cfg.td2 = regk_strcop_d;
rw_cfg.td3 = regk_strcop_e;

REG_WR(strcop, regi_sl0, rw_cfg, rw_cfg);

9.5.3 Downloading keys into the keystore

The keystore is a 256-bit wide shift register. If the DMA out channel loads a data
descriptor with the Download Key (dlkey) field set, all data pointed at by that descriptor
will be stored in the shift register and used as key later on. The cipher modules that
require less than 256 bits use the last bits downloaded, so if a 128-bit key is needed,
128 bits should be downloaded and no software padding is required.

Also, when the dlkey bit is set in a DMA data descriptor, the other configuration bits
are still active but are normally not used. What the DMA writes to the CA goes to the
keystore, and to all other modules that have the DMA as source. The common usage is
to set all modules sources to 0 (No Source) while downloading a key. The size of the
downloaded key has to be specified in the configuration bits as well, and must be either
64, 128, 192 or 256 bits.

The keystore keeps the key until it is overwritten with another key, so the software can
switch CA configurations and return to a cipher without downloading the key again.

The descriptor used for downloading the key must have the EOP bit set.

It is not possible to upload a key from the keystore.

The example below shows a typical meta data configuration when downloading a key
of any supported size, including the multiplexing of the keysize bits onto the decrypt
and hashmode bits in the bitfield structure.

int keysize = (key length_in_bits / 64) - 1;

struct strcop_meta_out mout = { dlkey : 1,
decrypt: (keysize >> 1) & 1,
hashmode: keysize & 1 };

9.6 Configuration examples

Below, some typical configurations are shown along with an overview of how the data
will flow. In all examples, the buffers associated with the DMA bulk data descriptors
for input and output can be split into any number of smaller buffers. This will of course
require that a new descriptor is created for each buffer and that the correct configuration
is kept in all of them. The last descriptor must have the appropriate EOP or WAIT bits
set.

Downloading the key is only shown once in a separate example, and it is assumed in

9.6. CONFIGURATION EXAMPLES 345

the other examples that the appropriate key is already loaded into the keystore.

9.6.1 Data descriptor definitions

Below are two tables with abbreviations used by the descriptor lists described in the
coming sections:

Name Description

len Size of buffer used by descriptor. Not part of a real descriptor, only used in
the examples below

ctrl Control field. Can be set to any combination of EOP and WAIT: E = EOP,
W = WAIT.

cssrc Checksum data source. Configures where to fetch data for the IP
checksum unit

cisrc Cipher data source. Configures where to fetch data for the cipher unit
currently in use.

cicfg Cipher configuration. Chooses which cipher algorithm to use.

hssrc Hash data source. Configures where to fetch data for the hash unit
currently in use.

hscfg Cipher configuration. Chooses which hash algorithm to use.

hsmode Hash mode. Which initial digest to use: IV = (Initial Vector) = default
digest, !IV = user defined

dec Decrypt. Configures the CA to decrypt or encrypt.

dlkey Download key to keystore.

cbc Selects if a cipher algorithm shall be run in CBC or ECB mode.

Table 9.6:out channel descriptor field abbreviations

Name Description

len Size of buffer used by descriptor.

ctrl Control field. Can be set to EOP.

dmasrc DMA data source. Configures which source to use with the DMA in
channel.

sync Change source. When set, this field marks that the next descriptor will
change the in channel source.

Table 9.7:in channel descriptor field abbreviations

When running chained operations such as AES encryption with SHA-1 hashing of the
ciphertext, the descriptors have been named in accordance with table9.8

Name Full name

P Plaintext

C Cipher

D Hash digest

IV Initial vector

CP Cipher padding

HP Hash padding

BULK Bulk data

Table 9.8:Descriptor name abbreviations

346 CHAPTER 9. CRYPTO ACCELERATOR

9.6.2 Downloading a key

The following figure shows downloading a 256-bit key into the keystore. The same
procedure can be used for any other key length as well, with different lengths in the
descriptor being the only difference.

DMA out:

Keystore

name:
len:
ctrl:
MD:

cssrc:
cisrc:
cicfg:
hssrc:
hscfg:
hsmode:
dec:
dlkey:
cbc:

KEY
32
E+W

-
-
-
-
-
-

yes
-

-

Figure 9.4:Key download

9.6. CONFIGURATION EXAMPLES 347

9.6.3 DES CBC encryption

The figure below shows the encryption of an 8000-byte block using ordinary DES in
CBC mode with a user defined initial vector. A 64-bit key is used from the keystore.

DMA out:

DES

name:
len:
ctrl:
MD:

dmasrc:
sync:

CIPHER
8000

DES
No

name:
len:
ctrl:
MD:

cssrc:
cisrc:
cicfg:
hssrc:
hscfg:
hsmode:
dec:
dlkey:
cbc:

BULK
8000
E

-
DMA
DES
-
-
-
no
no
yes

name:
len:
ctrl:
MD:

cssrc:
cisrc:
cicfg:
hssrc:
hscfg:
hsmode:
dec:
dlkey:
cbc:

IV
8
-

-
DMA
DES
-
-
-
no
no
yes

DMA In:

Figure 9.5:DES CBC encryption

348 CHAPTER 9. CRYPTO ACCELERATOR

9.6.4 SHA-1 hashing

The figure below shows calculating the 20-byte message digest using SHA-1 for a 128
byte block (pre-padded).

SHA-1

DMA out:

name:
len:
ctrl:

cssrc:

BULK
128
E

MD:

cisrc:
cicfg:
hssrc:
hscfg:
hsmode:
dec:
dlkey:

-
-
-
DMA
SHA
!IV
-
-

cbc: -

name:
len:
ctrl:

dmasrc:

HASH
20

MD:

sync:
SHA
no

DMA in:

Figure 9.6:SHA-1 hashing

9.6. CONFIGURATION EXAMPLES 349

9.6.5 AES-192 ECB encryption with SHA-1 hashing of the cipher-
text

The figure below shows the encryption of 1552 bytes of plain text using AES in ECB
mode with a 192-bit key in the keystore, and with SHA-1 hashing of the resulting ci-
phertext. In this example, the bulk of the data consists of 1536 bytes that are processed
by both the AES and SHA units. Next, the last 16 bytes of actual data are processed in
the same way. To disconnect the AES unit, a zero-length descriptor must be inserted.
Finally, 48 bytes of hash padding is added in order to end the SHA processing at a
SHA-block boundary.

As can be seen in the figure below, the BULK and CP descriptors have exactly the same
configuration and could have been merged together into one descriptor. However, in
this example they are separated to show that the last SHA block consists of 16 bytes of
actual data and 48 bytes of hash padding.

AES-192

DMA out:

name:
len:
ctrl:

cssrc:

BULK
1536

MD:

cisrc:
cicfg:
hssrc:
hscfg:
hsmode:
dec:
dlkey:

-
DMA
AES
AES
SHA
!IV
no
no

cbc: no

name:
len:
ctrl:

dmasrc:

C
1552

MD:

sync:
AES
yes

DMA in:

name:
len:
ctrl:

cssrc:

CP
16

MD:

cisrc:
cicfg:
hssrc:
hscfg:
hsmode:
dec:
dlkey:

-
DMA
AES
AES
SHA
!IV
no
no

cbc: no

name:
len:
ctrl:

cssrc:

0-desc
0
E+W

MD:

cisrc:
cicfg:
hssrc:
hscfg:
hsmode:
dec:
dlkey:

-
DMA
AES
-
-
-
no
no

cbc: no

name:
len:
ctrl:

cssrc:

HP
48
E

MD:

cisrc:
cicfg:
hssrc:
hscfg:
hsmode:
dec:
dlkey:

-
-
-
DMA
SHA
!IV
no
no

cbc: no

SHA-1

name:
len:
ctrl:

dmasrc:

D
20

MD:

sync:
SHA
no

Figure 9.7:AES-192 ECB encryption

350 CHAPTER 9. CRYPTO ACCELERATOR

9.6.6 AES-192 CBC decryption with SHA-1 hashing of the cipher-
text

The figure below shows the decryption of a 9008-byte ciphertext using AES in CBC
mode with a 192-bit key in the keystore, and with SHA-1 hashing of the incoming
ciphertext.

AES-192

DMA out:

name:
len:
ctrl:

cssrc:

IV
16

MD:

cisrc:
cicfg:
hssrc:
hscfg:
hsmode:
dec:
dlkey:

-
DMA
AES
-
-
-
yes
no

cbc: yes

name:
len:
ctrl:

dmasrc:

P
9008

MD:

sync:
AES
yes

DMA in:

name:
len:
ctrl:

cssrc:

BULK
8960

MD:

cisrc:
cicfg:
hssrc:
hscfg:
hsmode:
dec:
dlkey:

-
DMA
AES
DMA
SHA
!IV
yes
no

cbc: yes

name:
len:
ctrl:

cssrc:

CP
48
E+W

MD:

cisrc:
cicfg:
hssrc:
hscfg:
hsmode:
dec:
dlkey:

-
DMA
AES
-
-
-
yes
no

cbc: yes

name:
len:
ctrl:

cssrc:

HP
64
E

MD:

cisrc:
cicfg:
hssrc:
hscfg:
hsmode:
dec:
dlkey:

-
-
-
DMA
SHA
!IV
yes
no

cbc: yes

SHA-1

name:
len:
ctrl:

dmasrc:

D
20

MD:

sync:
SHA
no

W W

Figure 9.8:AES-192 CBC decryption

9.6. CONFIGURATION EXAMPLES 351

9.6.7 AES-256 CBC encryption with MD-5 hashing of the plaintext

The CBC mode requires an IV to be downloaded first. The IV should not reach the hash
module so it requires a separate descriptor. This descriptor should not have the EOP
set. The reason for having a CP descriptor that has a zero length buffer associated with
it, is to disconnect the hash unit when the EOP bit is reached. If the EOP bit had been
set in the BULK descriptor instead, the hash calculation would end before processing
the hash padding.

AES-256

DMA out:

name:
len:
ctrl:

cssrc:

IV
16

MD:

cisrc:
cicfg:
hssrc:
hscfg:
hsmode:
dec:
dlkey:

-
DMA
AES
-
-
-
no
no

cbc: yes

name:
len:
ctrl:

dmasrc:

C
12992

MD:

sync:
AES
yes

DMA in:

name:
len:
ctrl:

cssrc:

BULK
12992

MD:

cisrc:
cicfg:
hssrc:
hscfg:
hsmode:
dec:
dlkey:

-
DMA
AES
DMA
MD5
!IV
no
no

cbc: yes

name:
len:
ctrl:

cssrc:

CP
0
E+W

MD:

cisrc:
cicfg:
hssrc:
hscfg:
hsmode:
dec:
dlkey:

-
DMA
AES
-
-
-
no
no

cbc: yes

name:
len:
ctrl:

cssrc:

HP
64
E

MD:

cisrc:
cicfg:
hssrc:
hscfg:
hsmode:
dec:
dlkey:

-
-
-
DMA
MD5
!IV
no
no

cbc: yes

MD-5

name:
len:
ctrl:

dmasrc:

D
16

MD:

sync:
MD5
no

W W

Figure 9.9:AES-256 CBC encryption

352 CHAPTER 9. CRYPTO ACCELERATOR

9.6.8 Memory-to-memory copying with parallel IP checksumming

This example shows coping a block of memory while checksumming it using the IP
checksum module.

IP checksum

DMA out:

name:
len:
ctrl:

cssrc:

BULK
1000
E

MD:

cisrc:
cicfg:
hssrc:
hscfg:
hsmode:
dec:
dlkey:

DMA
-
-
-
-
-
no
no

cbc: no

name:
len:
ctrl:

dmasrc:

BULK
1000

MD:

sync:
DMA
yes

DMA in:

name:
len:
ctrl:

dmasrc:

IPC
2

MD:

sync:
IPC
no

Figure 9.10:Memory-to-memory copying

9.6. CONFIGURATION EXAMPLES 353

9.6.9 3DES ECB decryption in DED mode

This figure shows 3DES in ECB mode, decrypting 1000 bytes using a Decryption/Encryption/Decryption
sequence.

3DES DED

DMA out:

name:
len:
ctrl:

cssrc:

BULK
1000
E

MD:

cisrc:
cicfg:
hssrc:
hscfg:
hsmode:
dec:
dlkey:

-
DMA
3DES
-
-
-
yes
no

cbc: no

name:
len:
ctrl:

dmasrc:

C
1000

MD:

sync:
3DES
no

DMA in:

Figure 9.11:3DES ECB decryption

354 CHAPTER 9. CRYPTO ACCELERATOR

9.7 Performance Issues

Provided that no DMA or memory bottlenecks exist, the following table lists the maxi-
mum throughputs achieved when the CA modules operate by themselves (without any
parallel invocations).

Module Throughput Longwords per chunk

DES 64 MByte/s 2

3DES 27 MByte/s 2

AES 32 MByte/s 4

SHA-1 76 MByte/s 16

MD-5 96 MByte/s 16

IP csum 384 MByte/s 1

Table 9.9:Maximum throughputs

When using parallel invocation, see for example section9.6.7above where both AES
and MD-5 are run in parallel, the modules have to wait for each other to complete
each chunk before the DMA can push more data to them. A similar situation arises
when modules are run in serial, like in section9.6.5. So in compound situations, the
throughput is mostly dependant on the slowest module involved.

In practice, the memory will probably be a bottleneck depending on the memory con-
figuration used, at least for the faster modules like the IP checksumming and hashes.
Therefore, it is a good idea to make use of the internal RAM in the chip as a temporary
buffer store. For example, if an Ethernet packet is to be checksummed and sent with
the source data residing in the external RAM, it should be copied to the internal RAM
by the CA at the same time as it is checksummed. It can then be sent by the Ethernet
DMA from the internal RAM. This avoids dual accesses to the external RAM and the
extra internal RAM accesses are almost for free in comparison.

Chapter 10

DMA Connection

10.1 References

[REGS] Registers, chapter25.43

[MACROS] http://developer.axis.com

Table 10.1:References

10.2 Functional description

The internal DMA is connected to the different I/O interface modules in the ETRAX
FS through the DMA connection module.

Before a DMA channel is used together with an I/O interface, the connection must be
set up in therw cfg register, see25.43. All connections through the DMA connection
module are disabled after a system reset. The following configuration alternatives are
available:

DMA channel Direction I/O interface alternatives

dma0 out Ethernet interface 0 (eth0)

dma1 in Ethernet interface 0 (eth0)

dma2 out External DMA channel 2 (ext2),
I/O processor DMC 0 (iop0),
ATA interface (ata),
Asynchronous serial port 2 (ser2)

dma3 in External DMA channel 3 (ext3),
I/O processor DMC 0 (iop0),
ATA interface (ata),
Asynchronous serial port 2 (ser2)

dma4 out I/O processor DMC 1 (iop1),
Asynchronous serial port 1 (ser1),
Synchronous serial port 0 (sser0)

dma5 in I/O processor DMC 1 (iop1),
Asynchronous serial port 1 (ser1),
Synchronous serial port 0 (sser0)

355

http://developer.axis.com

356 CHAPTER 10. DMA CONNECTION

dma6 out External DMA channel 0 (ext0),
Asynchronous serial port 0 (ser0),
Synchronous serial port 1 (sser1),
Ethernet interface 1 (eth1)

dma7 in External DMA channel 1 (ext1),
Asynchronous serial port 0 (ser0),
Synchronous serial port 1 (sser1),
Ethernet interface 1 (eth1)

dma8 out External DMA channel 2 (ext2),
Crypto accelerator (strcop),
Asynchronous serial port 3 (ser3)

dma9 in External DMA channel 3 (ext3),
Crypto accelerator (strcop),
Asynchronous serial port 3 (ser3)

Table 10.2:DMA channel to I/O interface connection alternatives

10.3 Software interface

The configuration register for the DMA connection module is specified in25.43. A set
of macros for accessing the registers from a C program is available in [MACROS].

Chapter 11

Internal Memory

11.1 References

Reference Description

[BOOT] Boot methods, chapter6

[DEBUG] Stubless debugging, chapter17

11.2 Definitions

11.3 Functional Description

11.3.1 General

The internal memory consists of 128 kbytes of RAM and 8 kbytes of ROM. The mem-
ory is 256 bits wide and has a cycle time of 20 ns, giving a memory bandwidth of 1.6
Gbytes/s.

Internal memory is accessible from the CPU/cache system, the DMA, the I/O processor
and through the slave mode part of the bus interface.

The total address range assigned to internal memory in the ETRAX FS is 0x38000000-
0x3fffffff. The memory can also be used with non-cached addresses in the range
0xb8000000-0xbfffffff.

The RAM address range is 0x38000000-0x3801ffff, but the RAM is also accessible at
each 128 k increment of the address, up to 0x3bffffff. The ROM range is 0x3c000000-
0x3c001fff but it is also accessible at each 8 k address increment up to 0x3fffffff.

The contents of the internal RAM after reset is undefined.

357

358 CHAPTER 11. INTERNAL MEMORY

11.3.2 ROM content

The ROM contains code for the different boot methods, see6, and for the ”guru mode”
on chip debug, see17.

The ROM also contains a vendor ID code at address 0x3c000000.

Chapter 12

Interrupts

12.1 References

Reference Description

[REGS] Interrupt controller registers, chapter25.14

Table 12.1:References

12.2 Overview

Interrupts are generated by the different on-chip subsystems, or through external inter-
rupt request pins. There are three types of interrupts:

· Maskable vectorized interrupts

· Non maskable interrupts (NMI)

· Guru mode exceptions

The vectors for the maskable interrupts are all generated internally on-chip by the in-
terrupt controller. Guru mode exceptions have the highest priority, followed by NMIs.
Vectorized interrupts have the lowest priority. There is no internal priority between
different vectorized interrupts. They all share the same priority. For more information
of the different interrupt types see2.1.10.

12.3 Functional Description

12.3.1 Interrupt masks

Maskable interrupts generated by internal subsystems are masked in two levels. The
first level is located in each subsystem that generates interrupts. This mask has indi-
vidual mask bits for each interrupt source within the subsystem. After the mask, the

359

360 CHAPTER 12. INTERRUPTS

individual interrupt bits of a subsystem are combined (logically OR-ed) to form a single
interrupt vector request.

The second mask level is a vector mask with one mask bit for each interrupt vector.
There is generally one vector for each subsystem. The vector mask is located in the
interrupt controller.

&

rw_intr_mask

interrupt
source

&
interrupt
source

r_intr

>=1

r_masked_intr

subsystem

&

rw_intr_mask

interrupt
source

&
interrupt
source

r_intr

>=1

r_masked_intr

subsystem

&

rw_mask

&

r_vect

>=1

r_masked_vect

interrupt controller

irq

encoder irq vector

interrupt mask

vector mask

interrupt mask

>=1

>=1

nmi request

guru request

r_nmi

r_guru

To CPU

Figure 12.1:Interrupt masks

It is recommended that the software driver for each subsystem should control its own
mask bits at the subsystem interrupt masking level, while general system functions
control the vector mask. For this reason, there is one mask bit on each level, even for
those vectors that have only one interrupt.

The interrupt on theirq n pin does not have any first level mask, since external periph-
erals typically have their own interrupt masking capabilities.

12.3. FUNCTIONAL DESCRIPTION 361

12.3.2 Interrupt status

12.3.2.1 Individual interrupts

The status of individual interrupts can be read in registers inside each subsystem, both
before and after they have been gated with the interrupt mask. In each subsystem,
registerr intr contains the interrupt bits prior to masking and registerr maskedintr
contains the interrupt bits after masking. Registerrw intr maskcontains the interrupt
mask bits. In general it holds that (using C syntax):

r_masked_intr = r_intr & rw_intr_mask

12.3.2.2 Interrupt vectors

The status of each interrupt vector can be read in registers inside the interrupt controller
(see25.14), both before and after they have been gated with the vector mask. Register
r vect contains the interrupt vector bits prior to masking and registerr maskedvect
contains the interrupt vector bits after masking. Registerrw maskcontains the interrupt
vector mask bits. In general it holds that (using C syntax):

r_masked_vect = r_vect & r_mask

12.3.2.3 Non maskable interrupts

The cause of a non maskable interrupt (NMI) may be read in the registerr nmi in the
interrupt controller. The register contains one bit for each NMI source.

12.3.2.4 Guru mode exceptions

The cause of a guru mode exception may be read in the registerr guruin the interrupt
controller. The register contains one bit for each guru mode exception source.

12.3.3 Vector generation

The interrupt controller generates an interrupt request and a vector number to the CPU
based on the masked interrupt vector bits. If only one bit is set, a vector corresponding
to that bit is generated. If two or more bits are set, a special multiple vectors interrupt
vector is generated. It is then up to the interrupt handling software to decide in what
order to serve the active interrupts.

12.3.4 Interrupt vector numbers

The following interrupt vector numbers are defined:

362 CHAPTER 12. INTERRUPTS

Name Vector Nr Description

mult 0x30 multiple interrupt vectors

memarb 0x31 memory arbiter breakpoints

gen io 0x32 general I/O

iop0 0x33 I/O processor port 0

iop1 0x34 I/O processor port 1

iop2 0x35 I/O processor port 2

iop3 0x36 I/O processor port 3

dma0 0x37 dma channel 0

dma1 0x38 dma channel 1

dma2 0x39 dma channel 2

dma3 0x3a dma channel 3

dma4 0x3b dma channel 4

dma5 0x3c dma channel 5

dma6 0x3d dma channel 6

dma7 0x3e dma channel 7

dma8 0x3f dma channel 8

dma9 0x40 dma channel 9

ata 0x41 ATA interface

sser0 0x42 Synchronous serial port 0

sser1 0x43 Synchronous serial port 1

ser0 0x44 Serial port 0

ser1 0x45 Serial port 1

ser2 0x46 Serial port 2

ser3 0x47 Serial port 3

eth0 0x49 Ethernet port 0

eth1 0x4a Ethernet port 1

timer 0x4b Timers

bif arb 0x4c Bus interface arbiter

bif dma 0x4d Bus interface DMA

ext 0x4e External IRQ pin

12.3.5 Interrupt acknowledge

Once active, an interrupt stays active until acknowledged by software. Each interrupt
shall be acknowledged at the source of the interrupt. E.g. a serial port interrupt is
acknowledged through mode registers in the serial port causing the interrupt. In most
subsystems interrupts are acknowledged by writing to therw ack intr register.

12.3.6 Non maskable interrupts

A non maskable interrupt (NMI) can be generated by following sources:

Name Description

ext External NMI pin

watchdog Watchdog timer

12.3. FUNCTIONAL DESCRIPTION 363

12.3.7 Guru mode exceptions

A guru mode exception can be generated by the following (non CPU internal) sources:

Name Description

jtag JTAG debug interface

364 CHAPTER 12. INTERRUPTS

Chapter 13

I/O Processor

13.1 References

Reference Description

[DMA MDS] DMA, chapter5

[IOPASM] Assembler tool for MPU and SPU,http://developer.axis.com

Table 13.1:References

Reference Description

[STRMUX] DMA Connection, chapter10

[CRC PAR REGS] Mode registers, chapter25.15

[CRC SERIN REGS] Mode registers, chapter25.32

[CRC SEROUT REGS] Mode registers, chapter25.33

[DMC IN REGS] Mode registers, chapter25.16

[DMC OUT REGS] Mode registers, chapter25.17

[FIFO IN REGS] Mode registers, chapter25.19

[FIFO IN XTRA REGS] Mode registers, chapter25.21

[FIFO OUT REGS] Mode registers, chapter25.18

[FIFO OUT XTRA REGS] Mode registers, chapter25.20

[MPU REGS] Mode registers, chapter25.22

[SAP IN REGS] Mode registers, chapter25.23

[SAP OUT REGS] Mode registers, chapter25.24

[SPU REGS] Mode registers, chapter25.25

[SW CFG REGS] Mode registers, chapter25.26

[SW CPU REGS] Mode registers, chapter25.27

[SW MPU REGS] Mode registers, chapter25.22

[SW SPUREGS] Mode registers, chapter25.29

[TRIGGER REGS] Mode registers, chapter25.31

[TIMER REGS] Mode registers, chapter25.30

Table 13.2:References to register descriptions

365

http://developer.axis.com

366 CHAPTER 13. I/O PROCESSOR

13.2 Definitions

CRC Cyclic Redundancy Check

DMC DMA Communicator

CPU The main CPU of the ETRAX FS

MC Memory Controller

MPU Master Processing Unit

SAP Synchronization and Asynchronous Paths

SPU Slave Processing Unit

GIO General I/O

HAB Hardware Accelerator Block (FIFO, Ser CRC, Par CRC, DMCin,
DMC out)

ALU Arithmetic Logic Unit

FSM Finite State Machine

Table 13.3:Definitions

13.3 Overview

Memory Controller

MPU
Memory

Master
Processing

Unit

Switch

System Memory CPU DMA

Synchonization & asynchronous paths

Trigger Group
*8

Serial CRC,
In and Out

*2

Timer Group
*4

SPU
Memory

*2

Slave
Processing

Unit

*2

DMA Communicator,
In and Out

*2

FIFO,
In and Out

*2

Parallel CRC

*2

Pin groups PB to PE
(A total of 72 pins)

Figure 13.1:Block diagram over the I/O Processor

13.3. OVERVIEW 367

As it can be seen in figure13.1, the I/O Processor is not a processor in a conventional
sense. From a software perspective it should be considered as a collection of HABs,
which are connected to each other in a chip-specific manner. However, the flow of data
is configurable with regards to which hardware blocks the data should traverse on its
way to or from a peripheral device (external hardware).

13.3.1 The concept of ownership

In this text ownership is defined as the ability to read and write the register interface of
a HAB. The ownership hierarchy of the I/O Processor is described in table13.4. Each
row lists one of the I/O Processor Modules in the first column, followed by the modules
that can own it in the second column:

Module Possible Owners

CPU

MPU CPU

SPU0 CPU, MPU, SPU1

SPU1 CPU, MPU, SPU0

HABs1 CPU, MPU, SPU0, SPU1

Table 13.4:Module Ownership

The CPU can own any module, while the MPU can own any module except the CPU.
SPU0 and SPU1 can own each other and any HAB.

Generally, each module can have one owner. However, in addition to a primary owner,
the FIFO can also have a secondary owner. The secondary owner implements a subset
of the owned FIFO’s primary register interface in order to read and write data, and to
read FIFO status.

13.3.2 MPU Characteristics

The MPU is a traditional processor in the sense that it has interrupt handling capa-
bilities. The CPU is able to force the MPU to execute instructions using the register
interface.

13.3.3 SPU Characteristics

The Slave Processing Unit (SPU) is a special processor. It differs from an ordinary
CPU in the following ways:

· Does not have any interrupt handling capabilities

· The SPU can execute state-machine code in a special mode called FSM-mode

1HABs = FIFO, Ser CRC, Par CRC, MC, DMCin, DMC out, Timers and Triggers.

368 CHAPTER 13. I/O PROCESSOR

Beside these two differences, the SPU is still able to execute normal sequential code
just as any other processor. The FSM-mode of the SPU can be described in the follow-
ing way:

· At most eight state transitions can be specified in each state

· Each state can trigger a transition by using a combination of up to four inputs or
the internal timer in the SPU

· Up to four outputs can be changed as a result of a state transition

· An optional sequential instruction can be executed in each state

· Up to four events can be specified and used to handle exceptions that are asyn-
chronous as seen from a protocol perspective (i.e., error conditions)

13.3.4 The Memory Controller (MC)

The I/O Processor’s interface towards the ETRAX FS system memory consists of the
memory controller (MC). MC allows the following operations to be carried out:

· Copying data from the system memory2 to the SPU memories

· Writing data from a register to the SPU memories

· Transferring data to and from an MC register to the system memory2

13.3.5 The Switch

The main responsibility of the Switch is to manage ownership and to configure the
individual connections between the modules of the I/O Processor. It contains logic for:

· Register access within the I/O Processor

· Interrupt multiplexing to CPU

· Interrupt multiplexing to MPU

· Pin multiplexing, creating internal buses

· Multiplexing of signals between I/O Processor modules

· Creating data and control paths

· The CPU, MPU and SPU are all able to control whether the output of an I/O pin
should be set to high or low.

2Due to limitations in the ETRAX FS memory arbiter the MC can not access internal mode registers.

13.3. OVERVIEW 369

13.3.6 SAP

The Synchronization and Asynchronous Paths (SAP) module handles the synchroniza-
tion of incoming data from general I/O pins and buses, and controls the output clocking
of I/O signals.

13.3.7 Trigger

The Trigger can detect the leading or trailing edge of incoming data from an I/O pin.
When an edge is detected an interrupt to the MPU or CPU can be generated. The
Trigger can also enable or disable other Triggers and Timers.

13.3.8 Timer

All timers are divided into groups. A timer group generates clocks and strobe signals.
The strobe signals are useful when generating timeouts or enabling or disabling Timers
and Triggers.

Timers and triggers can be combined in order to create more advanced functions. For
further reference, see chapters13.8and13.9.

13.3.9 The parallel data path

The data buses for parallel data paths are 1-4 bytes wide. The parallel data path is
created by the interconnection of the following modules: Parallel CRC, FIFO, DMC
In and DMC Out. These modules can also transmit or receive data through the register
interface using the SPU, MPU or CPU.

Module Description

DMA Communicator (DMC) DMC controls the interface to DMA.

FIFO Buffers the data.

Parallel CRC The parallel CRC calculates CRC for either in- or
out-channel. It can not calculate CRC for bot in- and
out-channel at the same time.

Table 13.5:Parallel data path modules

Bus width With CRC Without CRC

8 bits 100 MByte/s 100 MByte/s

16 bits 200 MByte/s 200 MByte/s

32 bits 200 MByte/s 400 MByte/s

Table 13.6:Maximum speed on the parallel data path

370 CHAPTER 13. I/O PROCESSOR

DMA
Out-channel

DMA
In-channel

DMA Interface

DMC
Out

DMC
In

FIFO
In

Parallel
CRC

FIFO
Out

I/O
 B

us

Figure 13.2:Block diagram of the parallel data path

13.4 Master Processing Unit

The Master Processing Unit (MPU) is a part of the I/O Processor, which can be used
to control the different I/O Processor submodules. It will handle simple protocols and
interrupt requests from protocol implementations with real time properties. The MPU
runs at a frequency of 200 MHz and executes one instruction each clock cycle, except
for the memory instructions which take an additional clock cycle to execute.

The MPU instructions are either 32- or 64-bit wide. The size of the MPU memory in
ETRAX FS is 4096 bytes (512x64). The 64-bit wide memory makes it possible to read
a 64-bit instruction (aligned in memory) in one clock cycle.

13.4. MASTER PROCESSING UNIT 371

13.4.1 Architectural description

13.4.1.1 Registers

There are three register types in the MPU: mode registers, general registers, and spe-
cial registers. The mode registers are registers found in the register banks of the I/O
Processor. The general registers and some of the special registers can also be accessed
by the CPU through mode registers.

The MPU contains sixteen 32-bit general registers (R0 to R15). The corresponding
mode registers are the sixteen instances ofrw r. When an instruction which writes to
R0-R15 is executed, the corresponding bit is set in the special register WSTS (r wr stat).
The bit can be cleared with the following instruction (N is an integer containing the reg-
ister index):

ANDQ WSTS, ˜(1 << N), WSTS

The MPU architecture also defines 32 special registers (P0-P31). Of these, only 25
are implemented. All special registers are 12 bits wide, except for the WSTS register,
which is 16 bits wide. The special registers and their corresponding mode registers are
found in table13.7.

Mnemonic Reg. no. Description Mode register

REGA P1 Register address storage (lowest two bits are
always 0)

PC P2 Program counter r pc

WSTS P3 Register write status r wr stat

IRP P5 Interrupt return pointer

SRP P6 Subroutine return pointer

T0 P8 Memory address for thread 0 rw thread

T1 P9 Memory address for thread 1 rw thread

T2 P10 Memory address for thread 2 rw thread

T3 P11 Memory address for thread 3 rw thread

I0 P16 Memory address for interrupt request 0 rw intr

I1 P17 Memory address for interrupt request 1 rw intr

I2 P18 Memory address for interrupt request 2 rw intr

I3 P19 Memory address for interrupt request 3 rw intr

I4 P20 Memory address for interrupt request 4 rw intr

I5 P21 Memory address for interrupt request 5 rw intr

I6 P22 Memory address for interrupt request 6 rw intr

I7 P23 Memory address for interrupt request 7 rw intr

I8 P24 Memory address for interrupt request 8 rw intr

I9 P25 Memory address for interrupt request 9 rw intr

I10 P26 Memory address for interrupt request 10 rw intr

I11 P27 Memory address for interrupt request 11 rw intr

I12 P28 Memory address for interrupt request 12 rw intr

I13 P29 Memory address for interrupt request 13 rw intr

I14 P30 Memory address for interrupt request 14 rw intr

I15 P31 Memory address for interrupt request 15 rw intr

Table 13.7:MPU, Special registers

372 CHAPTER 13. I/O PROCESSOR

13.4.1.2 Data organization in memory

Instructions are stored in memory with the least significant byte at the lowest address
(”little endian”). The MPU has a 64-bit wide data bus to the memory.

Instructions can be aligned to either a 32-bit or a 64-bit boundary. If a 64-bit wide
instruction crosses a 64-bit boundary, the MPU will split the instruction access into
two separate accesses. So, the use of unaligned 64-bit instructions will degrade perfor-
mance.

· Example:

:
MOVEQ 0x1, R0
MOVEQ 0x2, R1
ADDX R0, 0x12345678, R2
ADDQ R2, R1, R3
MOVEX 0x12345678, R3
SUB R3, R2, R2
:

63 31 0

MOVEQ 0x2, R1 MOVEQ 0x1, R0 An

An + 8

An + 16

An + 24

ADDX R0, 0x12345678, R2

MOVEX 0x12345678, R3

SUB R3, R2, R2

ADDQ R2, R1, R3

MOVEX 0x12345678, R3

32

Figure 13.3:MPU, Unaligned instruction in memory

Note, in this example, that the MOVEX instruction is unaligned and split to
address An+20 and An+24. The MPU must stall (a NOP instruction is executed)
before the MOVEX instruction is executed.

13.4.1.3 Branches, jumps and subroutines

The branch and jump instructions of the MPU are delayed branch instructions. This
means that the instruction following directly after a branch instruction will always be
executed, even if the branch is taken.

· Example:

:
MOVEQ 4, R0
NOP

LOOP: BNZ R0, LOOP

13.4. MASTER PROCESSING UNIT 373

SUBQ R0, 1, R0 ; Delay slot instruction, executed
; even if the branch is taken

:

The branch to LOOP will be executed four times, and register R0 decremented
by 1 after each turn. After leaving the loop, R0 will have the value -1.

There are some restrictions as to which instructions can be placed in the delay slot.
Valid instructions for the delay slots are all instructions except:

· BA/BAR/BBC/BBS/BNZ/BMI/BPL/BZ

· JIR/JSR/JNT

· RET/RETI

· 64-bit instructions which are not aligned in memory.

A BBC/BBS/BMI/BNZ/BPL/BZ instruction can not use the destination register of
the immediately preceding instruction as the conditional register, since the updated
or old value of the register may be referenced depending on whether an interrupt
occurred between the two instructions or not. When no interrupts are active, the
BBC/BBS/BMI/BNZ/BPL/BZ will always reference the old register value.

· Example:

:
MOVEQ 5, R0
SUBQ R0, 5, R0
BZ R0, ZERO
:

If an interrupt routine, which does not alter the value of R0, is started after the
SUBQ instruction, the value of R0 used by the BZ instruction will equal 0. Oth-
erwise, the value of R0 will equal 5.

A NOP instruction should be added by the programmer after the SUBQ instruc-
tion. Then there will be no doubt that the value of R0 equals 0 when BZ is
executed.

When executing the JSR instruction, the return address is stored in a special register
called the Subroutine Return Pointer (SRP). A subroutine should end with the RET
instruction and the instruction in the delay slot after RET. The RET instruction will
copy the value of the SRP register to the program counter. The subroutine return pointer
can be altered during the execution of the subroutine.

374 CHAPTER 13. I/O PROCESSOR

13.4.1.4 Interrupts

The MPU interrupts are generated by the other internal I/O Processor modules. There
is a total of 16 interrupts. The I/O Processor Switch configures which interrupts that
will be used. The addresses for the interrupt routines are set by writing to the mode
registers (rw intr) or by executingMOVEQ addr, In, where In (n = 0..15) is one of the
special registers I0-I15 explained in section13.4.1.1.

If more than one interrupt is generated at the same time, the interrupt with the highest
priority will be executed. I0 has the highest priority and I15 has the lowest priority.
There is no support for nested interrupts. All interrupt requests are ignored when exe-
cuting an interrupt routine.

The MPU can also jump to an interrupt routine by executing the JIR instruction. The
interrupt return pointer can not be put on a stack and therefore the JIR instruction
should not be executed in an interrupt routine.

The interrupt routine must end with RETI and the RETI delay slot. The first instruction
in an interrupt routine should not be RR, and the last instruction, in the delay slot after
RETI, should not be RW/RWQ/RWX. When entering or exiting an interrupt routine
and the rules above are not followed, a register read could be executed directly after a
register write. Executing a register read directly after a register write is not allowed.

Interrupts request can be disabled with the DI instruction and enabled with the EI in-
struction.

The MPU can generate an interrupt request to the CPU by writing to a special register
in the I/O Processor Switch.

13.4.1.5 The MPU executes instructions from the CPU

The CPU can make the MPU execute a single instruction by writing the instruction to
the MPU’s instruction register,rw instr. The instruction will be executed immediately,
except for some special cases:

· When the MPU executes LW/SW/SWX instructions. If the MPU is running
a sequence containing only of LW/SW/SWX instructions, the instruction will
not be executed until after the last LW/SW/SWX instruction of the sequence is
executed.

· When the MPU executes an interrupt routine. If the MPU is running an interrupt
routine, the instruction will not be executed until the interrupt routine is finished.

· When the MPU executes an unaligned 64-bit instruction. The instruction will
not be executed until the complete 64-bit instruction has been executed.

· When the MPU executes a delay slot. The instruction will not be executed until
after the instruction in the delay slot has been executed.

· After the disable interrupt (DI) instruction was executed. The instruction is not
executed until after an EI instruction has been executed.

13.4. MASTER PROCESSING UNIT 375

The instruction from the instruction register can always be executed when the MPU is
disabled.

Before the CPU writes to the instruction register, it should check if ther stat.instrreg busy
field is set tono. Otherwise it might overwrite an instruction which has not yet been
executed.

The CPU can make the MPU enter an interrupt routine by writing the JIR instruction
to the instruction register. Executing BA will change the program counter. Using the
rw instr register is also useful when the CPU wants to access registers in Hardware
Accelerator Blocks (HABs) owned by the MPU.

If the MPU code contains unaligned instructions which can be interrupted by the exe-
cution of the instruction register, then the LW/SW/SWX instruction must not be written
to the instruction register.

13.4.1.6 Register write and read

The MPU can read or write mode registers in other I/O Processor modules which are
owned by the MPU. A register write instruction can not be directly followed by a
register read instruction.

13.4.1.7 Memory instructions

The MPU is capable of loading and storing data in its own memory. The LW instruction
loads 32-bit of memory data to a register and the SW/SWX instruction stores a 32-bit
value to the MPU memory.

If the LW/SW/SWX instruction can be interrupted by an interrupt request, there must
be a NOP or branch instruction at the memory address preceding the LW/SW/SWX
instruction. In a sequence of several LW/SW/SWX instructions which are executed
after each other, the NOP instruction is needed only before the first LW/SW/SWX
instruction of that sequence.

13.4.1.8 Threads

A thread is a variant of a subroutine. Threads can be interrupted by both instructions
written to the instruction register and by interrupt requests. Threads are useful when
splitting the execution time of non critical timing code in the MPU.

The MPU has four threads. All four thread addresses will point to address 0x0000
when the MPU is reset. Writing to special register T0-T3 will change the address of a
thread. It is also possible to change the addresses by writing to therw threadregisters.

An ordinary subroutine is started by the JSR instruction and is ended with RET. Re-
garding threads, a single instruction, JNT (Jump Next Thread), is used when entering
and exiting a thread. JNT ends the execution of the current thread, and at the same time
starts the execution of the next thread. When JNT is executed, the program counter
will be updated with the contents of the special register Tn (where n = 0..3) pointed to
by the thread pointer. When the next JNT instruction is executed, the thread pointer
points to the next thread address (n = n + 1 modulo 4).

376 CHAPTER 13. I/O PROCESSOR

A thread can not be disabled. It will always end with JNT and the delay slot of JNT.
The simplest thread routine will only jump to the next thread. In other words, it will
only contain a JNT instruction and a NOP instruction.

· Example:

All thread addresses point to WAIT at startup. The WAIT loop will be an endless
loop until one of the thread addresses are changed.3

WAIT: JNT ; Wait for a thread address to change to
NOP ; THREAD0 or THREAD1.

:

THREAD0: ; This thread is executed when the thread
: ; pointer points to it and the JNT is executed.
JNT
MOVEQ WAIT, T0 ; Thread address 0 is set to WAIT

:

THREAD1:
:
JNT
MOVEQ WAIT, T1 ; Thread address 1 is set to WAIT

Thread addresses can be changed at any time. If a thread address is changed and the
thread routine is never executed before the thread address is changed a second time,
the first address change will be lost and it will never take place.

· Example:

This program will execute in the following order4:

START->WAIT->THREAD0->WAIT->THREAD2->THREAD3->WAIT

START: MOVEQ THREAD0, T0
MOVEQ THREAD1, T1 ; THREAD1 routine is never executed because

; Thread address 1 is changed in THREAD0.
MOVEQ THREAD2, T2
MOVEQ THREAD3, T3

WAIT: JNT
NOP

:

THREAD0:

3The MOVEQ instructions are executed in the delay slot of JNT.
4THREAD1 is never executed. When the program has returned to WAIT it will loop until one thread

address is changed.

13.4. MASTER PROCESSING UNIT 377

:
MOVEQ WAIT, T1 ; Thread address 1 is set to WAIT
:
JNT
MOVEQ WAIT, T0 ; Thread address 0 is set to WAIT

THREAD1:
:
JNT
MOVEQ WAIT, T1 ; Thread address 1 is set to WAIT

THREAD2:
:
JNT
MOVEQ WAIT, T2 ; Thread address 2 is set to WAIT

THREAD3:
:
JNT
MOVEQ WAIT, T3 ; Thread address 3 is set to WAIT

13.4.2 Instruction set description

13.4.2.1 Definitions

addr Instruction address. This field points to a 32 bit entity in the MPU
memory. To get the byte address the field is shifted left by two steps
(addr<< 2).

b An 8 bit wide immediate value.

i Immediate value which is either 16 or 32 bits wide.

regaddr Address to a register in one of the I/O Processor register banks. This
field points to a 32 bit entity in the mode register memory space. To get
the byte address the field is shifted left by two steps (regaddr<< 2).

Rd, Rn and Rs Index of a general register (R0-R15) or a special register (P0-P31).

Table 13.8:MPU, Instruction set definitions

378 CHAPTER 13. I/O PROCESSOR

13.4.2.2 Instructions in alphabetical order

13.4.2.2.1 ADD - Add

Assembler syntax:
ADD Rs, Rn, Rd

Description: The source register is added to the contents of a general register or a special
register, and the result is stored in the destination register. When either D, S or
N is set to 1, Rd, Rs or Rn respectively, becomes a special register rather than a
general register. See table below.

Operation:
Rd = Rs + Rn;

Instruction format:
31 25 20 15 10 9 8 7 0
+------+-----+-----+-----+-+-+-+--------+
|010000| Rd | Rs | Rn |D|S|N|10001100|
+------+-----+-----+-----+-+-+-+--------+

D S N General registers Special registers

0 0 0 Rd Rs Rn None

0 0 1 Rd Rs Rn

0 1 0 Rd Rn Rs

0 1 1 Rd Rs Rn

1 0 0 Rs Rn Rd

1 0 1 Rs Rd Rn

1 1 0 Rn Rd Rs

1 1 1 None Rd Rs Rn

13.4. MASTER PROCESSING UNIT 379

13.4.2.2.2 ADDQ - ADD Quick

Assembler syntax:
ADDQ Rs, i, Rd

Description: A 16-bit immediate value is zero extended to 32 bits and added to the contents
of a general register, and the result is stored in the destination register. Both Rs
and Rd are general registers.

Operation:
Rd = Rs + i;

Instruction format:
31 25 20 15 0
+------+-----+-----+----------------+
|000100| Rd | Rs | i |
+------+-----+-----+----------------+

380 CHAPTER 13. I/O PROCESSOR

13.4.2.2.3 ADDX - ADD Extended

Assembler syntax:
ADDX Rs, i, Rd

Description: A 32-bit unsigned immediate value is added to the contents of a general register
or a special register, and the result is stored in the destination register. When
either D or S is set to 1, Rd or Rs respectively, becomes a special register rather
than a general register. See table below.

Operation:
Rd = Rs + i;

Instruction format:
64 31 25 20 15 10 9 8 0
+--------------------------------+------+-----+-----+-----+-+-+---------+
| i |110000| Rd | Rs |00000|D|S|010001100|
+--------------------------------+------+-----+-----+-----+-+-+---------+

D S General registers Special registers

0 0 Rd Rs None

0 1 Rd Rs

1 0 Rs Rd

1 1 None Rd Rs

13.4. MASTER PROCESSING UNIT 381

13.4.2.2.4 AND - Logical AND

Assembler syntax:
AND Rs, Rn, Rd

Description: A bitwise AND is performed between the source register and the contents of
a general register or a special register. The result is stored in the destination
register. When either D, S or N is set to 1, Rd, Rs or Rn respectively, becomes a
special register rather than a general register. See table below.

Operation:
Rd = Rs & Rn;

Instruction format:
31 25 20 15 10 9 8 7 0
+------+-----+-----+-----+-+-+-+--------+
|010000| Rd | Rs | Rn |D|S|N|10001010|
+------+-----+-----+-----+-+-+-+--------+

D S N General registers Special registers

0 0 0 Rd Rs Rn None

0 0 1 Rd Rs Rn

0 1 0 Rd Rn Rs

0 1 1 Rd Rs Rn

1 0 0 Rs Rn Rd

1 0 1 Rs Rd Rn

1 1 0 Rn Rd Rs

1 1 1 None Rd Rs Rn

382 CHAPTER 13. I/O PROCESSOR

13.4.2.2.5 ANDQ - Logical AND Quick

Assembler syntax:
ANDQ Rs, i, Rd

Description: The 16-bit immediate value is zero extended to 32 bits and then a bitwise AND is
performed between it and the contents of a general register. The result is stored
in the destination register. Both Rs and Rd are general registers.

Operation:
Rd = Rs & i;

Instruction format:
31 25 20 15 0
+------+-----+-----+----------------+
|000010| Rd | Rs | i |
+------+-----+-----+----------------+

13.4. MASTER PROCESSING UNIT 383

13.4.2.2.6 ANDX - Logical AND Extended

Assembler syntax:
ANDX Rs, i, Rd

Description: A bitwise AND is performed between a 32-bit immediate value and the contents
of a general register or a special register. The result is stored in the destination
register. When either D or S is set to 1, Rd or Rs respectively, becomes a special
register rather than a general register. See table below.

Operation:
Rd = Rs & i;

Instruction format:
64 31 25 20 15 10 9 8 0
+--------------------------------+------+-----+-----+-----+-+-+---------+
| i |110000| Rd | Rs |00000|D|S|010001010|
+--------------------------------+------+-----+-----+-----+-+-+---------+

D S General registers Special registers

0 0 Rd Rs None

0 1 Rd Rs

1 0 Rs Rd

1 1 None Rd Rs

384 CHAPTER 13. I/O PROCESSOR

13.4.2.2.7 BA - Branch Always

Assembler syntax:
BA addr

Description: The program counter (PC) is loaded with the contents of addr. The BA instruc-
tion is a delayed branch instruction, with one delay slot.

Operation:
PC = (addr << 2);

Instruction format:
31 15 0
+----------------+----------------+
|0110000000000000| addr |
+----------------+----------------+

13.4. MASTER PROCESSING UNIT 385

13.4.2.2.8 BAR - Branch Always Register

Assembler syntax:
BAR Rn

Description: The program counter (PC) is loaded with the contents of the source register. The
BAR instruction is a delayed branch instruction, with one delay slot. When N is
set to 1, Rn becomes a special register rather than a general register.

Operation:
PC = Rn;

Instruction format:
31 24 15 10 0
+-------+-+--------+-----+-----------+
|0110001|N|00000000| Rn |00000000000|
+-------+-+--------+-----+-----------+

386 CHAPTER 13. I/O PROCESSOR

13.4.2.2.9 BBC - Branch Bit Clear

Assembler syntax:
BBC Rs, i, addr

Description: The program counter (PC) is loaded with the contents of addr if bit i of the source
register is cleared. The BBC instruction is a delayed branch instruction, with one
delay slot.

Operation:
if ((Rs & (1 << i)) == 0) {

PC = (addr << 2);
}

Instruction format:
31 25 20 15 0
+------+-----+-----+----------------+
|011110| i | Rs | addr |
+------+-----+-----+----------------+

13.4. MASTER PROCESSING UNIT 387

13.4.2.2.10 BBS - Branch Bit Set

Assembler syntax:
BBS Rs, i, addr

Description: The program counter (PC) is loaded with the contents of addr if bit i of the
source register is set. The BBS instruction is a delayed branch instruction, with
one delay slot.

Operation:
if ((Rs & (1 << i)) != 0) {

PC = (addr << 2);
}

Instruction format:
31 25 20 15 0
+------+-----+-----+----------------+
|011111| i | Rs | addr |
+------+-----+-----+----------------+

388 CHAPTER 13. I/O PROCESSOR

13.4.2.2.11 BMI - Branch Minus

Syntax:
BMI Rs, addr

Description: The program counter (PC) is loaded with the contents of addr if the contents of
the source register is less than zero.5 The BMI instruction is a delayed branch
instruction, with one delay slot.

Operation:
if ((Rs & 0x80000000) != 0) {

PC = (addr << 2);
}

Instruction format:
31 20 15 0
+-----------+-----+----------------+
|01111111111| Rs | addr |
+-----------+-----+----------------+

5BMI Rs, addr is the same as BBS Rs, 31, addr

13.4. MASTER PROCESSING UNIT 389

13.4.2.2.12 BNZ - Branch Not Zero

Assembler syntax:
BNZ Rs, addr

Description: The program counter (PC) is loaded with the contents of addr if the contents of
the source register is not equal to zero. The BNZ instruction is a delayed branch
instruction, with one delay slot.

Operation:
if (Rs != 0) {

PC = (addr << 2);
}

Instruction format:
31 20 15 0
+-----------+-----+----------------+
|01110100010| Rs | addr |
+-----------+-----+----------------+

390 CHAPTER 13. I/O PROCESSOR

13.4.2.2.13 BPL - Branch Plus

Assembler syntax:
BPL Rs, addr

Description: The program counter (PC) is loaded with the contents of addr if the contents of
the source register is greater than or equal to zero.6 The BPL instruction is a
delayed branch instruction, with one delay slot.

Operation:
if ((Rs & 0x80000000) == 0) {

PC = (addr << 2);
}

Instruction format:
31 20 15 0
+-----------+-----+----------------+
|01111011111| Rs | addr |
+-----------+-----+----------------+

6BPL Rs, addr is the same as BBC Rs, 31, addr.

13.4. MASTER PROCESSING UNIT 391

13.4.2.2.14 BZ - Branch Zero

Assembler syntax:
BZ Rs, addr

Description: The program counter (PC) is loaded with the contents of addr if the contents of
the source register equals zero. The BZ instruction is a delayed branch instruc-
tion, with one delay slot.

Operation:
if (Rs == 0) {

PC = (addr << 2);
}

Instruction format:
31 20 15 0
+-----------+-----+----------------+
|01110100000| Rs | addr |
+-----------+-----+----------------+

392 CHAPTER 13. I/O PROCESSOR

13.4.2.2.15 DI - Disable Interrupts

Assembler syntax:
DI

Description: Disable interrupts and the execution of instructions from the the instruction reg-
ister.7

Instruction format:
31 0
+--------------------------------+
|01000000000000000000000000000001|
+--------------------------------+

7An interrupt routine can be executed immediately after the execution of the DI instruction. But there
can be no interrupt after the first instruction following DI.

13.4. MASTER PROCESSING UNIT 393

13.4.2.2.16 EI - Enable Interrupts

Syntax:
EI

Description: Enable interrupts and the execution of instructions from the the instruction reg-
ister.8

Instruction format:
31 0
+--------------------------------+
|01000000000000000000000000000011|
+--------------------------------+

8The execution of the first instruction of an interrupt routine, after enabling the interrupts, executes no
earlier than after the first instruction following the EI instruction.

394 CHAPTER 13. I/O PROCESSOR

13.4.2.2.17 HALT - Halt the MPU

Syntax:
HALT

Description: Disables the MPU. The CPU can enable the MPU by writing torw ctrl.en.

Instruction format:
31 0
+--------------------------------+
|01000000000000000000000000000010|
+--------------------------------+

13.4. MASTER PROCESSING UNIT 395

13.4.2.2.18 JIR - Jump to Interrupt Routine (Address is an immediate)

Assembler syntax:
JIR addr

Description: The interrupt return pointer (IRP) is loaded with the contents of the program
counter (PC) for the instruction to be executed after the interrupt routine.9 PC
is then loaded with the contents of the address operand. The JIR instruction is a
delayed branch instruction, with one delay slot.

Operation:
IRP = Next PC;
PC = (addr << 2);

Instruction format:
31 15 0
+----------------+----------------+
|0110000000100000| addr |
+----------------+----------------+

9The IRP can not be put on a stack. If JIR is executed in an interrupt routine, the value of IRP will be
overwritten. The JIR instruction should therefore never be executed in an interrupt routine.

396 CHAPTER 13. I/O PROCESSOR

13.4.2.2.19 JIR - Jump to Interrupt Routine (Address is a register)

Assembler syntax:
JIR Rn

Description: The interrupt return pointer (IRP) is loaded with the contents of the program
counter (PC) for the instruction to be executed after the interrupt routine.10 PC
is then loaded with the contents of Rn. When N is set to 1, Rn becomes a special
register rather than a general register. The JIR instruction is a delayed branch
instruction, with one delay slot.

Operation:
IRP = Next PC;
PC = Rn;

Instruction format:
31 24 15 10 0
+-------+-+--------+-----+-----------+
|0110001|N|00100000| Rn |00000000000|
+-------+-+--------+-----+-----------+

10The IRP can not be put on a stack. If JIR is executed in an interrupt routine, the value of IRP will be
overwritten. The JIR instruction should therefore never be executed in an interrupt routine.

13.4. MASTER PROCESSING UNIT 397

13.4.2.2.20 JNT - Jump Next Thread

Assembler syntax:
JNT

Description: Jump to the thread address which the thread pointer (TP) points at. The thread
pointer is then updated and will point at the next thread address. The JNT in-
struction is a delayed jump instruction, with one delay slot.

Operation:
PC = ThreadAddr[TP];
TP = TP + 1;

Instruction format:
31 0
+--------------------------------+
|01100001000000000000000000000000|
+--------------------------------+

398 CHAPTER 13. I/O PROCESSOR

13.4.2.2.21 JSR - Jump to Subroutine (Address is an immediate)

Assembler syntax:
JSR addr

Description: The subroutine return pointer (SRP) is loaded with the contents of the program
counter (PC) for the instruction to be executed after the subroutine.11 PC is then
loaded with the contents of the address operand. The JSR instruction is a delayed
branch instruction, with one delay slot.

Operation:
SRP = Next PC;
PC = (addr << 2);

Instruction format:
31 15 0
+----------------+----------------+
|0110000001000000| addr |
+----------------+----------------+

11The SRP can not be put on a stack. If JSR is executed using the register interface while already running
a subroutine, the first SRP value will be lost. The JSR instruction should therefore never be executed using
the register interface.

13.4. MASTER PROCESSING UNIT 399

13.4.2.2.22 JSR - Jump to Subroutine (Address is a register)

Assembler syntax:
JSR Rn

Description: The subroutine return pointer (SRP) is loaded with the contents of the program
counter (PC) for the instruction to be executed after the subroutine.12 PC is then
loaded with the contents of Rn. When N is set to 1, Rn becomes a special register
rather than a general register. The JSR instruction is a delayed branch instruction,
with one delay slot.

Operation:
SRP = Next PC;
PC = Rn;

Instruction format:
31 24 15 10 0
+-------+-+--------+-----+-----------+
|0110001|N|01000000| Rn |00000000000|
+-------+-+--------+-----+-----------+

12The SRP can not be put on a stack. If JSR is executed using the register interface while already running
a subroutine, the first SRP value will be lost. The JSR instruction should therefore never be executed using
the register interface.

400 CHAPTER 13. I/O PROCESSOR

13.4.2.2.23 LSL - Logical Shift Left

Assembler syntax:
LSL Rs, Rn, Rd

Description: The source register is left shifted the number of steps specified by a general
register or a special register and zero-filled.13 When either D, S or N is set to
1, Rd, Rs or Rn respectively, becomes a special register rather than a general
register. See table below.

Operation:
Rd = Rs << Rn;

Instruction format:
31 25 20 15 10 9 8 7 0
+------+-----+-----+-----+-+-+-+--------+
|010000| Rd | Rs | Rn |D|S|N|10001110|
+------+-----+-----+-----+-+-+-+--------+

D S N General registers Special registers

0 0 0 Rd Rs Rn None

0 0 1 Rd Rs Rn

0 1 0 Rd Rn Rs

0 1 1 Rd Rs Rn

1 0 0 Rs Rn Rd

1 0 1 Rs Rd Rn

1 1 0 Rn Rd Rs

1 1 1 None Rd Rs Rn

13A shift with 32 bits or more will give a zero result.

13.4. MASTER PROCESSING UNIT 401

13.4.2.2.24 LSLQ - Logical Shift Left Quick

Assembler syntax:
LSLQ Rs, i, Rd

Description: The source register is left shifted the number of steps specified by the 16-bit
immediate value and zero-filled.14

Operation:
Rd = Rs << i;

Instruction format:
31 25 20 15 0
+------+-----+-----+----------------+
|000110| Rd | Rs | i |
+------+-----+-----+----------------+

14A shift with 32 bits or more will give a zero result.

402 CHAPTER 13. I/O PROCESSOR

13.4.2.2.25 LSR - Logical Shift Right

Assembler syntax:
LSR Rs, Rn, Rd

Description: The source register is right shifted the number of steps specified by a general
register or a special register and zero-filled.15 When either D, S or N is set to
1, Rd, Rs or Rn respectively, becomes a special register rather than a general
register. See table below.

Operation:
Rd = Rs >> Rn;

Instruction format:
31 25 20 15 10 9 8 7 0
+------+-----+-----+-----+-+-+-+--------+
|010000| Rd | Rs | Rn |D|S|N|10001111|
+------+-----+-----+-----+-+-+-+--------+

D S N General registers Special registers

0 0 0 Rd Rs Rn None

0 0 1 Rd Rs Rn

0 1 0 Rd Rn Rs

0 1 1 Rd Rs Rn

1 0 0 Rs Rn Rd

1 0 1 Rs Rd Rn

1 1 0 Rn Rd Rs

1 1 1 None Rd Rs Rn

15A shift with 32 bits or more will give a zero result.

13.4. MASTER PROCESSING UNIT 403

13.4.2.2.26 LSRQ - Logical Shift Right Quick

Assembler syntax:
LSRQ Rs, i, Rd

Description: The source register is right shifted the number of steps specified by the 16-bit
immediate value and zero-filled.16

Operation:
Rd = Rs >> i;

Instruction format:
31 25 20 15 0
+------+-----+-----+----------------+
|000111| Rd | Rs | i |
+------+-----+-----+----------------+

16A shift with 32 bits or more will give a zero result.

404 CHAPTER 13. I/O PROCESSOR

13.4.2.2.27 LW - Load 32-bit data to register (Address is an immediate)

Assembler syntax:
LW addr, Rs

Description: The destination register is loaded with the contents of memory data at address
addr in the MPU memory. The MPU requires an extra clock cycle to execute the
LW instruction. When S is set to 1, Rs becomes a special register rather than a
general register.

Operation:
Rs = mem[addr << 2];

Instruction format:
31 20 15 0
+----------+-+-----+----------------+
|0110010001|S| Rs | addr |
+----------+-+-----+----------------+

13.4. MASTER PROCESSING UNIT 405

13.4.2.2.28 LW - Load 32-bit data to register (Address is a register)

Assembler syntax:
LW Rn, b, Rs

It can also be written as the following when b=0:

LW Rn, Rs

Description: The destination register is loaded with the contents of memory data at the ad-
dress stored in Rn. The contents of Rn is changed by adding an 8-bit unsigned
immediate value, which is zero extended to 32 bits. The MPU will insert a delay
after the LW instruction has been executed. When either N or S is set to 1, Rn
or Rs respectively, becomes a special register rather than a general register. See
table below.

Operation:
Rs = mem[Rn];
Rn = Rn + b;

Instruction format:
31 24 20 15 10 7 0
+-------+-+--+-+-----+-----+---+--------+
|0110011|N|01|S| Rs | Rn |000| b |
+-------+-+--+-+-----+-----+---+--------+

S N General registers Special registers

0 0 Rn Rs None

0 1 Rn Rs

1 0 Rs Rn

1 1 None Rn Rs

406 CHAPTER 13. I/O PROCESSOR

13.4.2.2.29 MOVE - Move to Register

Assembler syntax:
MOVE Rs, Rd

Description: Move data from source register to the destination register. When either D or S is
set to 1, Rd or Rs respectively, becomes a special register rather than a general
register. See table below.

Operation:
Rd = Rs;

Instruction format:
31 25 20 15 10 9 8 7 0
+------+-----+-----+-----+-+-+-+--------+
|010000| Rd |00000| Rs |D|0|S|10000001|
+------+-----+-----+-----+-+-+-+--------+

D S General registers Special registers

0 0 Rd Rs None

0 1 Rd Rs

1 0 Rs Rd

1 1 None Rd Rs

13.4. MASTER PROCESSING UNIT 407

13.4.2.2.30 MOVEQ - Move Quick

Assembler syntax:
MOVEQ i, Rd

Description: The 16-bit immediate value is zero extended to 32 bits and then moved to the
destination register. When D is set to 1, Rd becomes a special register rather
than a general register.

Operation:
Rd = i;

Instruction format:
31 27 25 20 15 0
+----+-+-+-----+-----+----------------+
|0010|D|1| Rd |00000| i |
+----+-+-+-----+-----+----------------+

408 CHAPTER 13. I/O PROCESSOR

13.4.2.2.31 MOVEX - Move Extended

Assembler syntax:
MOVEX i, Rd

Description: Move the 32-bit immediate value to the destination register. When D is set to 1,
Rd becomes a special register rather than a general register.

Operation:
Rd = i;

Instruction format:
64 31 25 20 10 9 0
+--------------------------------+------+-----+----------+-+----------+
| i |110000| Rd |0000000000|D|0010000001|
+--------------------------------+------+-----+----------+-+----------+

13.4. MASTER PROCESSING UNIT 409

13.4.2.2.32 NOP - No Operation

Assembler syntax:
NOP

Description: No operation

Operation:
;

Instruction format:
31 0
+--------------------------------+
|01000000000000000000000000000000|
+--------------------------------+

410 CHAPTER 13. I/O PROCESSOR

13.4.2.2.33 NOT - Logical Complement

Assembler syntax:
NOT Rs, Rd

Description: The contents of the source register is bitwise inverted (1’s complement). When
either D or S is set to 1, Rd or Rs respectively, becomes a special register rather
than a general register. See table below.

Operation:
Rd = ˜Rs;

Instruction format:
31 25 20 15 10 9 8 7 0
+------+-----+-----+-----+-+-+-+--------+
|010000| Rd |10000| Rs |D|0|S|10000001|
+------+-----+-----+-----+-+-+-+--------+

D S General registers Special registers

0 0 Rd Rs None

0 1 Rd Rs

1 0 Rs Rd

1 1 None Rd Rs

13.4. MASTER PROCESSING UNIT 411

13.4.2.2.34 OR - Logical OR

Assembler syntax:
OR Rs, Rn, Rd

Description: A bitwise OR is performed between the source register and the contents of a gen-
eral register or a special register. The result is stored in the destination register.
When either D, S or N is set to 1, Rd, Rs or Rn respectively, becomes a special
register rather than a general register. See table below.

Operation:
Rd = Rs | Rn;

Instruction format:
31 25 20 15 10 9 8 7 0
+------+-----+-----+-----+-+-+-+--------+
|010000| Rd | Rs | Rn |D|S|N|10001011|
+------+-----+-----+-----+-+-+-+--------+

D S N General registers Special registers

0 0 0 Rd Rs Rn None

0 0 1 Rd Rs Rn

0 1 0 Rd Rn Rs

0 1 1 Rd Rs Rn

1 0 0 Rs Rn Rd

1 0 1 Rs Rd Rn

1 1 0 Rn Rd Rs

1 1 1 None Rd Rs Rn

412 CHAPTER 13. I/O PROCESSOR

13.4.2.2.35 ORQ - Logical OR Quick

Assembler syntax:
ORQ Rs, i, Rd

Description: The 16-bit immediate value is zero extended to 32 bits, and then a bitwise OR is
performed between it and the contents of a general register. The result is stored
in the destination register. Both Rs and Rd are general registers.

Operation:
Rd = Rs | i;

Instruction format:
31 25 20 15 0
+------+-----+-----+----------------+
|000011| Rd | Rs | i |
+------+-----+-----+----------------+

13.4. MASTER PROCESSING UNIT 413

13.4.2.2.36 ORX - Logical OR Extended

Assembler syntax:
ORX Rs, i, Rd

Description: A bitwise OR is performed between a 32-bit immediate value and the contents
of a general register or a special register. The result is stored in the destination
register. When either D or S is set to 1, Rd or Rs respectively, becomes a special
register rather than a general register. See table below.

Operation:
Rd = Rs | i;

Instruction format:
64 31 25 20 15 10 9 8 0
+--------------------------------+------+-----+-----+-----+-+-+---------+
| i |110000| Rd | Rs |00000|D|S|010001011|
+--------------------------------+------+-----+-----+-----+-+-+---------+

D S General registers Special registers

0 0 Rd Rs None

0 1 Rd Rs

1 0 Rs Rd

1 1 None Rd Rs

414 CHAPTER 13. I/O PROCESSOR

13.4.2.2.37 RET - Return from Subroutine

Assembler syntax:
RET

Description: The contents of the subroutine return pointer (SRP) is loaded to PC.17 The RET
instruction is a delayed jump instruction, with one delay slot.

Operation:
PC = SRP;

Instruction format:
31 0
+--------------------------------+
|01100011000000000011000000000000|
+--------------------------------+

17RET is the same as BAR SRP.

13.4. MASTER PROCESSING UNIT 415

13.4.2.2.38 RETI - Return from Interrupt

Assembler syntax:
RETI

Description: The contents of the interrupt return pointer (IRP) is loaded to PC. The RETI
instruction is a delayed jump instruction, with one delay slot.

Operation:
PC = IRP;

Instruction format:
31 0
+--------------------------------+
|01100011011000000010100000000000|
+--------------------------------+

416 CHAPTER 13. I/O PROCESSOR

13.4.2.2.39 RR - Register Read (Address is an immediate)

Assembler syntax:
RR regaddr, Rd

Description: Move data from register at address regaddr using the register interface. The data
is stored in the destination register.18

Operation:
Rd = REGIF[regaddr << 2];

Instruction format:
31 25 20 10 0
+------+-----+----------+-----------+
|010100| Rd |0000000000| regaddr |
+------+-----+----------+-----------+

18The destination of the RR instruction can not be used by the instruction directly after the RR instruction,
since the updated or old value of the register may be referenced depending on whether an interrupt occurred
between the two instructions or not.

13.4. MASTER PROCESSING UNIT 417

13.4.2.2.40 RR - Register Read (Address is a register)

Assembler syntax:
RR Rs, Rd

Description: Move data from register at address stored in Rs, using the register interface. The
data is stored in the destination register.19 Rs is a special register.

Operation:
Rd = REGIF[Rs];

Instruction format:
31 25 20 15 0
+------+-----+-----+----------------+
|010100| Rd | Rs |1000000000000000|
+------+-----+-----+----------------+

19An RR instruction can not use the destination register of the immediately preceding instruction as the
address register. Neither can the destination of the RR instruction be used by the instruction directly after
the RR instruction, since the updated or old value of the register may be referenced depending on whether
an interrupt occurred between the two instructions or not.

418 CHAPTER 13. I/O PROCESSOR

13.4.2.2.41 RW - Register Write (Address is an immediate)

Assembler syntax:
RW Rs, regaddr

Description: Move data from the source register using the register interface. The data is stored
in the register at address regaddr.

Operation:
REGIF[regaddr << 2] = Rs;

Instruction format:
31 20 15 10 0
+-----------+-----+-----+-----------+
|01010110000|00000| Rs | regaddr |
+-----------+-----+-----+-----------+

13.4. MASTER PROCESSING UNIT 419

13.4.2.2.42 RW - Register Write (Address is a register)

Assembler syntax:
RW Rs, Rd

Description: Move data from the source register using the register interface. The data is stored
in the register at the address stored in Rd. Rd is a special register.

Operation:
REGIF[Rd] = Rs;

Instruction format:
31 20 15 10 0
+-----------+-----+-----+-----------+
|01010111000| Rd | Rs |00000000000|
+-----------+-----+-----+-----------+

420 CHAPTER 13. I/O PROCESSOR

13.4.2.2.43 RWQ - Register Write Quick (Address is an immediate)

Assembler syntax:
RWQ i, regaddr

Description: The 16-bit immediate value is zero extended and then moved to the register at
address regaddr using the register interface.

Operation:
REGIF[regaddr << 2] = i;

Instruction format:
31 26 10 0
+-----+----------------+-----------+
|01011| i | regaddr |
+-----+----------------+-----------+

13.4. MASTER PROCESSING UNIT 421

13.4.2.2.44 RWQ - Register Write Quick (Address is a register)

Assembler syntax:
RWQ i, Rd

Description: The 16-bit immediate value is zero extended and then moved to the register at
the address stored in Rd using the register interface. Rd is a special register.

Operation:
REGIF[Rd] = i;

Instruction format:
31 20 15 0
+-----------+-----+----------------+
|01010101000| Rd | i |
+-----------+-----+----------------+

422 CHAPTER 13. I/O PROCESSOR

13.4.2.2.45 RWX - Register Write Extended (Address is an immediate)

Assembler syntax:
RWX i, regaddr

Description: Move the 32-bit immediate value to the register at address regaddr using the
register interface.

Operation:
REGIF[regaddr << 2] = i;

Instruction format:
64 31 10 0
+--------------------------------+---------------------+-----------+
| i |110101000000000000000| regaddr |
+--------------------------------+---------------------+-----------+

13.4. MASTER PROCESSING UNIT 423

13.4.2.2.46 RWX - Register Write Extended (Address is a register)

Assembler syntax:
RWX i, Rd

Description: Move the 32-bit immediate value to the register at address stored in the destina-
tion register using the register interface. Rd is a special register.

Operation:
REGIF[Rd] = i;

Instruction format:
64 31 20 15 0
+--------------------------------+-----------+-----+----------------+
| i |11010101000| Rd |0000000000000000|
+--------------------------------+-----------+-----+----------------+

424 CHAPTER 13. I/O PROCESSOR

13.4.2.2.47 SUB - Subtract

Assembler syntax:
SUB Rs, Rn, Rd

Description: The general register is subtracted from the contents of the source register, and the
result is stored in the destination register. When either D, S or N is set to 1, Rd,
Rs or Rn respectively, becomes a special register rather than a general register.
See table below.

Operation:
Rd = Rs - Rn;

Instruction format:
31 25 20 15 10 9 8 7 0
+------+-----+-----+-----+-+-+-+--------+
|010000| Rd | Rs | Rn |D|S|N|10001101|
+------+-----+-----+-----+-+-+-+--------+

D S N General registers Special registers

0 0 0 Rd Rs Rn None

0 0 1 Rd Rs Rn

0 1 0 Rd Rn Rs

0 1 1 Rd Rs Rn

1 0 0 Rs Rn Rd

1 0 1 Rs Rd Rn

1 1 0 Rn Rd Rs

1 1 1 None Rd Rs Rn

13.4. MASTER PROCESSING UNIT 425

13.4.2.2.48 SUBQ - Subtract Quick

Assembler syntax:
SUBQ Rs, i, Rd

Description: A 16-bit immediate value is zero extended to 32-bits and then subtracted from
the contents of the source register. The result is stored in the destination register.
Both Rs and Rd are general registers.

Operation:
Rd = Rs - i;

Instruction format:
31 25 20 15 0
+------+-----+-----+----------------+
|000101| Rd | Rs | i |
+------+-----+-----+----------------+

426 CHAPTER 13. I/O PROCESSOR

13.4.2.2.49 SUBX - Subtract Extended

Assembler syntax:
SUBX Rs, i, Rd

Description: A 32-bit immediate value is subtracted from the contents of the source register,
and the result is stored in the destination register. When either D or S is set to 1,
Rd or Rs respectively, becomes a special register rather than a general register.
See table below.

Operation:
Rd = Rs - i;

Instruction format:
64 31 25 20 15 10 9 8 0
+--------------------------------+------+-----+-----+-----+-+-+---------+
| i |110000| Rd | Rs |00000|D|S|010001101|
+--------------------------------+------+-----+-----+-----+-+-+---------+

D S General registers Special registers

0 0 Rd Rs None

0 1 Rd Rs

1 0 Rs Rd

1 1 None Rd Rs

13.4. MASTER PROCESSING UNIT 427

13.4.2.2.50 SW - Store 32-bit data to memory (Address is an immediate)

Assembler syntax:
SW Rs, addr

Description: The contents of the source register will be stored in the MPU memory at address
addr. The MPU requires an extra clock cycle to execute the SW instruction.
When S is set to 1, Rs becomes a special register rather than a general register.

Operation:
mem[addr << 2] = Rs;

Instruction format:
31 20 15 0
+----------+-+-----+----------------+
|0110010000|S| Rs | addr |
+----------+-+-----+----------------+

428 CHAPTER 13. I/O PROCESSOR

13.4.2.2.51 SW - Store 32-bit data to memory (Address is a register)

Assembler syntax:
SW Rs, b, Rn

It can also be written as the following when b=0:

SW Rs, Rn

Description: The contents of the source register will be stored in the MPU memory at the
address stored in Rn. The contents of Rn is changed by adding an 8-bit unsigned
immediate value, which is zero extended to 32 bits, to the register. The MPU
requires an extra clock cycle to execute the SW instruction. When either N or S
is set to 1, Rn or Rs respectively, becomes a special register rather than a general
register. See table below.

Operation:
mem[Rn] = Rs;
Rn = Rn + b;

Instruction format:
31 24 20 15 10 7 0
+-------+-+--+-+-----+-----+---+--------+
|0110011|N|00|S| Rs | Rn |000| b |
+-------+-+--+-+-----+-----+---+--------+

N S General registers Special registers

0 0 Rn Rs None

0 1 Rn Rs

1 0 Rs Rn

1 1 None Rn Rs

13.4. MASTER PROCESSING UNIT 429

13.4.2.2.52 SWX - Store 32-bit data to memory (Address is an immediate)

Assembler syntax:
SWX i, addr

Description: Store a 32-bit immediate value to MPU memory at address addr. The MPU
requires an extra clock cycle to execute the SWX instruction.

Operation:
mem[addr << 2] = i;

Instruction format:
64 31 15 0
+--------------------------------+----------------+----------------+
| i |1110010000000000| addr |
+--------------------------------+----------------+----------------+

430 CHAPTER 13. I/O PROCESSOR

13.4.2.2.53 SWX - Store 32-bit data to memory (Address is a register)

Assembler syntax:
SWX i, b, Rn

It can also be written as the following when b=0:

SWX i, Rn

Description: Store a 32-bit immediate value to MPU memory at the address which is stored
in Rn. The contents of Rn is changed by adding an 8-bit unsigned immediate
value, which is zero extended to 32 bits. The MPU requires an extra clock cycle
to execute the SWX instruction. When N is set to 1, Rn becomes a special
register rather than a general register.

Operation:
mem[Rn] = i;
Rn = Rn + b;

Instruction format:
64 31 24 15 10 7 0
+--------------------------------+-------+-+--------+-----+---+--------+
| i |1110011|N|01000000| Rn |000| b |
+--------------------------------+-------+-+--------+-----+---+--------+

13.4. MASTER PROCESSING UNIT 431

13.4.2.2.54 XOR - Logical Exclusive OR

Assembler syntax:
XOR Rs, Rn, Rd

Description: A bitwise XOR is performed between the source register and the contents of
a general register or a special register. The result is stored in the destination
register. When either D, S or N is set to 1, Rd, Rs or Rn respectively, becomes a
special register rather than a general register. See table below.

Operation:
Rd = Rs ˆ Rn;

Instruction format:
31 25 20 15 10 9 8 7 0
+------+-----+-----+-----+-+-+-+--------+
|010000| Rd | Rs | Rn |D|S|N|10001001|
+------+-----+-----+-----+-+-+-+--------+

D S N General registers Special registers

0 0 0 Rd Rs Rn None

0 0 1 Rd Rs Rn

0 1 0 Rd Rn Rs

0 1 1 Rd Rs Rn

1 0 0 Rs Rn Rd

1 0 1 Rs Rd Rn

1 1 0 Rn Rd Rs

1 1 1 None Rd Rs Rn

432 CHAPTER 13. I/O PROCESSOR

13.4.2.2.55 XOR - Register Exclusive OR

Assembler syntax:
XOR Rs, Rd

Description: An XOR is performed between each of the source register bits. The one bit
result is stored in the destination register. When either D or S is set to 1, Rd
or Rs respectively, becomes a special register rather than a general register. See
table below.

Operation:
Rd = Rs[0] ˆ Rs[1] ... ˆ Rs[31];

Instruction format:
31 25 20 15 10 9 8 7 0
+------+-----+-----+-----+-+-+-+--------+
|010000| Rd |00000| Rs |D|0|S|10001000|
+------+-----+-----+-----+-+-+-+--------+

D S General registers Special registers

0 0 Rd Rs None

0 1 Rd Rs

1 0 Rs Rd

1 1 None Rd Rs

13.4. MASTER PROCESSING UNIT 433

13.4.2.2.56 XORQ - Logical Exclusive OR Quick

Assembler syntax:
XORQ Rs, i, Rd

Description: The 16-bit immediate value is zero extended to 32 bits and then XOR is per-
formed between it and the contents of a general register. The result is stored in
the destination register. Both Rs and Rd are general registers.

Operation:
Rd = Rs ˆ i;

Instruction format:
31 25 20 15 0
+------+-----+-----+----------------+
|000001| Rd | Rs | i |
+------+-----+-----+----------------+

434 CHAPTER 13. I/O PROCESSOR

13.4.2.2.57 XORX - Logical Exclusive OR Extended

Assembler syntax:
XORX Rs, i, Rd

Description: A bitwise XOR is performed between a 32-bit immediate value and the contents
of a general register or a special register. The result is stored in the destination
register. When either D or S is set to 1, Rd or Rs respectively, becomes a special
register rather than a general register. See table below.

Operation:
Rd = Rs ˆ i;

Instruction format:
64 31 25 20 15 10 9 8 0
+--------------------------------+------+-----+-----+-----+-+-+---------+
| i |110000| Rd | Rs |00000|D|S|010001001|
+--------------------------------+------+-----+-----+-----+-+-+---------+

D S General registers Special registers

0 0 Rd Rs None

0 1 Rd Rs

1 0 Rs Rd

1 1 None Rd Rs

13.5. SLAVE PROCESSING UNIT 435

13.5 Slave Processing Unit

The Slave Processing Unit (SPU) is a micro code driven processor used for time critical
protocols or time critical parts within a protocol. The SPU contains several registers
which all can be accessed from the owner (CPU, MPU or another SPU).

The SPU memory is filled from the Memory Controller. The size of each SPU memory
in ETRAX FS is 4096 bytes (128x256).

The SPU has two 32 bit wide I/O buses and 32 general I/O (GIO) signals.

In the SPU there are two different modes, one sequential (SEQ) mode and one mode
allowing the SPU to execute code representing a Finite State Machine (FSM). The
latter mode will be referred to as FSM mode. It is possible to switch between SEQ and
FSM mode in runtime. See13.5.1.5.

The sequential mode has the following characteristics:

· Instruction size is 32 bits.

· Instructions are:

- Common ALU operations

- Register operations (e.g., setting and reading registers)

- Branch instructions

The FSM mode has the following characteristics:

· Setting output signals and next state.

· A sequential instruction can be performed in each FSM state.

· ALU flags are sampled on every entrance to a state and can be used as FSM
inputs. Note that a sequential instruction can not affect the flags in the current
state.

· Includes a state timer. The timer is used to change state after a specified time.
The start value to the state timer can be specified in the state code. It is also
possible to use a register from the SPU register bank (R0 - R15) to specify the
time.

13.5.1 Architectural description

The SPUs main purpose is handling I/O protocols. This can, depending on the protocol,
be done entirely by the SPU or by letting the SPU control other I/O Processor modules.

13.5.1.1 Enabling and disabling SPU modes from owner

As described earlier the SPU has two modes of operation, SEQ and FSM mode. It is
possible to switch between these modes in runtime. The SPU itself can do so by using

436 CHAPTER 13. I/O PROCESSOR

instructions. The owner of the SPU uses the following methods to enable or disable the
SPU:

To enable sequential mode:20

1. Updaterw seqpc.addr

2. Write fsm = noanden= no to rw ctrl

3. Write fsm = noanden= yesto rw ctrl

To enable FSM mode:20

1. Updaterw fsm pc.addr

2. Write fsm = yesanden= no to rw ctrl

3. Write fsm = yesanden= yesto rw ctrl

To disable any mode:

· Write en= no to rw ctrl

13.5.1.2 Registers

For register descriptions see25.25. All registers except for IMMHI can be accessed
from the SPU owner.

13.5.1.2.1 General registers

The SPU contains sixteen 32-bit wide general registers (R0-R15). The general registers
can be accessed by the owner using the vector registerrw r.

When the owner (CPU, MPU or other SPU) writes to R0-R15 the corresponding bit is
set in WSTS (rs wr stat). This bit can be cleared with an ALU operation. The example
below shows a method for clearing bit 0.21

ANDQ WSTS, 0xfffe, WSTS

13.5.1.2.2 Special registers

The SPU architecture also defines 16 special registers (P0-P15). The special registers
are:

Mnemonic Reg. no. Description Mode register

20Two separate writes torw ctrl must be done.
21If owner writes to R0 at the same time as the above instruction is performed, bit 0 will remain set.

13.5. SLAVE PROCESSING UNIT 437

SEQPC P0 Sequential mode PC rw seqpc.addr

FSMPC P1 FSM mode PC rw fsm pc.addr

REGA P2 Register access rw reg access

FSM3 0 P3 FSM inputs register for input 3 - 0 rw fsm inputs30

FSM7 4 P4 FSM inputs register for input 7 - 4 rw fsm inputs74

GOUT P5 General I/O out register rw gio out

B0OUT P6 Bus 0 out register rw bus0out

B1OUT P7 Bus 1 out register rw bus1out

GIN P8 General I/O in register r gio in

B0IN P9 Bus 0 in register r bus0in

B1IN P10 Bus 1 in register r bus1in

STATIN P11 Status in register r stat in

TRIGGER P12 Trigger in status register, read only r trigger in

IMMHI P12 Immediate hi value, write only

WSTS P13 Owner register write attention r wr statrs wr stat

SPECS P14 Special signals r specialstat

INDEX P15 Indexed register using bits of bus0 r reg indexedby bus0in

Table 13.26:SPU, Special registers

SEQ PC and FSM PC

These registers contain the program counter (PC) for the two different modes of oper-
ation.

Both registers store the address in bytes:

· SEQPC is 32 bit aligned, the SPU can access this as SEQPC (P0)

· FSM PC is 64 bit aligned, the SPU can access this as FSMPC (P1)

The SEQPC register is also used for setting memory address when the SPU memory
is filled with code via the Memory Controller (MC). While doing this the SPU must be
disabled and set to sequential mode.

Indexed register

The INDEX (P15) register uses bus0in[3:0] as an index, selecting one of the R0 - R15
registers, i.e., P15 = R[busin0[3:0]].

13.5.1.2.3 Event registers

To support FSM events there are 13 event registers. For an explanation on FSM events
see section13.5.1.14.

Mnemonic Reg. no. Description Mode register

ECFG0 E0 Event 0 configuration rw eventcfg

ECFG1 E1 Event 1 configuration rw eventcfg

ECFG2 E2 Event 2 configuration rw eventcfg

ECFG3 E3 Event 3 configuration rw eventcfg

438 CHAPTER 13. I/O PROCESSOR

EMASK0 E4 Event 0 mask rw eventmask

EMASK1 E5 Event 1 mask rw eventmask

EMASK2 E6 Event 2 mask rw eventmask

EMASK3 E7 Event 3 mask rw eventmask

EVAL0 E8 Event 0 value rw eventval

EVAL1 E9 Event 1 value rw eventval

EVAL2 E10 Event 2 value rw eventval

EVAL3 E11 Event 3 value rw eventval

EADDR E12 Event return address rw eventret.addr

Table 13.27:SPU, Event registers

13.5.1.3 Instruction formats

All sequential instructions are 32 bits wide.

FSM state instructions are composed of:

· One FSM instruction, 32-bit - Mandatory

· One SEQ instruction, 32-bit - Optional22 23

· One Timer instruction, 32-bit - Optional24

· 0-8 Transition instructions, 24-bit each - Optional25

13.5.1.4 Branches

The branch instructions in the SPU sequential mode all have one delay slot. In other
words, the instruction directly after the branch instruction will always be executed.

If a register used as the conditional register by either a BBC, BBS, BMI, BNZ, BPL, or
BZ instruction is the destination register of the immediately preceding instruction, the
branch instruction will reference the register before it is updated.

· Example:

MOVEQ 4, R0
SUBQ R0, 4, R0
BNZ R0, addr

22All SPU sequential instructions except branches and start FSM (i.e., except for BA, BAR, BBC, BBS,
BMI, BNZ, BPL, BZ, FSM, FSMQ, and HALT) can be used.

23In FSM mode the sequential instructions can use a 32-bit immediate value, by using the bits used by the
timer instruction.

24No timer instruction can be used if an instruction holding a 32-bit immediate value is used as SEQ
instruction.

25If both a SEQ instruction and a Timer instruction (or a SEQ instruction with 32-bit immediate) is used
in a state, a maximum of six Transition instructions can be used. If only one of the SEQ instruction or the
Timer instruction is used, a maximum of eight Transition instructions can be used.

13.5. SLAVE PROCESSING UNIT 439

The branch will be taken, since BNZ sees the old value (4) of R0.

All instructions are valid in a delay slot except for:

Branch instructions (BA/BAR/BBC/BBS/BMI/BNZ/BPL/BZ/FSM/FSMQ)

Possible branch source operands for the branch instructions are R0 - R15, P5(GOUT),
P8(GIN), P11(STATIN), P12(TRIGGER), P13(WSTS) or P14(SPECS).

13.5.1.5 Switching between SEQ and FSM mode

It is possible to switch between SEQ and FSM mode in runtime, using the FSM in-
struction when going from SEQ to FSM mode, and by using the goseq bit in the state
encoding when going from FSM to SEQ mode. See sections13.5.1.5.1and13.5.1.5.2.

13.5.1.5.1 From Sequential mode to FSM mode

To change from SEQ mode to FSM mode the sequential instructions FSM or FSMQ
can be used. These instructions are treated as branches and have a delay slot.

If FSM is used, the value of special register FSMPC can not be the result from the
previous instruction.

· Example:

MOVEQ 8, FSM_PC
SUBQ FSM_PC, 4, FSM_PC
FSM

In this example the SPU will enter FSM-mode at address 0x8, since the FSM
instruction uses the old value (8) of FSMPC.

SEQPC is updated to point to the instruction following the FSM/FSMQ delay slot, so
when returning from FSM mode the SEQ program will continue.

· Example:

ADDQ 1, R0, R0
FSMQ state_4
ADDQ 2, R0, R0 ; Delay slot instruction
SUBQ R1, 6, R2

This example will increase the value of R0 with three, then enter FSM mode
at state4. When returning from FSM mode (without specifying or changing
SEQPC) the SUBQ instruction will be performed.

440 CHAPTER 13. I/O PROCESSOR

13.5.1.5.2 From FSM mode to Sequential mode

To change from FSM mode to SEQ mode the goseq bit in the FSM instruction is used.
The operation has one delay slot (as for all FSM state changes) and takes 10 ns to
perform. If the seqonly bit is also set in the FSM instruction the only address is a SEQ
address.

· Example:

state_1: go_seq
only 0x24

In this example the SPU will enter SEQ-mode at address 0x24 10 ns after enter-
ing state1.

If go seq is used without the ’only’ tag the SEQ address is taken from SEQPC.
SEQPC takes 15 ns to be updated (from FSM mode) so previous state might not be
used to update SEQPC.

· Example:

state_2: MOVEQ 8, SEQ_PC
only state_3

state_3: MOVEQ 4, SEQ_PC
only state_4

state_4: go_seq

In this example the SPU will enter SEQ-mode at address 0x8, since the goseq
uses the old value (8) of SEQPC.

13.5.1.6 Register operations

The SPU can access registers in other I/O Processor modules (if configured as the
module owner in the Switch). The register instructions are:

RR - Register read

RW - Register write

RWQ - Register write with 16 bit immediate26

RRM - Register Read Masked

RRMQ - Register Read Masked with 16 bit immediate27

26The upper 16 bits of register are taken from special register REGA bits 31 - 16.
27The upper 16 bits will always be zero. This operation only affects the z-flag.

13.5. SLAVE PROCESSING UNIT 441

RRMH - Register Read Masked with 16 bit immediate27

In the above instructions the address can be an immediate or come from special reg-
ister REGA (P2). The result of a read operation is delayed until after the instruction
following the read instruction.

It is not possible to have a RR (or RRM, RRMH, RRMQ) instruction directly after a
RW (or RWQ) instruction.

If a branch instruction uses the read result a NOP instruction (or similar) is required,
since the read result is delayed.

· Example:

RR 124, R3
BZ R3, label

In the above code, the BZ instruction uses the previous value of R3, not the
value of register 124. In order to use the result from the RR instruction to the BZ
instruction the following can be used:

RR 124, R3
NOP
BZ R3, label

13.5.1.7 32 bit ALU operations using IMMHI

To support 32 bit immediate instructions in the SPU the IMMHI special register can be
used. This register is used to write the 16 upper bits of an immediate operation. All
quick instructions except forRWQ.

· Example:

MOVEQ 0x1234, IMMHI
ADDQ 0x1, R0, R2

This example will add 0x12340001 to R0 and store the result in R2.

The IMMHI register can only be used in the instruction following directly after it.

· Example:

MOVEQ 0x1234, IMMHI
NOP
ADDQ 0x1, R0, R2

This example will add 0x1 to R0 and store the result in R2.

442 CHAPTER 13. I/O PROCESSOR

13.5.1.8 ALU mask operations

All ALU operations with no immediate can have a mask on Rs and/or Rn. The mask
can be any of registers R0-R15. The selected mask operation can be & (AND) or
| (OR). Refer to13.5.2.2for a complete explanation of the coding in the sequential
instruction.

· Examples:

ADD (R3 & R2), R1, R0

ADD R3, (R1 | R15), R0

ADD (R3 & R2), (R1 & R2), R0

ADD (R3 | R2), (R1 | R2), R0

The register used as mask can be the destination register of the previous instruction.

· Example:

MOVEQ 0xffff, R1
ADD (R3 & R1), R2, R0 ; Uses 0xffff to mask R3

13.5.1.9 ALU flags

All ALU operations affect the N, Z, V, C flags:28 29

N - Negative Most significant bit of ALU result operand == one.

N = res[31]

Z - Zero ALU result == zero.

Z = !res[31] & ... & !res[0]

V - Overflow ALU operations set V to 0 with the following exceptions:

· Addition (ADD, ADDQ): If the two source operands and the ALU result
have different signs (most significant bit) the V flag is set.

V = rs[31] & rn[31] & !res[31] | !rs[31] & !rn[31] & res[31]

28The flags can be used as inputs in FSM mode and also read inr specialstat(SPECS).
29Non ALU operations do not affect the flags i.e., the flags keep their current values.

13.5. SLAVE PROCESSING UNIT 443

· Subtraction (SUB, SUBQ): If the two source operands and the ALU result
have different signs (most significant bit) the V flag is set.

V = !rs[31] & rn[31] & !res[31] | rs[31] & !rn[31] & res[31]

C - Carry ALU operations set C to 0 with the following exceptions:

· Addition (ADD, ADDQ):

C = (rn[31] & !res[31]) | (rs[31] & !res[31])

· Subtraction (SUB, SUBQ):

C = (rn[31] & res[31]) | (!rs[31] & res[31])

· Shift left (LSL, SSL):

C = rs[31]

· Shift right (LSR, SSR):

C = rs[0]

13.5.1.10 Inputs

The SPU has 32 general inputs and two 32-bit wide input buses. All inputs can be read
by GIN (P8), B0IN (P9) and B1IN (P10). Inputs to the FSM mode are selected by
FSM3 0 (P3) and FSM74 (P4) and also in each state.

13.5.1.11 Outputs

The SPU has two 32-bit wide output buses whose values can be set by writing to
B0OUT (P6) and B1OUT (P7). The SPU can also control 32-bit general outputs by
writing to GOUT (P5).

When the SPU runs in FSM mode, general outputs GOUT[7:0] can only be modified
from state outputs, but the FSM mode could use SEQ instructions to set or clear other
output signals using GOUT. The SPU owner can control outputs by using registers in
25.25(even GOUT[7:0] in FSM mode).

13.5.1.12 State transitions

All state transitions takes 10 ns but the state output signals are set after 5 ns. If no
state transitions match, the FSM will remain in the current state. If more than one state
transition is true, the first one is selected. For example:

· Example:

444 CHAPTER 13. I/O PROCESSOR

FSM_1: ?_0_0_0 : 0_0_0_1 : FSM_2
?_0_0_1 : 1_0_0_1 : FSM_3
1_0_0_0 : 0_1_0_1 : FSM_4

If the input combination is 10 0 0 FSM 2 will be the next state.

13.5.1.13 FSM mode inputs

The inputs to the FSM mode can be:

· ALU flags

0 c-flag

1 v-flag

2 z-flag

3 n-flag

· General registers bit 0

bit[0] from general registers R0 - R15

· SPU GIOIN signals

· SPU TRIGGERIN signals

· SPU STATUSIN signals

· WSTS ”Register attention” signals

· Bus xor signals

0 xor on (bus0[31:0], R2[0]) i.e.,

bus0[31] ˆ ... ˆ bus0[0] ˆ R2[0]

1 xor on (bus1[31:0], R3[0]) i.e.,

bus1[31] ˆ ... ˆ bus1[0] ˆ R3[0]

2 xor on (bus0[31:0] masked with R0[31:0], R2[0]) i.e.,

(bus0[31] & R0[31]) ˆ ... ˆ (bus0[0] & R0[0]) ˆ R2[0]

3 xor on (bus1[31:0] masked with R1[31:0], R3[0]) i.e.,

(bus1[31] & R1[31]) ˆ ... ˆ (bus1[0] & R1[0]) ˆ R3[0]

13.5. SLAVE PROCESSING UNIT 445

· SPU GIOOUT signals gioout[7:0]

Eight inputs are selected by registersrw fsm inputs30 andrw fsm inputs74. These
eight inputs are delayed one clock cycle and will thus be 5 ns delayed.

Each FSM state selects four of the above signals as inputs for that state.

13.5.1.14 FSM events

In addition to the four selected inputs to each FSM state there are four events that can
trigger the FSM to change state. The events are configured using the Event registers
listed in section13.5.1.2.3. The FSM instruction holds fields for enable and/or disable
events and controls the update of them. As for the FSM inputs all input signals to the
events are delayed 5 ns.

The FSM event works like this:

gio_in

spec_in

stat_in

trig_in

src

rw_event_mask
>

=rw_event_value

rw_event_value

eq_inv

gt_inv

eq_en

gt_en
event

A thick line equals a 32-bit bus
A thin line equals a 1-bit signal

Note:

Figure 13.4:SPU, FSM event

If more than one enabled event triggers, event0 has the highest priority and event3 the
lowest.

The eventvalue can be updated with the masked input signal. This is controlled by the
do eventupd and eventupd mask fields of the FSM instruction, see table13.32.

When an enabled event triggers, the FSM moves to the state defined by that events cfg
register. The current state address is stored in registerrw eventret. This register can
be used in an FSM only instruction using event register EADDR (E12).

13.5.1.14.1 Configuring an event

Events are configured using the event registers ECFG0 - ECFG3 (or by the SPU owner
by using the vector registerrw eventcfg).

There are four possible event sources which are listed below:

1. gio in: The 32-bit gioin connected to the SPU

446 CHAPTER 13. I/O PROCESSOR

2. wstsgioout spec: This 32-bit bus consists of: register write status, gioout[7:0],
fsm selectable inputs, xor, and events. See the list below:

[31:24] WSTS[7:0] for event 0 & 2, WSTS[15:8] for event 1 & 3

[23:16] SPU gioout[7:0]

[15:8] FSM selectable inputs [7:0]

[7] XOR, xor bus1mr3 0

[6] XOR, xor bus0mr2 0

[5] XOR, xor bus1r3 0

[4] XOR, xor bus0r2 0

[3:0] EVENT [3:0]

3. stat in: The 32-bit statin connected to the SPU (r stat in)

4. trig: 32 trigger outputs (r trigger in)

Event masks are configured using the event registers EMASK0 - EMASK3 (or by the
SPU owner by using the vector registerrw eventmask). Event values are configured
using the event registers EVAL0 - EVAL3 (or by the SPU owner by using the vector
registerrw eventval).30

13.5.1.15 Breakpoints

The SPU can have four hardware breakpoints. Breakpoints are configured by register
vectorrw brp[3:0]. When a breakpoint is enabled it will halt the SPU when the address
(eitherrw fsm pc or rw seqpc selected byrw brp.fsmfield) matches therw brp.addr
field.

13.5.1.16 Trace registers

To support some elementary debugging of SPU programs some internal state informa-
tion can be read out by using ther traceandr fsm traceregisters. These registers are
updated while the SPU is enabled but stops updating when the SPU is disabled. The
SPU disable can occur on halt instructions or by breakpoints.

13.5.2 Instruction set description

13.5.2.1 Definitions

i Immediate value which is either 5, 14 or 16 bits wide

addr Instruction address

30The only (seq) instruction that can be used to write to the event registers, see table13.27, is the MOVE
instruction.

13.5. SLAVE PROCESSING UNIT 447

regaddr Address to a register in one of the I/O Processor register banks. This
field points to a 32 bit entity in the mode register memory space. To
get the byte address the field is shifted left by two steps (regaddr
<< 2).

Rd, Rn and Rs Index of a general register (R0-R15) or a special register (P0-P15)

Ed and Es Index of a event register (E0-E12)

13.5.2.2 ALU mask fields

All non immediate ALU instructions support masking of Rs and/or Rn. This is con-
trolled by the ctr and mask fields in the instructions.

· seqinstr[10:7] = mask[3:0], selects mask register 0x0 = r0, 0xf = r15

· seqinstr[6:4] = ctr[2:0]

ctr[2] operation

0 AND

1 OR

Table 13.29:SPU, ALU mask ctr[2] field

ctr[1] operation

0 Don’t mask Rs

1 Mask Rs

Table 13.30:SPU, ALU mask ctr[1] field

ctr[0] operation

0 Don’t mask Rn

1 Mask Rn

Table 13.31:SPU, ALU mask ctr[0] field

· Examples:

ADD (R3 & R2), R1, R0
mask = 0x2, ctr = 0x2

ADD R3, (R1 | R15), R0
mask = 0xf, ctr = 0x5

ADD (R3 & R2), (R1 & R2), R0
mask = 0x2, ctr = 0x3

ADD (R3 | R2), (R1 | R2), R0
mask = 0x2, ctr = 0x7

448 CHAPTER 13. I/O PROCESSOR

13.5.2.3 Sequential instructions in alphabetical order

13.5. SLAVE PROCESSING UNIT 449

13.5.2.3.1 ADD - Add

Assembler Syntax: ADD Rs, Rn, Rd

Description: The source register is added to the contents of theRn register, and the result is
stored in the destination register.

Rs and/or Rn can be masked with a general register, refer to section13.5.2.2.

Operation: 31

Rd = Rs + Rn;

Instruction Format:
31 25 20 15 10 6 3 0
+------+-----+-----+-----+----+---+----+
|000000| Rd | Rs | Rn |mask|ctr|0001|
+------+-----+-----+-----+----+---+----+

31Rs and/or Rn can be masked.

450 CHAPTER 13. I/O PROCESSOR

13.5.2.3.2 ADDQ - Add Quick

Assembler Syntax: ADDQ Rs, i, Rd

Description: A 16-bit immediate value is zero extended to 32 bits and added to the contents
of the source register, and the result is stored in the destination register.

Operation:
Rd = Rs + i;

Instruction Format:
31 25 20 15 0
+------+-----+-----+----------------+
|000001| Rd | Rs | i |
+------+-----+-----+----------------+

13.5. SLAVE PROCESSING UNIT 451

13.5.2.3.3 AND - Logical AND

Assembler Syntax: AND Rs, Rn, Rd

Description: A bitwise AND is performed between the source register and the contents of the
Rn register. The result is stored in the destination register.

Rs and/or Rn can be masked with a general register, refer to section13.5.2.2.

Operation: 32

Rd = Rs & Rn;

Instruction Format:
31 25 20 15 10 6 3 0
+------+-----+-----+-----+----+---+----+
|000000| Rd | Rs | Rn |mask|ctr|0010|
+------+-----+-----+-----+----+---+----+

32Rs and/or Rn can be masked.

452 CHAPTER 13. I/O PROCESSOR

13.5.2.3.4 ANDQ - Logical AND Quick

Assembler Syntax: ANDQ Rs, i, Rd

Description: The 16-bit immediate value is zero extended to 32 bits and then a bitwise AND is
performed between it and the contents of the source register. The result is stored
in the destination register.

Operation:
Rd = Rs & i;

Instruction Format:
31 25 20 15 0
+------+-----+-----+----------------+
|000010| Rd | Rs | i |
+------+-----+-----+----------------+

13.5. SLAVE PROCESSING UNIT 453

13.5.2.3.5 ANDQH - Logical AND Quick High

Assembler Syntax: ANDQH Rs, i, Rd

Description: The 16-bit immediate value is shifted left 16 steps and then a bitwise AND is
performed between it and the contents of the source register. The result is stored
in the destination register.

Operation:
Rd = ((i << 16) | 0x0000ffff) & Rs;

Instruction Format:
31 25 20 15 0
+------+-----+-----+----------------+
|000101| Rd | Rs | i |
+------+-----+-----+----------------+

454 CHAPTER 13. I/O PROCESSOR

13.5.2.3.6 BA - Branch Always

Assembler Syntax: BA addr

Description: The program counter (SEQPC) is loaded with the contents of addr. The BA
instruction is a delayed branch instruction, with one delay slot.

Operation:
SEQ_PC = addr;

Instruction Format:
31 25 11 0
+------+----------------+------------+
|111000|0000000000000000| addr |
+------+----------------+------------+

13.5. SLAVE PROCESSING UNIT 455

13.5.2.3.7 BAR - Branch Always Register

Assembler Syntax: BAR Rs

Description: The program counter (SEQPC) is loaded with the contents of the source reg-
ister.33 The BAR instruction is a delayed branch instruction, with one delay slot.

Operation:
SEQ_PC = Rs;

Instruction Format:
31 25 20 15 0
+------+-----+-----+----------------+
|111100|00000| Rs |0000000000000000|
+------+-----+-----+----------------+

33Rs, the source register, can only be a general register R0 - R15.

456 CHAPTER 13. I/O PROCESSOR

13.5.2.3.8 BBC - Branch Bit Clear

Assembler Syntax: BBC Rs, i, addr

Description: The program counter (SEQPC) is loaded with the contents of addr if the bit i of
the source register34 is zero. The BBC instruction is a delayed branch instruction,
with one delay slot.

Operation:
if ((Rs & (1 << i)) == 0) {

SEQ_PC = addr;
}

Instruction Format:
31 25 20 15 11 0
+------+-----+-----+----+------------+
|100000| i | Rs |0000| addr |
+------+-----+-----+----+------------+

34 Rs, the source register, can be one of R0 - R15, GOUT, GIN, STATIN, TRIGGER, WSTS or SPECS.

13.5. SLAVE PROCESSING UNIT 457

13.5.2.3.9 BBS - Branch Bit Set

Assembler Syntax: BBS Rs, i, addr

Description: The program counter (SEQPC) is loaded with the contents of addr if the bit i of
the source register35 is set. The BBS instruction is a delayed branch instruction,
with one delay slot.

Operation:
if ((Rs & (1 << i)) != 0) {

SEQ_PC = addr;
}

Instruction Format:
31 25 20 15 11 0
+------+-----+-----+----+------------+
|100100| i | Rs |0000| addr |
+------+-----+-----+----+------------+

35 Rs, the source register, can be one of R0 - R15, GOUT, GIN, STATIN, TRIGGER, WSTS or SPECS.

458 CHAPTER 13. I/O PROCESSOR

13.5.2.3.10 BMI - Branch Minus

Assembler Syntax: BMI Rs, addr

Description: The program counter (SEQPC) is loaded with the contents of addr if the contents
of the source register36 is less than zero. The BMI instruction is a delayed branch
instruction, with one delay slot.

Operation:
if ((Rs & 0x80000000) != 0) {

SEQ_PC = addr;
}

Instruction Format: 37

31 25 20 15 11 0
+------+-----+-----+----+------------+
|100100|11111| Rs |0000| addr |
+------+-----+-----+----+------------+

36Rs, the source register, can be one of R0 - R15, GOUT, GIN, STATIN, TRIGGER, WSTS or SPECS.
37BMI Rs, addr is the same as BBS Rs, 31, addr.

13.5. SLAVE PROCESSING UNIT 459

13.5.2.3.11 BNZ - Branch Not Zero

Assembler Syntax: BNZ Rs, addr

Description: The program counter (SEQPC) is loaded with the contents of addr if the contents
of the source register38 is not equal zero. The BNZ instruction is a delayed
branch instruction, with one delay slot.

Operation:
if (Rs != 0) {

SEQ_PC = addr;
}

Instruction Format:
31 25 20 15 11 0
+------+-----+-----+----+------------+
|110000|00000| Rs |0000| addr |
+------+-----+-----+----+------------+

38 Rs, the source register, can be one of R0 - R15, GOUT, GIN, STATIN, TRIGGER, WSTS or SPECS.

460 CHAPTER 13. I/O PROCESSOR

13.5.2.3.12 BPL - Branch Plus

Assembler Syntax: BPL Rs, addr

Description: The program counter (SEQPC) is loaded with the contents of addr if the contents
of the source register39 is greater than or equal to zero. The BPL instruction is a
delayed branch instruction, with one delay slot.

Operation:
if ((Rs & 0x80000000) == 0) {

SEQ_PC = addr;
}

Instruction Format: 40

31 25 20 15 11 0
+------+-----+-----+----+------------+
|100000|11111| Rs |0000| addr |
+------+-----+-----+----+------------+

39Rs, the source register, can be one of R0 - R15, GOUT, GIN, STATIN, TRIGGER, WSTS or SPECS.
40BPL Rs, addr is the same as BBC Rs, 31, addr.

13.5. SLAVE PROCESSING UNIT 461

13.5.2.3.13 BZ - Branch Zero

Assembler Syntax: BZ Rs, addr

Description: The program counter (SEQPC) is loaded with the contents of addr if the contents
of the source register41 equals zero. The BZ instruction is a delayed branch
instruction, with one delay slot.

Operation:
if (Rs == 0) {

SEQ_PC = addr;
}

Instruction Format:
31 25 20 15 11 0
+------+-----+-----+----+------------+
|110100|00000| Rs |0000| addr |
+------+-----+-----+----+------------+

41 Rs, the source register, can be one of R0 - R15, GOUT, GIN, STATIN, TRIGGER, WSTS or SPECS.

462 CHAPTER 13. I/O PROCESSOR

13.5.2.3.14 FSM - Start FSM mode

Assembler Syntax: FSM

Description: Change mode from SEQ to FSM. The FSM instruction is a delayed branch in-
struction, with one delay slot.

Operation:
Start FSM mode, at FSM_PC

Instruction Format:
31 25 20 15 0
+------+-----+-----+----------------+
|101000|00000|10001|0000000000000000|
+------+-----+-----+----------------+

13.5. SLAVE PROCESSING UNIT 463

13.5.2.3.15 FSMQ - Start FSM mode Quick

Assembler Syntax: FSMQ addr

Description: Change mode from SEQ to FSM. The FSMQ instruction is a delayed branch
instruction, with one delay slot.

Operation:
Load PC with addr and start FSM mode

Instruction Format:
31 25 20 15 11 0
+------+-----+-----+----+------------+
|101010|00000|00000|0000| addr |
+------+-----+-----+----+------------+

464 CHAPTER 13. I/O PROCESSOR

13.5.2.3.16 HALT - Halt the SPU

Assembler Syntax: HALT

Description: Disables the SPU. The SPU can be re-enabled by the owner, usingrw ctrl.

Instruction Format:
31 25 20 15 8 0
+------+-----+-----+-------+---------+
|101100|00000|00000|0000000|000000000|
+------+-----+-----+-------+---------+

13.5. SLAVE PROCESSING UNIT 465

13.5.2.3.17 LSL - Logical Shift Left

Assembler Syntax: LSL Rs, Rn, Rd

Description: The source register is left shifted the number of steps specified by theRn register
and zero-filled.42

Rs and/or Rn can be masked with a general register, refer to section13.5.2.2.

Operation: 43

Rd = Rs << Rn;

Instruction Format:
31 25 20 15 10 6 3 0
+------+-----+-----+-----+----+---+----+
|000000| Rd | Rs | Rn |mask|ctr|0011|
+------+-----+-----+-----+----+---+----+

42A shift with 32 steps or more will give a zero result.
43Rs and/or Rn can be masked.

466 CHAPTER 13. I/O PROCESSOR

13.5.2.3.18 LSLQ - Logical Shift Left Quick

Assembler Syntax: LSLQ Rs, i, Rd

Description: The source register is left shifted the number of steps specified by the 14-bit
immediate value and zero-filled.44

Operation:
Rd = Rs << i;

Instruction Format:
31 25 20 15 13 0
+------+-----+-----+--+----------------+
|000011| Rd | Rs |00| i |
+------+-----+-----+--+----------------+

44A shift with 32 steps or more will give a zero result.

13.5. SLAVE PROCESSING UNIT 467

13.5.2.3.19 LSR - Logical Shift Right

Assembler Syntax: LSR Rs, Rn, Rd

Description: The source register is right shifted the number of steps specified by theRn register
and zero-filled.45

Rs and/or Rn can be masked with a general register, refer to section13.5.2.2.

Operation: 46

Rd = Rs >> Rn;

Instruction Format:
31 25 20 15 10 6 3 0
+------+-----+-----+-----+----+---+----+
|000000| Rd | Rs | Rn |mask|ctr|0100|
+------+-----+-----+-----+----+---+----+

45A shift with 32 steps or more will give a zero result.
46Rs and/or Rn can be masked.

468 CHAPTER 13. I/O PROCESSOR

13.5.2.3.20 LSRQ - Logical Shift Right Quick

Assembler Syntax: LSRQ Rs, i, Rd

Description: The source register is right shifted the number of steps specified by the 14-bit
immediate value and zero-filled.47

Operation:
Rd = Rs >> i;

Instruction Format:
31 25 20 15 13 0
+------+-----+-----+--+---------------+
|000100| Rd | Rs |00| i |
+------+-----+-----+--+---------------+

47A shift with 32 steps or more will give a zero result.

13.5. SLAVE PROCESSING UNIT 469

13.5.2.3.21 MOVE - Move to Register

Assembler Syntax: MOVE Rs, Rd

Description: Move data from source register to the destination register.

Rs can be masked with a general register, refer to section13.5.2.2.

Operation: 48

Rd = Rs;

Instruction Format:
31 25 20 15 10 6 3 0
+------+-----+-----+-----+----+---+----+
|000000| Rd | Rs |00000|mask|ctr|0101|
+------+-----+-----+-----+----+---+----+

48Rs can be masked.

470 CHAPTER 13. I/O PROCESSOR

13.5.2.3.22 MOVE - Move from Event Register

Assembler Syntax: MOVE Es, Rd

Description: Move data from special event source register to the destination register.

Operation:
Rd = Es;

Instruction Format:
31 25 20 15 0
+------+-----+-----+----------------+
|000000| Rd | Es |0000000000001000|
+------+-----+-----+----------------+

13.5. SLAVE PROCESSING UNIT 471

13.5.2.3.23 MOVE - Move to Event Register

Assembler Syntax: MOVE Rs, Ed

Description: Move data from source register to special event destination register.

Operation:
Ed = Rs;

Instruction Format:
31 25 20 15 0
+------+-----+-----+----------------+
|000000| Ed | Rs |0000000000000111|
+------+-----+-----+----------------+

472 CHAPTER 13. I/O PROCESSOR

13.5.2.3.24 MOVEH - Move High

Assembler Syntax: MOVEH Rs, i, Rd

Description: The 16-bit immediate value is shifted left 16 steps and combined with the 16
lowest bits from source register and then stored in the destination register.

Operation:
Rd = (i << 16) | (0x0000ffff & Rs);

Instruction Format:
31 25 20 15 0
+------+-----+-----+----------------+
|001000| Rd | Rs | i |
+------+-----+-----+----------------+

13.5. SLAVE PROCESSING UNIT 473

13.5.2.3.25 MOVEL - Move Low

Assembler Syntax: MOVEL Rs, i, Rd

Description: The 16-bit immediate value is combined with the 16 highest bits from source
register and then stored in the destination register.

Operation:
Rd = (Rs & 0xffff0000) | i;

Instruction Format:
31 25 20 15 0
+------+-----+-----+----------------+
|000111| Rd | Rs | i |
+------+-----+-----+----------------+

474 CHAPTER 13. I/O PROCESSOR

13.5.2.3.26 MOVEQ - Move Quick

Assembler Syntax: MOVEQ i, Rd

Description: The 16-bit immediate value is zero extended to 32 bits and moved to the desti-
nation register.

Operation:
Rd = i;

Instruction Format:
31 25 20 15 0
+------+-----+-----+----------------+
|000110| Rd |00000| i |
+------+-----+-----+----------------+

13.5. SLAVE PROCESSING UNIT 475

13.5.2.3.27 NOP - No Operation

Assembler Syntax: NOP

Description: No operation.

Operation:
;

Instruction Format:
31 0
+--------------------------------+
|00000000000000000000000000000000|
+--------------------------------+

476 CHAPTER 13. I/O PROCESSOR

13.5.2.3.28 NOT - Logical Complement

Assembler Syntax: NOT Rs, Rd

Description: The contents of the source register is bitwise inverted (1’s complement). The
result is stored in the destination register.

Rs can be masked with a general register, refer to section13.5.2.2.

Operation: 49

Rd = ˜Rs;

Instruction Format:
31 25 20 15 10 6 3 0
+------+-----+-----+-----+----+---+----+
|000000| Rd | Rs |00000|mask|ctr|1111|
+------+-----+-----+-----+----+---+----+

49Rs can be masked.

13.5. SLAVE PROCESSING UNIT 477

13.5.2.3.29 OR - Logical OR

Assembler Syntax: OR Rs, Rn, Rd

Description: A bitwise OR is performed between the source register and the contents of the
Rn register. The result is stored in the destination register.

Rs and/or Rn can be masked with a general register, refer to section13.5.2.2.

Operation: 50

Rd = Rs | Rn;

Instruction Format:
31 25 20 15 10 6 3 0
+------+-----+-----+-----+----+---+----+
|000000| Rd | Rs | Rn |mask|ctr|1010|
+------+-----+-----+-----+----+---+----+

50Rs and/or Rn can be masked.

478 CHAPTER 13. I/O PROCESSOR

13.5.2.3.30 ORQ - Logical OR Quick

Assembler Syntax: ORQ Rs, i, Rd

Description: The 16-bit immediate value is zero extended to 32 bits and then a bitwise OR is
performed between it and the contents of the source register. The result is stored
in the destination register.

Operation:
Rd = Rs | i;

Instruction Format:
31 25 20 15 0
+------+-----+-----+----------------+
|001010| Rd | Rs | i |
+------+-----+-----+----------------+

13.5. SLAVE PROCESSING UNIT 479

13.5.2.3.31 RR - Register Read (Address is an immediate)

Assembler Syntax: RR regaddr, Rd

Description: Move data from register at address regaddr, using the register interface. The data
is stored in the destination register.

Operation:
Rd = REGIF[regaddr << 2];

Instruction Format:
31 25 20 10 0
+------+-----+----------+-----------+
|010000| Rd |0000000000| regaddr |
+------+-----+----------+-----------+

480 CHAPTER 13. I/O PROCESSOR

13.5.2.3.32 RR - Register Read (Address in REGA register)

Assembler Syntax: RR REGA, Rd

Description: Move data from register at address stored in REGA, using the register interface.
The data is stored in the destination register.

Operation:
Rd = REGIF[REGA];

Instruction Format:
31 25 20 10 0
+------+-----+----------+-----------+
|010010| Rd |0000000000|00000000000|
+------+-----+----------+-----------+

13.5. SLAVE PROCESSING UNIT 481

13.5.2.3.33 RRM - Register Read with Mask (Address is an immediate)

Assembler Syntax: RRM regaddr, Rs, Rd

Description: Move data from register at address regaddr, using the register interface. The data
is masked with the contents ofRs and stored in the destination register.

Operation:
Rd = REGIF[regaddr << 2] & Rs;

Instruction Format:
31 25 20 15 10 0
+------+-----+-----+-----+-----------+
|010001| Rd | Rs |00000| regaddr |
+------+-----+-----+-----+-----------+

482 CHAPTER 13. I/O PROCESSOR

13.5.2.3.34 RRM - Register Read with Mask (Address in REGA register)

Assembler Syntax: RRM REGA, Rs, Rd

Description: Move data from register at address stored in REGA, using the register interface.
The data is masked with the contents ofRs and stored in the destination register.

Operation:
Rd = REGIF[REGA] & Rs;

Instruction Format:
31 25 20 15 0
+------+-----+-----+----------------+
|010011| Rd | Rs |0000000000000000|
+------+-----+-----+----------------+

13.5. SLAVE PROCESSING UNIT 483

13.5.2.3.35 RRMH - Register Read with Mask High (Address is an immediate)

Assembler Syntax: RRMH regaddr, i

Description: Read data from register at address regaddr, using the register interface. The data
is then masked with the 16-bit immediate which is shifted left 16 times and zero-
filled. The RRMH instruction has no destination. The result of the operation
only affects the z-flag.

Operation:
z-flag = ((REGIF[regaddr << 2] & (i << 16)) == 0);

Instruction Format:
31 26 10 0
+-----+----------------+-----------+
|01100| i | regaddr |
+-----+----------------+-----------+

484 CHAPTER 13. I/O PROCESSOR

13.5.2.3.36 RRMH - Register Read with Mask High (Address in REGA register)

Assembler Syntax: RRMH REGA, i

Description: Read data from register at address stored in REGA, using the register interface.
The data is then masked with the 16-bit immediate which is shifted left 16 times
and zero-filled. The RRMH instruction has no destination. The result of the
operation only affects the z-flag.

Operation:
z-flag = ((REGIF[REGA] & (i << 16)) == 0);

Instruction Format:
31 26 10 0
+-----+----------------+-----------+
|01101| i |00000000000|
+-----+----------------+-----------+

13.5. SLAVE PROCESSING UNIT 485

13.5.2.3.37 RRMQ - Register Read with Mask Quick (Address is an immediate)

Assembler Syntax: RRMQ regaddr, i

Description: Read data from register at address regaddr, using the register interface. The data
is then masked with the 16-bit immediate value which is zero extended to 32
bits. The RRMQ instruction has no destination. The result of the operation only
affects the z-flag.

Operation:
z-flag = ((REGIF[regaddr << 2] & i) == 0);

Instruction Format:
31 26 10 0
+-----+----------------+-----------+
|00110| i | regaddr |
+-----+----------------+-----------+

486 CHAPTER 13. I/O PROCESSOR

13.5.2.3.38 RRMQ - Register Read with Mask Quick (Address in REGA reg-
ister)

Assembler Syntax: RRMQ REGA, i

Description: Read data from register at address stored in REGA, using the register interface.
The data is then masked with the 16-bit immediate value which is zero extended
to 32 bits. The RRMQ instruction has no destination. The result of the operation
only affects the z-flag.

Operation:
z-flag = ((REGIF[REGA] & i) == 0);

Instruction Format:
31 26 10 0
+-----+----------------+-----------+
|00111| i |00000000000|
+-----+----------------+-----------+

13.5. SLAVE PROCESSING UNIT 487

13.5.2.3.39 RW - Register Write (Address is an immediate)

Assembler Syntax: RW Rs, regaddr

Description: Move data from the source register using the register interface. The data is stored
in the register at address regaddr.

Operation:
REGIF[regaddr << 2] = Rs;

Instruction Format:
31 25 20 15 10 0
+------+-----+-----+-----+-----------+
|010100|00000| Rs |00000| regaddr |
+------+-----+-----+-----+-----------+

488 CHAPTER 13. I/O PROCESSOR

13.5.2.3.40 RW - Register Write (Address in REGA register)

Assembler Syntax: RW Rs, REGA

Description: Move data from the source register using the register interface. The data is stored
in the register at address stored in REGA.

Operation:
REGIF[REGA] = Rs;

Instruction Format:
31 25 20 15 10 0
+------+-----+-----+-----+-----------+
|010110|00000| Rs |00000|00000000000|
+------+-----+-----+-----+-----------+

13.5. SLAVE PROCESSING UNIT 489

13.5.2.3.41 RWQ - Register Write Quick (Address is an immediate)

Assembler Syntax: RWQ i, regaddr

Description: The 16-bit immediate value is extended to 32 bit with the 16 upper bits from
special register REGA and then moved to the register at address regaddr using
the register interface.

Operation:
REGIF[regaddr << 2] = REGA & 0xffff0000 | i;

Instruction Format:
31 26 10 0
+-----+----------------+-----------+
|01110| i | regaddr |
+-----+----------------+-----------+

490 CHAPTER 13. I/O PROCESSOR

13.5.2.3.42 RWQ - Register Write Quick (Address in REGA register)

Assembler Syntax: RWQ i, REGA

Description: regaddr from REGA)

The 16-bit immediate value is extended to 32 bit with the 16 upper bits from
special register REGA and then moved to the register at address regaddr using
the register interface.

Operation:
REGIF[REGA] = REGA & 0xffff0000 | i;

Instruction Format:
31 26 10 0
+-----+----------------+-----------+
|01111| i |00000000000|
+-----+----------------+-----------+

13.5. SLAVE PROCESSING UNIT 491

13.5.2.3.43 SSL - Set Shift Left

Assembler Syntax: SSL Rs, Rn, Rd

Description: The source register is left shifted the number of steps specified by theRn register
and the lowest bit is set to one.51

Rs and/or Rn can be masked with a general register, refer to section13.5.2.2.

Operation: 52

Rd = (Rs << Rn) | 0x00000001;

Instruction Format:
31 25 20 15 10 6 3 0
+------+-----+-----+-----+----+---+----+
|000000| Rd | Rs | Rn |mask|ctr|1101|
+------+-----+-----+-----+----+---+----+

51A shift with 32 steps or more will give 0x00000001 as result.
52Rs and/or Rn can be masked.

492 CHAPTER 13. I/O PROCESSOR

13.5.2.3.44 SSLQ - Set Shift Left Quick

Assembler Syntax: SSLQ Rs, i, Rd

Description: The source register is left shifted the number of steps specified by the 14-bit
immediate value and the lowest bit is set to one.53

Operation:
Rd = (Rs << i) | 0x00000001;

Instruction Format:
31 25 20 15 13 0
+------+-----+-----+--+----------------+
|000011| Rd | Rs |10| i |
+------+-----+-----+--+----------------+

53A shift with 32 steps or more will give 0x00000001 as result.

13.5. SLAVE PROCESSING UNIT 493

13.5.2.3.45 SSR - Set Shift Right

Assembler Syntax: SSR Rs, Rn, Rd

Description: The source register is right shifted the number of steps specified by theRn register
and the highest bit is set to one.54

Rs and/or Rn can be masked with a general register, refer to section13.5.2.2.

Operation: 55

Rd = (Rs >> Rn) | 0x80000000;

Instruction Format:
31 25 20 15 10 6 3 0
+------+-----+-----+-----+----+---+----+
|000000| Rd | Rs | Rn |mask|ctr|1110|
+------+-----+-----+-----+----+---+----+

54A shift with 32 steps or more will give 0x80000000 as result.
55Rs and/or Rn can be masked.

494 CHAPTER 13. I/O PROCESSOR

13.5.2.3.46 SSRQ - Set Shift Right Quick

Assembler Syntax: SSRQ Rs, i, Rd

Description: The source register is right shifted the number of steps specified by the 14-bit
immediate value and the highest bit is set to one.56

Operation:
Rd = (Rs >> i) | 0x80000000;

Instruction Format:
31 25 20 15 13 0
+------+-----+-----+--+----------------+
|000100| Rd | Rs |10| i |
+------+-----+-----+--+----------------+

56A shift with 32 steps or more will give 0x80000000 as result.

13.5. SLAVE PROCESSING UNIT 495

13.5.2.3.47 SUB - Subtract

Assembler Syntax: SUB Rs, Rn, Rd

Description: The Rn register is subtracted from the contents of the source register, and the
result is stored in the destination register.

Rs and/or Rn can be masked with a general register, refer to section13.5.2.2.

Operation: 57

Rd = Rs - Rn;

Instruction Format:
31 25 20 15 10 6 3 0
+------+-----+-----+-----+----+---+----+
|000000| Rd | Rs | Rn |mask|ctr|1001|
+------+-----+-----+-----+----+---+----+

57Rs and/or Rn can be masked.

496 CHAPTER 13. I/O PROCESSOR

13.5.2.3.48 SUBQ - Subtract Quick

Assembler Syntax: SUBQ Rs, i, Rd

Description: A 16-bit immediate value is zero extended to 32 bits and then subtracted from
the contents of the source register. The result is stored in the destination register.

Operation:
Rd = Rs - i;

Instruction Format:
31 25 20 15 0
+------+-----+-----+----------------+
|001001| Rd | Rs | i |
+------+-----+-----+----------------+

13.5. SLAVE PROCESSING UNIT 497

13.5.2.3.49 SWAP - Swap

Assembler Syntax: SWAP Rs, Rd

Description: The source register is bitwise swapped i.e., highest bit in the destination register
is the lowest bit from the source register etc. The result is stored in the destination
register.

Rs can be masked with a general register, refer to section13.5.2.2.

Operation: 58

Rd[31] = Rs[0] ... Rd[0] = Rs[31]

Instruction Format:
31 25 20 15 13 0
+------+-----+-----+--+--------------+
|000100| Rd | Rs |01|00000000000000|
+------+-----+-----+--+--------------+

58Rs can be masked.

498 CHAPTER 13. I/O PROCESSOR

13.5.2.3.50 SWSRQ - Swap and Shift Right Quick

Assembler Syntax: SWSRQ Rs, i, Rd

Description: The source register is bitwise swapped i.e., highest bit in the destination register
is the lowest bit from the source register etc. The bitwise swapped result is then
right shifted the number of steps specified by the 14-bit immediate value and
zero-filled.59

Operation:
SWAP (Rd[31] = Rs[0] ... Rd[0] = Rs[31]) and then shift right

Instruction Format:
31 25 20 15 13 0
+------+-----+-----+--+--------------+
|000100| Rd | Rs |01| i |
+------+-----+-----+--+--------------+

59A shift with 32 steps or more will give a zero result.

13.5. SLAVE PROCESSING UNIT 499

13.5.2.3.51 XOR - Logical Exclusive OR

Assembler Syntax: XOR Rs, Rn, Rd

Description: A bitwise XOR is performed between the source register and the contents of the
Rn register. The result is stored in the destination register.

Rs and/or Rn can be masked with a general register, refer to section13.5.2.2.

Operation: 60

Rd = Rs ˆ Rn;

Instruction Format:
31 25 20 15 10 6 3 0
+------+-----+-----+-----+----+---+----+
|000000| Rd | Rs | Rn |mask|ctr|1011|
+------+-----+-----+-----+----+---+----+

60Rs and/or Rn can be masked.

500 CHAPTER 13. I/O PROCESSOR

13.5.2.3.52 XOR - Register Exclusive OR

Assembler Syntax: XOR Rs, Rd

Description: An XOR is performed between all bits of the source register. The one bit result
is stored in the destination register.

Rs can be masked with a general register, refer to section13.5.2.2.

Operation: 61

Rd = Rs[0] ˆ Rs[1] ... ˆ Rs[31];

Instruction Format:
31 25 20 15 10 6 3 0
+------+-----+-----+-----+----+---+----+
|000000| Rd | Rs |00000|mask|ctr|1100|
+------+-----+-----+-----+----+---+----+

61Rs can be masked.

13.5. SLAVE PROCESSING UNIT 501

13.5.2.3.53 XORQ - Logical Exclusive OR Quick

Assembler Syntax: XORQ Rs, i, Rd

Description: The 16-bit immediate value is zero extended to 32 bits and then XOR is per-
formed between it and the contents of the source register. The result is stored in
the destination register.

Operation:
Rd = Rs ˆ i;

Instruction Format:
31 25 20 15 0
+------+-----+-----+----------------+
|001011| Rd | Rs | i |
+------+-----+-----+----------------+

502 CHAPTER 13. I/O PROCESSOR

13.5.2.4 FSM instructions

All states have an FSMINSTR used to describe the properties of the state.

do_event_upd

event_upd_mask

20 19 162122

halt

23

seq_only

27 24

nbr_trans

28293031

timergo_seq seq do_seq addr_hi

15

event_mask sel_inputs sel_outputs

11 712 8 0

Figure 13.5:SPU, FSM instruction format

Bit(s) Field Description

31 go seq Changes the mode from FSM to sequential. If the state has a
sequential instruction it will be executed.

30 seq This state has a sequential instruction.

29 do seq If set the sequential instruction will be performed every 200
MHz cycle while the FSM is in this state. Otherwise (if not set)
the sequential instruction is performed once, when the state is
entered.

28 timer This state has a timer instruction.62

27-24 nbr trans This state has nbrtrans (0-8) transition instruction(s).62

23 seqonly If set the FSM will jump directly to nextstate, specified in table
13.33. If both go seq and seqonly are set the address is a
sequential mode address. A state with seqonly bit set can only
have a sequential instruction. No TRANSINSTR or
TIMER INSTR can be used.

22 halt Used to disable the SPU when entering this state.

21 addrhi Highest address bit, bit[8], used for all nextstate addresses.63

20 do eventupd If set the selected event values are updated every 200 MHz
cycle while the FSM is in this state. Otherwise (if not set) the
selected event values are updated when the state is entered.

19-16 eventupd mask Update enable mask for the events, if the corresponding bit is
set the event is updated.64 Field doeventupd controls how the
update will be performed.

15-12 eventmask Enable mask for events in this state. If the corresponding bit is
set the event is enabled.65

11-8 sel inputs Selects the four inputs, fsminp[3:0] from inputs selected by
rw fsm inputs74 andrw fsm inputs30 registers, see table
13.34. If seq only is set the selinputs field is used to select
next state address, see table below.

7-0 sel outputs Selects four FSM outputs. The FSM can only affect
spugio out[7:0], named o7 to o0. See section13.5.2.4.2. If
seqonly is set the seloutputs field is used to select nextstate
address, see table13.33.

Table 13.32:SPU, FSM instruction

62If a 32-bit immediate sequential instruction is used (e.g., ADDX) bit 28 and 27 must be set. In this case
the TIMER INSTR is used as immediate value and nbrtrans only uses bits[26:24].

63All FSM and timer transitions from this state must go to the same half of the memory.
64[19]=event3, [18]=event2, [17]=event1, [16]=event0.
65[15]=event3, [14]=event2, [13]=event1, [12]=event0.

13.5. SLAVE PROCESSING UNIT 503

Some of the above instruction fields may have other functions depending on some
fields.

Description go seq seqonly sel inputs sel outputs

[3] [2] [1] [0] [7] [6] [5] [4] [3] [2] [1] [0]

Normal mode. 0 0 sel inputs sel outputs

Only mode66, FSM address is an
immediate

0 1 0 – fsm address (byte address>> 3)

Only mode66, FSM address is a
register

0 1 1 – next state address source

Change to seq. mode, seqpc is used 1 0 – –

Change to seq. mode, seq address is
an immediate

1 1 – seqaddress (byte address)

Table 13.33:SPU, FSM mode instruction selinputs and seloutputs fields

13.5.2.4.1 sel inputs description

sel inputs [3:0] inp[3] inp[2] inp[1] inp[0]

0000 fsm in3 fsm in2 fsm in1 fsm in0

0001 fsm in5 fsm in4 fsm in1 fsm in0

0010 fsm in7 fsm in6 fsm in1 fsm in0

0011 fsm in5 fsm in4 fsm in3 fsm in2

0100 fsm in7 fsm in6 fsm in3 fsm in2

0101 fsm in7 fsm in6 fsm in5 fsm in4

0110 fsm in4 fsm in2 fsm in1 fsm in0

0111 fsm in5 fsm in2 fsm in1 fsm in0

1000 fsm in6 fsm in2 fsm in1 fsm in0

1001 fsm in7 fsm in2 fsm in1 fsm in0

1010 fsm in4 fsm in3 fsm in2 fsm in0

1011 fsm in5 fsm in3 fsm in2 fsm in0

1100 fsm in6 fsm in3 fsm in2 fsm in0

1101 fsm in7 fsm in3 fsm in2 fsm in0

1110 z-flag fsm in2 fsm in1 fsm in0

1111 z-flag fsm in6 fsm in5 fsm in7

Table 13.34:SPU, FSM mode, instruction field selinputs

13.5.2.4.2 sel outputs description

The seloutputs field selects four (4) FSM outputs. The FSM can only affect spugio out[7:0],
referred to as o7 to o0. Table13.35to 13.38list how the outputs are selected. Table
13.39lists four exceptions which can be used to cover output signal combinations not
supported in table13.35to 13.38.

sel outputs[7:6] 00 01 10 11

66 A state with only one transition which is coded in the FSM instruction. The FSM will jump directly to
the nextstate.

504 CHAPTER 13. I/O PROCESSOR

fsm outp[3] o2 o3 o6 o7

Table 13.35:SPU, FSM mode, instruction field seloutputs[7:6]

sel outputs[5:4] 00 01 10 11

fsm outp[2] o2 o3 o4 o5

Table 13.36:SPU, FSM mode, instruction field seloutputs[5:4]

sel outputs[3:2] 00 01 10 11

fsm outp[1] o0 o1 o6 o7

Table 13.37:SPU, FSM mode, instruction field seloutputs[3:2]

sel outputs[1:0] 00 01 10 11

fsm outp[0] o0 o1 o4 o5

Table 13.38:SPU, FSM mode, instruction field seloutputs[1:0]

To support combinations not available in the above configuration, the following special
sel outputs listed in the table below can be used.

sel outputs 0xe0 0xc5 0x53 0x08

fsm outp[3] o5 o7 o3 o3

fsm outp[2] o4 o6 o2 o2

fsm outp[1] o1 o1 o4 o6

fsm outp[0] o0 o0 o5 o7

Table 13.39:SPU, FSM mode, special seloutputs values

Note that the seloutputs field holds the nextstate address if seqonly is used and
bit[11] is set to 0. If seqonly and bit[11] both are set bit[4:0] selects nextstate ad-
dress.

Bit[4:0] next state address source

0 - 15 R0 - R15

16 EADDR, rw eventret.addr

13.5.2.4.3 Sequential instruction

Each FSM state can execute one sequential instruction. This is done if the seq bit
(bit 30 in FSMINSTR) is set. If the doseq bit (bit 29 in FSMINSTR) is set to one,
the SEQINSTR will be performed every 5 ns until a jump to another state takes place.
Otherwise, (if not set) the SEQINSTR will be performed once when entering the state.
A 32-bit immediate instruction can be performed (e.g., ADDX, SUBX, MOVEX) by
using the bits for the timer instruction, and setting bit 28 and 27 in FSMINSTR.

13.5. SLAVE PROCESSING UNIT 505

Sequential instruction

31 0

Figure 13.6:SPU, FSM mode, SEQ instruction format

13.5.2.4.4 Timer instruction

The timer bit (bit 28) is used to add a state transition controlled by an internal SPU
timer. There can only be one TIMERINSTR in each state.

timer_keep

output_values next_state

31 24 23 16

x

timer_prio

reg

15 14 13 12 11

value

0

Figure 13.7:SPU, FSM mode, TIMERINSTR format

Bit(s) Field Description

31-24 output values See the list below.

23-16 next state The state address for this state transition.67

15 Not used

14 timer keep Keep the timer count from previous state.68

13 timer prio Select if the timerinstr shall have priority over a transition
instruction.

12 reg If set, the four lowest bits in the value field are used to select a
general SPU register and load the timer with the selected
register value.

11-0 value Immediate timer value (or register select if reg = 1)

Table 13.41:SPU, FSM mode, TIMERINSTR

The outputvalues field in TIMERINSTR is set up as follows:

Bit [31:30] is output action for fsmoutp[3]

Bit [29:28] is output action for fsmoutp[2]

Bit [27:26] is output action for fsmoutp[1]

Bit [25:24] is output action for fsmoutp[0]

The output action values are listed below (for each output):

00 No change (do nothing)

01 No change (do nothing)

10 Set to 0

11 Set to 1
6764-bit aligned absolute address (byte address>> 3). The highest bit in the address is taken from the

addrhi field in the FSMINSTR.
68Only works if the previous state had a timer instruction.

506 CHAPTER 13. I/O PROCESSOR

13.5.2.4.5 Transition instruction

All state transitions (except for the ones generated by TIMERINSTR) are described
with a TRANSINSTR.

invert_inputs mask_inputs output_values next_state

23 20 19 16 15 8 7 0

Figure 13.8:SPU, FSM mode, TRANSINSTR format

Bit Field Description

23-20 invert inputs For invert input bits that are set, the state transition
will occur when the corresponding inp[x]=0. For
the invert input bits that are not set, the state
transition occurs when the corresponding inp[x]=1.
See the invert inputs list below.

19-16 maskinputs Set a mask input bit if the corresponding inp shall
be used to trigger the next state transition. See the
mask inputs list below.

15-8 output values See the output values list below.

7-0 next state The address of the next state transition.69

Table 13.42:SPU, FSM mode, TRANSINSTR

· Invert inputs:

- If bit 23 is set, the transition will occur when inp[3] == 0.

- If bit 22 is set, the transition will occur when inp[2] == 0.

- If bit 21 is set, the transition will occur when inp[1] == 0.

- If bit 20 is set, the transition will occur when inp[0] == 0.

· Mask inputs:

- Set bit 19 if inp[3] shall be used to trigger the next state transition.

- Set bit 18 if inp[2] shall be used to trigger the next state transition.

- Set bit 17 if inp[1] shall be used to trigger the next state transition.

- Set bit 16 if inp[0] shall be used to trigger the next state transition.

See the following example:

Go to next_state if inp[3] and !inp[1] (inp[2] and inp[0] == don’t care)
invert inputs = 0x2
mask inputs = 0xa

· Output values:

The outputvalues field in TRANSINSTR is set up as follows:

6964-bit aligned absolute address (byte address>> 3). The highest bit in the address is taken from the
addrhi field in the FSMINSTR.

13.5. SLAVE PROCESSING UNIT 507

Bit [15:14] is output action for fsmoutp[3]

Bit [13:12] is output action for fsmoutp[2]

Bit [11:10] is output action for fsmoutp[1]

Bit [9:8] is output action for fsmoutp[0]

The output action values are listed below (for each output):

00 No change (do nothing)

01 No change (do nothing)

10 Set to 0

11 Set to 1

13.5.2.4.6 FSM Instructions, memory use

This section shows how FSM code is placed in memory. All FSM states consist of one
FSM instruction (referred to as FSMx where x stands for [FSM1:FSM 8]).

Each state can also contain one sequential instruction (named SEQ). State transitions
from an FSM state are referred to as Tx where x stands for [T1:T 8]. There can,
however, be one timer controlled transition in each state (named TIMER).

· Example:

FSM_1: ?_0_0_? : ?_?_?_? : FSM_2 (T_1)

FSM_2: seq rw R7, $080 // Put address into mc
?_0_0_? : ?_?_?_? : FSM_1 (T_1)
?_1_0_? : ?_?_?_? : FSM_3 (T_2)

FSM_3: timer R3 : 0_?_?_1 : FSM_4 (TIMER)

FSM_4: seq add R1, R3, R5
?_0_0_0 : 0_0_0_1 : FSM_1 (T_1)
?_0_0_1 : 1_0_0_1 : FSM_2 (T_2)
?_0_1_0 : 0_1_0_1 : FSM_3 (T_3)
?_0_1_1 : 0_0_0_1 : FSM_4 (T_4)
?_1_0_0 : 1_0_0_1 : FSM_5 (T_5)
?_1_0_1 : 0_0_0_1 : FSM_6 (T_6)
?_1_1_0 : 0_1_0_1 : FSM_1 (T_7)
?_1_1_1 : 1_0_0_1 : FSM_2 (T_8)

FSM_5: timer $12 : 0_?_?_? : FSM_1 (TIMER)
1_?_0_0 : 1_0_0_1 : FSM_4 (T_1)
0_1_?_1 : 0_0_0_1 : FSM_7 (T_2)

FSM_6: ?_0_0_0 : 0_0_0_1 : FSM_1 (T_1)
?_0_0_1 : 1_0_0_1 : FSM_2 (T_2)
?_0_1_0 : 0_1_0_1 : FSM_3 (T_3)
?_0_1_1 : 0_0_0_1 : FSM_4 (T_4)

508 CHAPTER 13. I/O PROCESSOR

FSM_7: seq or R5, R4, R2
timer R1 : ?_?_?_? : FSM_8 (TIMER)
?_1_0_1 : 1_0_0_1 : FSM_1 (T_1)
?_0_0_1 : 1_0_0_1 : FSM_2 (T_2)
?_0_1_0 : 0_1_0_1 : FSM_3 (T_3)
?_0_1_1 : 0_0_0_1 : FSM_4 (T_4)

FSM_8: ?_1_0_1 : 1_0_0_1 : FSM_1 (T_1)

T_1 T_3

x

T_4

T_8

xx

T_4

T_1 x

FSM_3 TIMER

SEQFSM_4

FSM_6

FSM_8

255 192

FSM_2 SEQ

191 128 127 64 63 0

SEQFSM_7

T_1 T_2 T_3

T_1 T_2 T_3

xT_1 T_2

T_4 T_5 T_6 T_7

FSM_1 T_1

FSM_5 TIMER

TIMER

xT_1 T_2

T_2

FSM_PC

An

An + 32

An + 64

An + 96

Note: An (x) indicates that the byte is unused.

Figure 13.9:SPU, Example of FSM Code in memory

13.6 Memory Controller

The I/O Processor Memory Controller (MC) handles all memory operations between
the system memory and the I/O Processor. The MC is also used when writing to the
SPU memories. As seen in figure13.10, the ETRAX FS I/O Processor contains three
internal memories, one for each MPU or SPU instance. The MC can be controlled by
the CPU, MPU or an SPU.

As mentioned before the MC is the only unit that can write to the I/O Processor SPU
memories. The SPU memories can be read (used for instructions only, not data) by
respective SPU connected to it. The address to the memories is set from the SPU
connected to it. The MPU memory is entirely controlled by the LW, SW, SWQ, SWX
instructions in the MPU.

13.6.1 Functional description

The MC is controlled by registers located in its respective CPU, MPU or SPU switch
register bank. See [IOPSW CPU REGS], [IOPSW MPU REGS] and [IOPSW SPUREGS].

MC registers are described below:

rw mc ctrl Used to request ownership of MC and to select memory operation.

rw mc data 32 bit wide register for data to be written to system memory.

rw mc addr Set system memory read/write address70. A write to this register actu-
ally starts and performs the system memory access.

70Due to limitations in the ETRAX FS memory arbiter the MC can not access internal mode registers.

13.6. MEMORY CONTROLLER 509

System memory

Memory
controller

CPU register interface

Register handler
(part of switch)

MPU
Memory

SPU 0
Memory

SPU 1
Memory

MPU

SPU 0

SPU 1

mem_data
mem_we

addr

addr

addr

mem_we

I/O Processor

Figure 13.10:Memory Controller location in the I/O Processor architecture

r mc data and rs mc data 32 bit wide register for data read from system memory.
When readingrs mc dataownership of MC is released.

r mc stat Holds MC status such as owner and busy bits.

13.6.1.1 Ownership

The MC is a shared resource and ownership is handled by using registers. Ownership
is requested by doing a write torw mc ctrl. This has to be done repeatedly until the
corresponding ownership bit is set in ther mc statregister. When writing torw mc ctrl
it is possible to select whether the ownership shall last for one memory operation or
until released. This is set by thekeepowner bit. After ownership is granted it is
possible to use the registersrw mc data, rw mc addr, r mc dataandrs mc data.71

13.6.1.1.1 Request ownership

The following steps are used to become owner of the MC:

1. Make a write torw mc ctrl (with correct memory operation and size etc.).

2. Checkr mc statto see if you have become owner. If not, repeat step 1.

3. Ownership is granted.

71Readingrs mc dataalways releases ownership of MC.

510 CHAPTER 13. I/O PROCESSOR

13.6.1.2 Write data from system memory to I/O Processor SPU memory

To copy data from system memory to I/O Processor SPU memory/memories following
steps must be taken:

1. Get MC ownership. (When writingrw mc ctrl usesize= 4, 72 cmd= copy, and
set up the write masks to indicate to which I/O Processor memory/memories the
write will be performed).

2. Disable the SPU/SPUs connected to the selected memory/memories usingrw ctrl.en
in the SPU.

3. Set I/O Processor memory address, usingrw seqpc register in the SPU. All
addresses are byte addresses.

4. Set system memory address in therw mc addrregister.73

5. Wait for busycpu, busympu, busyspu0or busyspu1bit to go low (for the
correct owner) inr mc stat.

6. If rw mc ctrl.keepowner is set tono the ownership is released. Otherwise
rs mc datacan be used to release ownership.

13.6.1.3 Read data from system memory to the r mc data register

To read data from system memory to ther mc dataor rs mc dataregister inside the
Memory Controller the following steps must be taken:

1. Get MC ownership. (Withrw mc ctrl.cmd= rd) 74

2. Set system memory address in therw mc addrregister.73

3. Wait for busycpu, busympu, busyspu0or busyspu1bit to go low (for the
correct owner) inr mc stat.

4. Readr mc dataor rs mc data(depending on if you will release ownership).

13.6.1.4 Write data from the rw mc data register to system memory

To write data to system memory from therw mc dataregister inside the Memory Con-
troller the following steps must be taken:

1. Get MC ownership. (Withrw mc ctrl.cmd= wr) 74

2. Put data in therw mc dataregister.

3. Set system memory address in therw mc addrregister.73

72Size must be 4 bytes.
73The data must not cross a 256 bit boundary in system memory.
74Size can not be more than 4 bytes (32 bits) since ther mc dataregister is 4 bytes wide.

13.7. SWITCH 511

4. Wait for busycpu, busympu, busyspu0or busyspu1bit to go low (for the
correct owner) inr mc stat.

5. If rw mc ctrl.keepowner is set tono the ownership is released. Otherwise
rs mc datacan be used to release ownership.

13.6.1.5 Write data from the rw mc data register to I/O Processor SPU memory

To copy data from therw mc dataregister to the I/O Processor SPU memory/memories
following steps must be taken:

1. Get MC ownership. (When writingrw mc ctrl usesize= 4,72 cmd= reg copy,
and set up the write masks to indicate to which I/O Processor memory/memories
the write will be performed).

2. Disable the SPU/SPUs connected to the selected memory/memories usingrw ctrl.en
in the SPU.

3. Set I/O Processor memory address, usingrw seqpc register in the SPU. All
addresses are byte addresses.

4. Write data to therw mc dataregister.

5. Wait for busycpu, busympu, busyspu0or busyspu1bit to go low (for the
correct owner) inr mc stat.

6. If rw mc ctrl.keepowner is set tono the ownership is released. Otherwise
rs mc datacan be used to release ownership.

13.7 Switch

The main objective of the Switch is to connect the various I/O Processor modules with
each other. The connections are defined by registers inside the Switch. The Switch
has five internal register banks, one for each Processing Unit (CPU, MPU, SPU0 and
SPU1) and one for configuration of the Switch. Please see25.27, 25.22, 25.29and
25.26for a complete list and explanation of these registers. The SWCFG REGS reg-
ister bank can be owned by any of the CPU/MPU/SPU0/SPU175. The Switch owner-
ship is controlled by therw sw cfg ownerregister in25.22.

13.7.1 Functional description

In addition to configuring how to connect the I/O Processor modules with each other,
the Switch also has other functions. The list below shows the different Switch func-
tions.

75After reset the CPU is the owner of the SWCFG REGS register bank.

512 CHAPTER 13. I/O PROCESSOR

· I/O Processor module connections

- Creating data and control paths. Controlled by25.26.

- Register access within the I/O Processor.

- Handling the register interface [REGIF] connected to the CPU.

- Handling ownership of all the other I/O Processor modules. Controlled by
25.26.

· Interrupt multiplexing to CPU

- All hardware interrupt signals from the different I/O Processor modules can be
used as CPU interrupts.

- The MPU, SPU0 and SPU1 can generate software interrupts to the CPU via
their registers in the Switch.25.22and25.29.

- The CPU uses registers in25.27 to acknowledge MPU and SPU generated
interrupts.

· Interrupt multiplexing to MPU

- All hardware interrupt signals from the different I/O Processor modules can be
combined into 16 MPU interrupts.

- The SPU0 and SPU1 can generate software interrupts to the MPU via their
registers in the Switch.25.29.

- The MPU uses registers in25.22to acknowledge SPU generated interrupts.

· Pin multiplexing, creating internal buses

- The I/O Processor has 72 I/O-pins. From these three internal buses are created,
two 32 bit wide buses (BUS0 and BUS1) and one 32 bit wide general I/O bus
(GIO). Controlled in25.26.

13.7.1.1 Register access

All I/O Processor modules are controlled by a Processing Unit (e.g., CPU, MPU or
SPU). The Processing Unit (PU) in control of an I/O Processor module is called the
owner of the module. Ownership is defined by the owner of the Switch in25.26.

It is the MPU (or the CPU via the MPU) that controls the owner of the Switch using the
rw sw cfg ownerregister. The CPU is the only unit that can be the owner of the MPU.
For all other I/O Processor modules the owner can be: CPU, MPU, SPU0 or SPU1.
The default owner for all modules is the CPU.

13.7.1.2 Interrupts to CPU from the I/O Processor

There are four interrupt signals from the I/O Processor to the CPU.

In the I/O Processor there are 24 interrupt generating modules which can be controlled
by the CPU.

13.7. SWITCH 513

Modules Reference

4 Timer Groups tg[3:0]

8 Trigger Groups trig[7:0]

2 out FIFOs (general register
bank)

fifo0[out], fifo1[out]

2 in FIFOs (general register
bank)

fifo0[in], fifo1[in]

2 out FIFOs (extra register bank) fifo xtra0[out], fifo xtra1[out]

2 in FIFOs (extra register bank) fifo xtra0[in], fifo xtra1[in]

2 in DMCs dmc0[in], dmc1[in]

2 out DMCs dmc0[out], dmc1[out]

Table 13.43:Switch, CPU interrupt sources

All of the above modules have interrupt logic including mask and acknowledge regis-
ters. Refer to documentation on each I/O Processor module.

In addition to the 24 hardware interrupt sources there are a number of software gener-
ated interrupts (from the MPU and SPUs):

· 32 CPU interrupts from MPU software, referred to as mpu[31:0] in table below.

· 16 CPU interrupts from SPU0 software, referred to as spu0[15:0] in table below.

· 16 CPU interrupts from SPU1 software, referred to as spu1[15:0] in table below.

These interrupts are selected through registers in the Switch. Each instance of the MPU
and SPU has its own register for generating software interrupts to the CPU. To clear
the MPU or SPU software interrupts the CPU uses therw ack intr0 ... rw ack intr3
registers inside the Switch CPU register bank.

The different CPU interrupt vectors are created like this:

interrupt vector interrupt sources

int0 spu1[15:8], spu0[7:0],76 mpu[15:0]77

int1 spu1[7:0],78 spu0[15:8], mpu[31:16]79

int2 tg[1:0], trig[7:0], fifo xtra0[out,in], fifo0[out,in], dmc0[out,in],
spu0[7:0],76 mpu[7:0]77

int3 tg[3:2], trig[7:0], fifo xtra1[out,in], fifo1[out,in], dmc1[out,in],
spu1[7:0],78 mpu[23:16]79

Table 13.44:Switch, CPU interrupt vectors

76Both rw ack intr0[23:16] andrw ack intr2[15:8] can clear SPU0 intr[7:0]
77Both rw ack intr0[7:0] andrw ack intr2[7:0] can clear MPU intr[7:0]
78Both rw ack intr1[31:24] andrw ack intr3[15:8] can clear SPU1 intr[7:0]
79Both rw ack intr1[7:0] andrw ack intr3[7:0] can clear MPU intr[23:16]

514 CHAPTER 13. I/O PROCESSOR

13.7.1.3 Interrupts to MPU

The MPU interrupt vector has 16 interrupts, intr[15:0]. In case of simultaneous inter-
rupts intr0 has the highest priority and intr15 the lowest priority.

13.7.1.3.1 MPU Interrupts from I/O Processor modules

In the I/O Processor there are 24 interrupt generating modules which can be controlled
by the MPU.

Modules Reference

4 Timer Groups tg[3:0]

8 Trigger Groups trig[7:0]

2 out FIFOs (general register
bank)

fifo0[out], fifo1[out]

2 in FIFOs (general register
bank)

fifo0[in], fifo1[in]

2 out FIFOs (extra register bank) fifo xtra0[out], fifo xtra1[out]

2 in FIFOs (extra register bank) fifo xtra0[in], fifo xtra1[in]

2 in DMCs dmc0[in], dmc1[in]

2 out DMCs dmc0[out], dmc1[out]

Table 13.45:Switch, MPU interrupt sources

All of the above modules have interrupt logic including mask and acknowledge regis-
ters.

In addition to the 24 hardware interrupt sources there are 32 SPU software generated
interrupts:

· 16 MPU interrupts from SPU0 software, named spu0[15:0] in table below.

· 16 MPU interrupts from SPU1 software, named spu1[15:0] in table below.

The 16 interrupts are divided into four groups, with four interrupts in each group. How
the interrupts in each group are generated is described in the figure13.11below. The
rw intr grp0 mask... rw intr grp3 maskregisters in25.22register bank are used as
masks for each interrupt group.

The software interrupts generated by the SPUs are connected individually to the MPU
interrupts. To clear SPU software generated interrupts the MPU uses therw ack intr grp0
... rw ack intr grp3 registers in the Switch MPU register bank. The MPU can read
all masked and non-masked hardware and software interrupts using ther intr grp0 ...
r intr grp3and ther maskedintr grp0... r maskedintr grp3registers.

Each one of the 28 hardware interrupts is connected to four different MPU interrupts.

MPU Interrupt Interrupt sources

intr[0] spu0[0] spu1[0] trig[0] trig[4] tg[0] fifo out[0] fifo outx[0] dmc out[0]

intr[1] spu0[1] spu1[1] trig[1] trig[5] tg[1] fifo in[0] fifo inx[0] dmc in[0]

13.7. SWITCH 515

intr[2] spu0[2] spu1[2] trig[2] trig[6] tg[2] fifo out[1] fifo outx[1] dmc out[1]

intr[3] spu0[3] spu1[3] trig[3] trig[7] tg[3] fifo in[1] fifo inx[1] dmc in[1]

Table 13.46:Switch, MPU interrupt vectors 0-3, group 0

Registers for intr[3:0] are located in intrgrp0. intr0 uses bits [7:0], intr1 uses bits
[15:8], intr2 uses bits [23:16] and intr3 uses bits [31:24].

MPU Interrupt Interrupt sources

intr[4] spu0[4] spu1[4] trig[0] trig[5] tg[0] fifo in[0] fifo inx[0] dmc out[0]

intr[5] spu0[5] spu1[5] trig[1] trig[6] tg[1] fifo out[1] fifo outx[0] dmc in[0]

intr[6] spu0[6] spu1[6] trig[2] trig[7] tg[2] fifo in[1] fifo inx[1] dmc out[1]

intr[7] spu0[7] spu1[7] trig[3] trig[4] tg[3] fifo out[0] fifo outx[1] dmc in[1]

Table 13.47:Switch, MPU interrupt vectors 4-7, group 1

Registers for intr[7:4] are located in intrgrp1. intr4 uses bits [7:0], intr5 uses bits
[15:8], intr6 uses bits [23:16] and intr7 uses bits [31:24].

MPU Interrupt Interrupt sources

intr[8] spu0[8] spu1[8] trig[0] trig[6] tg[0] fifo out[1] fifo outx[1] dmc out[0]

intr[9] spu0[9] spu1[9] trig[1] trig[7] tg[1] fifo in[1] fifo inx[1] dmc in[0]

intr[10] spu0[10] spu1[10] trig[2] trig[4] tg[2] fifo out[0] fifo outx[0] dmc out[1]

intr[11] spu0[11] spu1[11] trig[3] trig[5] tg[3] fifo in[0] fifo inx[0] dmc in[1]

Table 13.48:Switch, MPU interrupt vectors 8-11, group 2

Registers for intr[11:8] are located in intrgrp2. intr8 uses bits [7:0], intr9 uses bits
[15:8], intr10 uses bits [23:16] and intr11 uses bits [31:24].

MPU Interrupt Interrupt sources

intr[12] spu0[12] spu1[12] trig[0] trig[7] tg[0] fifo in[1] fifo inx[1] dmc out[0]

intr[13] spu0[13] spu1[13] trig[1] trig[4] tg[1] fifo out[0] fifo outx[0] dmc in[0]

intr[14] spu0[14] spu1[14] trig[2] trig[5] tg[2] fifo in[0] fifo inx[0] dmc out[1]

intr[15] spu0[15] spu1[15] trig[3] trig[6] tg[3] fifo out[1] fifo outx[1] dmc in[1]

Table 13.49:Switch, MPU interrupt vectors 12-15, group 3

Registers for intr[15:12] are located in intrgrp3. intr12 uses bits [7:0], intr13 uses bits
[15:8], intr14 uses bits [23:16] and intr15 uses bits [31:24].

516 CHAPTER 13. I/O PROCESSOR

OR

MASK
 [15:8]

OR

OR

OR

6 hw intr
1 sw SPU0
1 sw SPU1

6 hw intr
1 sw SPU0
1 sw SPU1

6 hw intr
1 sw SPU0
1 sw SPU1

6 hw intr
1 sw SPU0
1 sw SPU1

intr0

intr1

intr2

intr3

MASK
 [7:0]

MASK
 [23:16]

MASK
 [31:24]

Figure 13.11:Switch, MPU interrupt generation, group 0

13.7.1.3.2 MPU Interrupts from CPU software

Using the ordinary sixteen MPU interrupts from CPU software is not possible. To gen-
erate a CPU software interrupt to the MPU the CPU can issue an MPU JIR instruction,
using therw instr register. Refer to section13.4.2.2.18for more information.

13.7.1.4 Pin multiplexing

The ETRAX FS I/O Processor has the following structure for pins and buses:

· 72 input/output signals divided into four ports,pb, pc, pd andpe.

Each of the ports contain 18 pins.

· From the 72 input/output signals there are internally created two 32-bit wide
buses, BUS0 and BUS1, and one 32-bit wide GIO bus.

· The upper and lower halves of the BUS0 and BUS1 buses can be used as separate
internal buses. The I/O Processor controls the direction of each byte of the BUS0
and BUS1 buses separately, but there is no pin by pin direction control.

· The direction of each pin in the GIO bus is individually controlled by the I/O
Processor.

The GIO and buses are referred to as:

· BUS0 in[31:0], BUS1in[31:0], GIO in[31:0] as inputs.

13.7. SWITCH 517

· BUS0 out[31:0], BUS1out[31:0], GIOout[31:0] as outputs.

· BUS0 oe[3:0], BUS1oe[3:0], (one bit per 8 bit data), GIOoe[31:0] as output
enables.

13.7.1.4.1 Mapping I/O Processor buses onto the pa to pe ports

The mapping from the pins to the three I/O Processor buses is controlled by the Switch
owner using therw pinmappingregister.

Each of the BUS0 and BUS1 buses are split into 8-bit portions, so that each can be
mapped onto thepb to pe ports in two different ways. The GIO bus is split into 4-bit
portions. The two mapping alternatives are denoted A and B.

BUS0 portions Mapping A Mapping B

BUS0[7:0] pb7 - pb0 pd7 - pd0

BUS0[15:8] pc7 - pc0 pb15 - pb8

BUS0[23:16] pd7 - pd0 pe15- pe8

BUS0[31:24] pe7- pe0 pd15 - pd8

Table 13.50:Switch, BUS0 mapping

BUS1 portions Mapping A Mapping B

BUS1[7:0] pc7 - pc0 pe7- pe0

BUS1[15:8] pc15- pc8 pe15- pe8

BUS1[23:16] pb15 - pb8 pd15 - pd8

BUS1[31:24] pb7 - pb0 pc15- pc8

Table 13.51:Switch, BUS1 mapping

GIO portions Mapping A Mapping B

GIO[3:0] pb11 - pb8 pd17 - pd16, pe17- pe16

GIO[7:4] pd11 - pd8 pb17 - pb16, pc17- pc16

GIO[11:8] pc11- pc8 pe3- pe0

GIO[15:12] pe11- pe8 pd3 - pd0

GIO[19:16] pb15 - pb12 pc3 - pc0

GIO[23:20] pd15 - pd12 pc7 - pc4

GIO[27:24] pc15- pc12 pe7- pe4

GIO[31:28] pe15- pe12 pd7 - pd4

Table 13.52:Switch, GIO mapping

The other way around, the mapping will be:

Portpb to pe Mapping to BUS0 Mapping to BUS1 Mapping to GIO

pb7 - pb0 BUS0[7:0]A BUS1[31:24]A -

pb15 - pb8 BUS0[15:8]B BUS1[23:16]A GIO[19:16,3:0]A

pb17 - pb16 - - GIO[7:6]B

518 CHAPTER 13. I/O PROCESSOR

pc7 - pc0 BUS0[15:8]A BUS1[7:0]A GIO[23:16]B

pc15- pc8 - BUS1[15:8]A or
BUS1[31:24]B

GIO[27:24,11:8]A

pc17- pc16 - - GIO[5:4]B

pd7 - pd0 BUS0[7:0]B or
BUS0[23:16]A

- GIO[31:28,15:12]B

pd15 - pd8 BUS0[31:24]B BUS1[23:16]B GIO[23:20,7:4]A

pd17 - pd16 - - GIO[3:2]B

pe7- pe0 BUS0[31:24]A BUS1[7:0]B GIO[27:24,11:8]B

pe15- pe8 BUS0[23:16]B BUS1[15:8]B GIO[31:28,15:12]A

pe17- pe16 - - GIO[1:0]B

Table 13.53:Switch, Pin mapping

13.7.1.4.2 Controlling I/O Processor buses

Each PU instance (CPU, MPU, SPU) will have the following registers in the Switch,
see25.27, 25.22and25.29.

Register Function

r bus0in Input BUS0 read register

rw bus0clr mask Clear register for BUS0 out

rw bus0setmask Set register for BUS0 out

rw bus0oe clr mask Clear register for BUS0 output enable

rw bus0oe setmask Set register for BUS0 output enable

r bus1in Input BUS1 read register

rw bus1clr mask Clear register for BUS1 out

rw bus1setmask Set register for BUS1 out

rw bus1oe clr mask Clear register for BUS1 output enable

rw bus1oe setmask Set register for BUS1 output enable

r gio in Input GIO read register

rw gio clr mask Clear register for GIO out

rw gio setmask Set register for GIO out

rw gio oe clr mask Clear register for GIO output enable

rw gio oe setmask Set register for GIO output enable

Table 13.54:Switch, Registers for buses

Each of the two buses, BUS0out and BUS1out are created as described in figure13.12
below. The GIOout and the BUS0oe, BUS1oe and GIOoe are also configured in
the same way.

The sources of the output bus are selected byrw busout cfg in 25.26.

All PUs (MPU, CPU and SPUs) have the possibility to set and clear bytes in the bus,
using therw bus0setmaskandrw bus0clr maskregisters.

The SPUs also have hi/lo registers for all set and clear registers, see25.29. This is
useful since the SPUs have limited methods for handling 32 bit immediate operations.

The Switch owner (default the CPU) can mask, (force bits of the bus to zero) by using

13.7. SWITCH 519

Out bus sources
such as FIFOs
and SPU output
buses

rw_bus0_mask, [SW_CFG_REGS]

BUS0_out

Select signals from [SW_CFG_REGS]
register rw_bus_out_cfg

[SW_MPU_REGS] rw_bus0_clr_mask
[SW_CPU_REGS] rw_bus0_clr_mask

SPU0 [SW_SPU_REGS] rw_bus0_clr_mask
SPU1 [SW_SPU_REGS] rw_bus0_clr_mask

[SW_MPU_REGS] rw_bus0_set_mask
[SW_CPU_REGS] rw_bus0_set_mask

SPU0 [SW_SPU_REGS] rw_bus0_set_mask
SPU1 [SW_SPU_REGS] rw_bus0_set_mask

Figure 13.12:Switch, Creating BUS0out

the rw bus0maskregister. This is needed when the I/O pins are shared with other
functions in ETRAX FS, see [PINMUX].

All BUS and GIO output signals are connected to the SAPOUT module. Finally they
all are combined to form the 72 output signals.

13.7.1.4.3 BUS0 out

The source for BUS0out is controlled by register fieldsrw busout cfg.bus0lo and
rw busout cfg.bus0hi. As described in the section above all PUs have separate reg-
isters for controlling the BUS0out. BUS0out is divided into two halves, making it
more flexible.

Output enable (OE) for BUS0out can be configured in register fieldsrw busout cfg.bus0lo oe
andrw busout cfg.bus0hi oe, where lo refers to bits 15:0 and hi to 31:16. OE for
BUS0 can be selected to come from the following sources:

· GIO out 0 from SPU0

· GIO out 1 from SPU0

· GIO out 0 from SPU1

· GIO out 1 from SPU1

· Timer group 0, timer 0

· Timer group 1, timer 0

· Timer group 2, timer 0

· Timer group 3, timer 0

520 CHAPTER 13. I/O PROCESSOR

13.7.1.4.4 BUS1 out

The source for BUS1out is controlled by register fieldsrw busout cfg.bus1lo and
rw busout cfg.bus1hi. As described in section13.7.1.4.2, all PUs have separate reg-
isters for controlling the BUS1out. BUS1out is divided into two halves, making it
more flexible.

Output enable (OE) for BUS1out can be configured in fieldrw busout cfg.bus1lo oe
andrw busout cfg.bus1hi oe, where lo refers to bits 15:0 and hi to 31:16. OE for
BUS1 can be selected to come from the following sources:

· GIO out 1 from SPU0

· GIO out 2 from SPU0

· GIO out 1 from SPU1

· GIO out 2 from SPU1

· Timer group 0, timer 1

· Timer group 1, timer 1

· Timer group 2, timer 1

· Timer group 3, timer 1

13.7.1.4.5 GIO out bus

The sources for GIOout and GIOoe are controlled by therw gio out grp0 cfg ...
rw gio out grp7 cfg registers. Each configuration register affects four GIOs. As for
the buses described above all PUs have separate registers for setting and clearing GIO
outputs.

13.7.1.5 Connecting I/O Processor modules

The data and control paths in the I/O Processor are configured by registers in the Switch
configuration register bank,25.26. The following sections, beginning with13.7.1.5.1,
describe the different input configurations for each separate I/O Processor module.

13.7.1.5.1 SPU

Each SPU in the ETRAX FS I/O Processor has five 32 bit wide input buses.

Name Description SPU register

SPUBUS0in Connects the SPU to data sources r bus0in

SPUBUS1in Connects the SPU to data sources r bus1in

SPUGIOin Connects the SPU to input GIO signals r gio in

Trigger in Connects the SPU to output signals from I/O Processor
Trigger Group modules

r trigger in

13.7. SWITCH 521

Statusin Connects the SPU to status signals from other I/O
Processor modules

r stat in

Table 13.55:Switch, SPU input buses

The SPU buses SPUBUS0in and SPUBUS1in are configured by therw spu0cfg and
rw spu1cfg registers in25.26. The SPUGIOin is always mapped to synchronized
GIO in, and the SPU Triggerin input port is also permanently mapped to the respective
Trigger. Mapping of the Statusin port for each SPU is shown below.

Bits Source Register reference

31 MC, owned by SPU0 r mc stat.ownedby spu0

30 MC, busy by SPU0 r mc stat.busyspu0

29 SCRCIN0, crc err r stat.err

28 SCRCOUT0, output n.a.

27 syncclk 12 n.a.

26:23 SPU1, gioout[3:0] n.a.

22 DMC IN0, cmd rdy r streamstat.cmdrdy

21 DMC IN0, full r streamstat.full

20 DMC IN0, sth r streamstat.sth

19:16 Timer grp2 strobes n.a.

15 PCRC0, correct CRC n.a.

14 DMC OUT0, cmdrdy r streamstat.cmdrdy

13 DMC OUT0, cmdrq r streamstat.cmdrq

12 DMC OUT0, last r streamstat.last

11 DMC OUT0, dv r streamstat.dv

10 DMC OUT0, eop n.a.

9 DMC OUT0, dth r streamstat.dth

8 DMC OUT0, all r streamstat.allavail

7 FIFO IN0, rdy n.a.

6 FIFO OUT0, all n.a.

5 FIFO OUT0, rdy n.a.

4 FIFO OUT0, last n.a.

3:0 Timer grp0 strobes n.a.

Table 13.56:Switch, SPU0 Statusin signals

Bits Source Register reference

31 MC, owned by SPU1 r mc stat.ownedby spu1

30 MC, busy by SPU1 r mc stat.busyspu1

29 SCRCIN1, crc err r stat.err

28 SCRCOUT1, output n.a.

27 syncclk 12 n.a.

26:23 SPU0, gioout[3:0] n.a.

22 DMC IN1, cmd rdy r streamstat.cmdrdy

21 DMC IN1, full r streamstat.full

20 DMC IN1, sth r streamstat.sth

19:16 Timer grp3 strobes n.a.

15 PCRC1, correct CRC n.a.

522 CHAPTER 13. I/O PROCESSOR

14 DMC OUT1, cmdrdy r streamstat.cmdrdy

13 DMC OUT1, cmdrq r streamstat.cmdrq

12 DMC OUT1, last r streamstat.last

11 DMC OUT1, dv r streamstat.dv

10 DMC OUT1, eop n.a.

9 DMC OUT1, dth r streamstat.dth

8 DMC OUT1, all r streamstat.allavail

7 FIFO IN1, rdy n.a.

6 FIFO OUT1, all n.a.

5 FIFO OUT1, rdy n.a.

4 FIFO OUT1, last n.a.

3:0 Timer grp1 strobes n.a.

Table 13.57:Switch, SPU1 Statusin signals

13.7.1.5.2 Timer Groups

There are four Timer groups in the ETRAX FS I/O Processor. Each group is divided
into four timers and one clock generator. Timers can be started and stopped by registers
in the Timer group, Triggers or other Timers inside the same group. Thetmr0 en ...
tmr3 enandtmr0 dis ... tmr3 dis fields in therw timer grp0 cfg ... rw timer grp3 cfg
registers are used to select which Trigger to enable or disable each Timer.

The external clock inputs to the different Timer groups are also selected through the
Switch, using theext clk fields of registersrw timer grp0 cfg ... rw timer grp3 cfg.

The 12 MHz clock signal connected internally in the chip is synchronized using two
200 MHz flip-flops inside the Switch. This synchronized 12 MHz clock can be used as
a clock in the Timer groups. SPU GIO outputs and synchronized GIOin 1, 3, 5 and 7
can also be used as clock for the Timer groups.

Mapping of which Trigger and SPU that can be used to each Timer group is shown in
the table below.

Timer group Enable and/or Disable
with

Clock source

0 Trigger group 0
Trigger group 4

SPU0

1 Trigger group 1
Trigger group 5

SPU1

2 Trigger group 2
Trigger group 6

SPU0

3 Trigger group 3
Trigger group 7

SPU1

Table 13.58:Switch, Timer Group clock source configuration

13.7.1.5.3 Trigger Groups

There are eight Trigger groups in the I/O Processor. Each group is divided into four
Triggers making 32 Triggers all together. Trigger 0 to Trigger 3 are located in Trigger

13.7. SWITCH 523

Group 0 and Trigger 28 to Trigger 31 are located in Trigger Group 7. All Triggers
are connected to their corresponding GIOin signal. i.e., Trigger 0 is connected to
GIO in[0].

Triggers can be enabled and disabled either by a Timer or by registers in the separate
Trigger group register banks. Configuring which Timer to enable each Trigger inside
each Trigger group is done in thegrp0 en... grp7 enfields of therw trigger grpscfg
register. Configuring the disable source is done in thegrp0 dis ... grp7 disfields in the
same register.

All Triggers in each Trigger group share the same disable and enable fields. The table
below shows disable selection for Trigger group 0.

Trigger Group 0

Trigger grp0 disfield in register
rw trigger grpscfg

Disable by Timer in Timer
group 0

0 timer grp0 Timer 0

1 timer grp0 Timer 1

2 timer grp0 Timer 2

3 timer grp0 Timer 3

0 timer grp0 rot Timer 1

1 timer grp0 rot Timer 2

2 timer grp0 rot Timer 3

3 timer grp0 rot Timer 0

Table 13.59:Switch, Trigger Group, Group 0 disable selection

13.7.1.5.4 Parallel Data Path in

The input Parallel Data Path (PDPin) consists of three parts, DMC, FIFO and Parallel
CRC checker. There are two PDPin in the ETRAX FS I/O Processor. The connec-
tion between the parts of the PDPin are fixed, meaning input DMC0 will always be
connected to input FIFO0 etc. See figure13.13for a picture of PDPin 0.

DMC IN 0

FIFO IN 0

Parallel CRC 0

Data Strobe Size Last

DMA

Register access, [DMC_IN_REGS]

Register access, [FIFO_IN_REGS]
Register access, [FIFO_IN_XTRA_REGS]

Register access, [CRC_PAR_REGS]

Figure 13.13:Switch, Input Parallel Data Path 0

As seen in figure13.13, all parts of PDPin have their own register banks. Data to and

524 CHAPTER 13. I/O PROCESSOR

from the PDPin can be read or written using registers inside each separate part of the
PDP in.

Since the connections are fixed within the PDPin, the configuration in the Switch
is done on the input signals to the PDPin. Below is a list of the signals that are
configured:

Data Parallel data, 32, 24, 16 or 8 bits wide, strobed by strobe.

Strobe Strobe signal, controls when data is sampled.

Last Last signal, strobed by strobe, marks the data word with last. This last mark will
be written to the FIFO and will also force the Parallel CRC to reinitialize when
next data word is received.

Size Used to set the width of the input data bus, 32, 24, 16 or 8 bits.

The inputs to the above signals are configured in therw pdp0cfg and rw pdp1cfg
registers, using thein src, in strb, in lastandin sizefields.

13.7.1.5.5 Parallel Data Path out

The output Parallel Data Path (PDPout) consists of three parts, DMC, FIFO and Par-
allel CRC generator. There are two PDPout in the ETRAX FS I/O Processor. The
connection between Parallel CRC generator and FIFO out are fixed, meaning Paral-
lel CRC 0 generator will always be connected to FIFO OUT 0. Connection between
DMC out and Parallel CRC generator port is configurable. See figure13.14below for
a picture of PDPout 0 and 1.

DMC OUT 1

DataStrobe

DMA

DMC OUT 0

DMA

Parallel CRC 1Parallel CRC 0

FIFO OUT 1FIFO OUT 0

DataStrobe

SWITCH

Figure 13.14:Switch, Output Parallel Data Paths

As seen in figure13.14, it is possible to configure which DMC to connect to which Par-
allel CRC. This is useful when running a full duplex protocol with Parallel CRC since
each Parallel CRC only can handle half duplex i.e., either work as generator or checker.

13.8. TIMER GROUP 525

The configuration of DMC connection is done through thedmc0usr/dmc1usr and
out srcfields in therw pdp0cfg andrw pdp1cfg registers.

Selection of the strobe signal for strobing data out from the PDP is done through the
out strbfield in therw pdp0cfg andrw pdp1cfg registers.

As for the input Parallel Data Path data can be read and written through registers in
each separate module register bank.

13.7.1.5.6 Serial CRC in

The ETRAX FS I/O Processor has two Serial CRC input modules. Configuration of
the serial data path is done in the Switch, using therw sdpcfg register. The serial data
interface connected to the Serial CRC input module consists of the following three
signals:

1. Data: Serial data, strobed by strobe.

2. Strobe: Strobe signal, controls when data is sampled.

3. Last: Last signal, strobed by strobe, indicates last data bit. The CRC register will
be reinitialized when next bit is received.

Sources for data, strobe and last are configured using thesdp in0 data, sdp in1 data,
sdp in0 strb, sdp in1 strb andsdp in0 last, sdp in1 last fields in therw sdpcfg reg-
ister. Data, strobe and last can also be set through registers in the Serial CRC in mod-
ule.

13.7.1.5.7 Serial CRC out

In the I/O Processor there are two Serial CRC output modules. There is only one
signal to each Serial CRC output module that can be configured - the strobe signal.
Fieldssdpout0 strbandsdpout1 strbin registerrw sdpcfg are used to configure the
strobe signal. The strobe can also be generated by writing to therw dataregister within
each Serial CRC output module.

13.8 Timer group

A Timer group consists of four Timers and one Clock Generator. The clock genera-
tor has a configurable clock and can be chosen byrw cfg.clk src to be either the I/O
Processor system clock or an external clock from the Switch. Each Timer has a con-
figurable clock for the timer countdown. The clock used is either the I/O Processor
system clock or the clock generated by the Clock Generator. The mentioned clocks
can be prescaled, at most by a factor of 128, controlled by therw cfg.clk gendiv and
rw cfg.clk div registers.

Each Timer group has the following interface signals:

526 CHAPTER 13. I/O PROCESSOR

Register interface

External clock

Timer group Strobe
Enable
Disable

Figure 13.15:Timer group, Overview

Enable There are four enable signals, one for each Timer.

Disable There are four disable signals, one for each Timer.

External clock The external clock is used by the Clock Generator as a countdown
strobe. It is synchronized by the I/O Processor system clock.

Register interface For a detailed description of all registers, see25.30.

Strobe Each Timer generates a strobe. A Timer group has four output strobes.

13.8.1 Functional description

The Timer group is configured through the register interface25.30.

13.8.1.1 Timer

When the Timer is enabled, it will count downr tmr cnt to zero. When the counter
reaches zero, the Timer output strobe is either toggled or pulsed and an interrupt is
generated.

The output strobe is used by the other I/O Processor modules for strobing data or gen-
erating timeouts.

A Timer can be reset by therw cmd.rstfield and in some of the run modes, the Timer
is reset when it is disabled. When reset the Timer will copy the value of therw tmr len
register tor tmr cntand the countdown will not begin until the Timer is enabled.

13.8.1.1.1 Toggle or pulse mode

A Timer can toggle the output strobe when the countdown reaches zero or it can gen-
erate a strobe which has the length of one I/O Processor cycle, depending on the value
of rw tmr cfg.out mode. The toggle mode can be used for generating clocks and the
pulse mode is useful e.g., as a timeout or to enable/disable another Timer.

13.8.1.1.2 Run modes

A Timer has four different run modes (rw tmr cfg.run mode). The run mode decides
how the Timer will act when it is enabled or disabled. In some run modes, the Timer

13.8. TIMER GROUP 527

2 1 0 2 1 0 2 1 0 2 1 0 2 1Counter

Timer strobe
(pulse)

Clk

Timer strobe
(toggle)

Figure 13.16:Timer group, Difference between pulse and toggle mode

is reset when it is disabled. Resetting the Timer will copy the value of therw tmr len
register tor tmr cnt.

Stop mode In this mode the Timer will be reset when it is disabled.

Pause modeIn this mode the Timer will pause when it is disabled. In other words, the
Timer countdown is not reset and will continue the countdown once the Timer is
enabled.

Complete mode In this mode the Timer will continue its countdown when disabled. In
other words, the countdown will not stop immediately but it will not resume the
countdown after it reaches zero. If the Timer is disabled a second time during the
completion of the countdown it will stop the countdown immediately and reset
itself.

Run once mode In this mode the Timer will count down to zero once and then disable
itself automatically. If the Timer is disabled during countdown, it will immedi-
ately stop the countdown and reset the counter.

13.8.1.1.3 Enable or disable a Timer

The Timer can be enabled or disabled by a Trigger or by another Timer. The owner can
also start or stop the Timer by using the register interface.

For example, a Trigger is connected to the enable and disable of a Timer (i.e., enable
and disable have the same control signal). See figure13.17.

528 CHAPTER 13. I/O PROCESSOR

(1) (2) (3)

3 2 1 0 3 2 1 0 3 2 1 0 3Counter

Timer strobe

Enable

Disable

Figure 13.17:Timer group, Enable and disable at the same time

Time Description

1 The Timer is started for the first time.

2 The Timer is paused.

3 The Timer resumes its countdown.

13.8.1.2 Clock Generator

The Clock Generator generates a clock which is used as clock source by a Timer, when
selected inrw tmr cfg.clk src.

The generated clock will have a jitter whenever the ideal clock has a half period that
is not a multiple of the I/O Processor clock. In that case the clock period and the duty
cycle will change during time. Possible period lengths of the generated clock are then
N, N+1, and N+2. N is the largest integer which is not larger than I/O Processor system
frequency divided by the desired frequency. The jitter of the generated clock will at the
most be +/-2.5ns when using a 200 MHz system clock.

The counter (r clk gencnt) always starts at the value ofrw half period lenand counts
down to either zero or one.

For example, let us assume that you want to make a 18.75 MHz clock from the 200
MHz system clock. It will require 10.666667 clock cycles of the system clock to make
one 18.75 MHz cycle. The ideal clock has a 50% duty cycle, so the half period is
5.333333 clock cycles of the system clock.

The Clock Generator will generate 18.75 MHz by altering the output after 5 or 6 cycles.
The generated clock will be in sync with the ideal 18.75 MHz after one and a half 18.75
MHz cycle. See figure13.18.

(*) After one and a half 18.75 MHz cycle the generated clk is in sync with the ideal
clock.

The 25ns half period occurs twice as often as the 30ns half period in the above timing
diagram, e.g., 2/3 of the generated clock will have a half period of 25ns and 1/3 will
have a half period of 30ns.

The jitter is +/-1.667ns with the error pattern +1.667ns, -1.667ns and 0ns. The error
pattern will repeat itself continuously.

13.8. TIMER GROUP 529

5 6 5 55 6
25 ns 30 ns 25 ns 25 ns 30 ns 25 ns

10.667
53.333 ns

5.333
26.667 ns

(*) (*)

Clock
generator

Ideal
(18.75 ns)

Figure 13.18:Timer group, Clock Generator example

13.8.1.2.1 Configuring the Clock Generator

To configure the Clock Generator, you will need to specify the smaller half period
(rw half period len), the ratio between the half periods (rw half period.quotalo and
rw half period.quotahi) and specify if the smaller half period occurs more often than
the larger half period (rw half period.quotahi sel). Below are the equations for re-
trieving the parameters put in the configuration registers.

(system_freq / 2)
f = -----------------

desired_freq

system_freq = The system frequency (200MHz)

desired_freq = The desired frequency

k = f - [f]

[f] is the largest integer which is not larger than f.

There are four different cases depending on the value of k:

1. k < 0.5

(The shorter half period occurs more often than the longer half period.)

rw half period.quotahi sel= shortperiod

rw_half_period_quota_lo k
----------------------- = -------
rw_half_period_quota_hi (1 - k)

rw half period len= [f]

530 CHAPTER 13. I/O PROCESSOR

2. k > 0.5

(The longer half period occurs more often than the shorter half period.)

rw half period.quotahi sel= long period

rw_half_period_quota_lo (1 - k)
----------------------- = -------
rw_half_period_quota_hi k

rw half period len= [f]

3. k = 0.5

(Every clock cycle has the same duty cycle.)

rw half period.quotahi sel= shortperiod

rw half period.quotalo = 1

rw half period.quotahi = 1

rw half period len= [f]

The duty cycle in this case will always equal [f] / (2 + (1 / [f])).

4. k = 0

(The desired frequency can be made by dividing the system frequency directly.)

rw half period.quotahi sel= shortperiod

rw half period.quotalo = 0

rw half period.quotahi = 1

rw half period len= [f]

The generated clock will have exactly the same frequency as the desired clock.

(rw half period.quotalo / rw half period.quotahi) is an irreducible fraction (a fraction
whose numerator and denominator cannot be cancelled down any further).

rw half period.quotalo is always smaller thanrw half period.quotahi.

· Example of case 1:

Desired frequency: 12 MHz

System frequency: 200 MHz

f = (200 MHz / 2) / 12MHz = irreducible fraction = 25 / 3

[f] = 8

k = 25 / 3 - 8 = 1 / 3

rw_half_period_quota_lo (1 / 3)
----------------------- = ------------- = 1 / 2
rw_half_period_quota_hi (1 - (1 / 3))

13.8. TIMER GROUP 531

Results using the equations in case 1:

rw half period.quotalo = 1

rw half period.quotahi = 2

rw half period.quotahi sel= shortperiod

rw half period len= 8

· Example of case 2:

Desired frequency: 1024 kHz

System frequency: 200 MHz

f = (200 MHz / 2) / 1024kHz = irreducible fraction = 3125 / 32

[f] = 97

k = 3125 / 32 - 97 = 21 / 32

rw_half_period_quota_lo (1 - (21 / 32))
----------------------- = --------------- = 11 / 21
rw_half_period_quota_hi (21 / 32)

Results using the equations in case 2:

rw half period.quotalo = 11

rw half period.quotahi = 21

rw half period.quotahi sel= long period

rw half period len= 97

· Example of case 3:

Desired frequency: 64 kHz

System frequency: 200 MHz

f = (200 MHz / 2) / 64kHz = irreducible fraction = 3125 / 2

[f] = 1562

k = 3125 / 2 - 1562 = 1 / 2

Results using the equations in case 3:

rw half period.quotalo = 1

rw half period.quotahi = 1

rw half period.quotahi sel= shortperiod

rw half period len= 1562

· Example of case 4:

Desired frequency: 25 MHz

System frequency: 200 MHz

f = (200 MHz / 2) / 25 MHz = 4

532 CHAPTER 13. I/O PROCESSOR

[f] = 4

k = 4 - 4 = 0

Results using the equations in case 4:

rw half period.quotalo = 0

rw half period.quotahi = 1

rw half period.quotahi sel= shortperiod

rw half period len= 4

13.8.1.3 Interrupts

The Timer group has four interrupts. Each Timer generates an interrupt when it has
counted down to zero.

13.9 Trigger group

The Trigger group consists of four Triggers. A Trigger is used to continuously monitor
a selected input signal.

Trigger group

Register interface

StrobeInput signals

Enable Disable

Figure 13.19:Trigger group, Overview

Each Trigger group has the following interface signals:

Enable There are four enable signals, one for each Trigger.

Disable There are four disable signals, one for each Trigger.

Register interface For a detailed description of all registers, see25.31.

Input signal Each Trigger monitors one input signal.

Strobe Each Trigger generates a strobe. The Trigger group has four output strobes.

13.9.1 Functional description

A Trigger is waiting for a transition on the input signal from low to high or high to low.
When the selected edge of the input signal is detected, an interrupt can be generated.
An output strobe is also generated which can be used as an input to an SPU or to enable
or disable a timer.

13.9. TRIGGER GROUP 533

13.9.1.1 Enable and disable a Trigger

A Trigger can be enabled or disabled by another strobe from e.g. a Timer group. The
Switch selects which strobes should be used as enable and disable signals. Also, one or
more Triggers can be enabled or disabled at the same time using therw cmdregister.

13.9.1.2 Trigger configuration

13.9.1.2.1 Edge detection

The Trigger can detect rising and/or falling edges of an input. It can also be configured
to detect if the input signal is high or low when enabling the Trigger. The configuration
is selected inrw cfg.trig.

Figure13.20shows an example of how two Triggers detect an input. Both triggers
detect rising edges, the second does also generate a strobe if the input is high when the
Trigger is enabled.

Enable trigger

Trigger strobe

Trigger strobe

Input

clk

Figure 13.20:Trigger group, Edge detection

13.9.1.2.2 Output strobe configuration

The output strobe can be configured in four different ways inrw cfg.action:

fall The output will stay high until an edge is detected. When edge detection has
occurred the output will be low. When the trigger is disabled, the output will
once again be high.

rise The output will stay low until an edge is detected. When edge detection has
occurred the output will be high. When the trigger is disabled, the output will
once again be low.

pulse Each time an edge is detected, the output will send a pulse. The pulse has the
length of an I/O Processor system clock cycle.

toggle Each time an edge is detected, the value of the output will toggle.

534 CHAPTER 13. I/O PROCESSOR

A trigger can be configured to automatically disable itself when an edge is detected
(rw cfg.once).

13.9.1.3 Interrupts

Each trigger can generate an interrupt when an edge is detected. The interrupts are
independent of the configuration of the output strobe.

13.10 DMA Communicator In

The DMA Communicator In (DMCin) is the DMA in channel interface of the I/O
Processor. It handles data streams from the I/O Processor to the DMA. The MPU,
SPUs, or the CPU can use the DMCin registers to send commands to the DMA and
update meta data descriptors (data, context or group) for the DMA in channel. The
relation between DMCin and DMA channel numbers is described in10.

DMA Communicator In

Stream interface

Data interface

Register
interface

Figure 13.21:DMA Communicator In, Overview

13.10.1 Functional description

The DMC in receives data either from the register interface or the data interface and
transmits it to the DMA using the stream interface.

The data interface can be disabled (rw ctrl.dif dis), no data will then pass through it.
When the data interface is enabled, the DMCin will send data to the DMA when-
ever there is valid data from the data interface. The DMCin can be configured in
rw cfg.lastdis dif to block the data interface after the last data of the data stream is
received.

The data interface should be disabled before transmitting data from the register inter-
face. It is also possible to read the status of the stream interface, updating meta data
in the descriptors (data, context and group) and setting up the interrupts, by using the
register interface.

DMA commands are sent through the stream interface to the DMA via the DMCin
usingrw streamcmd.

The DMA commands and other DMA functionality is described in5.

13.11. DMA COMMUNICATOR OUT 535

13.10.1.1 Interrupts

The DMC in can generate six interrupts. All interrupts can be masked and cleared
usingrw intr maskandrw ack intr. The interrupts and their meanings are:

1. Command ready interrupt (cmd rdy)

The interrupt is generated when the DMA is ready to receive a command.

2. Group meta data interrupt (groupmd)

The interrupt is generated when meta data of the group descriptor is valid.

3. Context meta data interrupt (ctxt md)

The interrupt is generated when meta data of the context descriptor is valid.

4. Data meta data interrupt (datamd)

The interrupt is generated when meta data of the data descriptor is valid.

5. Threshold interrupt (sth)

Generates an interrupt if the number of free bytes in the DMA is equal or larger
than the specified number inrw cfg.sth intr.

6. DMA full interrupt (full)

The interrupt is generated when the DMA FIFO becomes full.

13.11 DMA Communicator Out

The DMA Communicator Out (DMCout) is the DMA out channel interface of the I/O
Processor. It handles data streams from the DMA to the I/O Processor. The MPU,
SPUs, or the CPU can use the DMCout registers to send commands to the DMA and
update meta data descriptors (data, context or group) for the DMA out channel. The
relation between DMCout and DMA channel numbers is described in10.

DMA Communicator Out

Stream interface

Data interface

Register
interface

Figure 13.22:DMA Communicator Out, Overview

13.11.1 Functional description

The DMC out receives data from the DMA using the stream interface and the data
stream can be output using either the data interface or the register interface.

536 CHAPTER 13. I/O PROCESSOR

The data interface can be disabled (rw ctrl.dif dis), no data will then pass through it.
When the data interface is enabled, it will send data whenever there is valid data from
the stream interface. There is also an option to disable the data interface after DMCout
has transmitted a number of transfers, specified byrw cfg.trf lim.

The data interface should be disabled before receiving data to the register interface.
It is also possible to read the status of the stream interface, updating meta data in the
descriptors (data, context and group) and setting up the interrupts, by using the register
interface.

DMA commands are sent through the stream interface to the DMA via the DMCout
usingrw streamcmd.

The DMA commands and other DMA functionality is described in5.

13.11.1.1 Interrupts

The DMC out can generate nine interrupts. All interrupts can be masked and cleared
usingrw intr maskandrw ack intr. The interrupts and their meanings are:

1. Command request interrupt (cmd rq)

The interrupt is generated when the DMA is waiting for a command.

2. Transfer limit interrupt (trf lim)

The interrupt is generated when the DMCout automatically disables the data in-
terface after counting a specified number of transfers, configured inrw cfg.trf lim.

3. Command ready interrupt (cmd rdy)

The interrupt is generated when the DMA is ready to receive a command.

4. Group meta data interrupt (groupmd)

The interrupt is generated when meta data of the group descriptor is valid.

5. Context meta data interrupt (ctxt md)

The interrupt is generated when meta data of the context descriptor is valid.

6. Data meta data interrupt (datamd)

The interrupt is generated when meta data of the data descriptor is valid.

7. Data threshold interrupt (dth)

The interrupt is generated if the number of bytes buffered in the DMA is equal
or larger than the specified number inrw cfg.dth intr. The interrupt is also gen-
erated if all data in the packet has been read from memory and it is available for
immediate reading on the streaming interface.

8. Last data interrupt (last data)

The interrupt is generated if data from the streaming interface is the last of the
data stream.

9. Data valid interrupt (dv)

The interrupt is generated if data from the streaming interface is valid.

13.12. FIFO 537

13.12 FIFO

The FIFO is used to provide an additional data buffer. The rate at which data is written
and read is controlled by two strobes, so data is read and written at some individually
predetermined rate, set either by an external unit or by an internal unit such as a timer.
In addition to this, the width of the data paths towards the I/O buses of the I/O Processor
can be changed, from the standard 32-bit width, to 24, 16 or eight bit wide.

FIFO

Data interface (DIF - OUT)

Data interface (DIF - IN)

Register interface
(general)

Register interface (xtra)

Figure 13.23:FIFO, Overview

13.12.1 Functional description

The FIFO is 8 bytes deep. The access mechanisms available to the FIFO varies between
the input and output FIFO.

Access
Mechanism

In FIFO Out FIFO

Writing data
through DIF-IN.

Supported (data arrives from I/O
Processor input bus 0 or 1).

Supported (data arrives from DMC-out).

Writing data
through the
general register
interface.

Not supported by the in FIFO. Supported through:rw wr1byte,
rw wr2byte, rw wr3byte, andrw wr4byte.

Writing data
through the xtra
register inter
face.

Supported through the
iop fifo in extra.rwwr dataregister. The
amount of data written depends on how
the in FIFO is configured. Eg. in 8 bit
mode 1 byte is written and in 16 bit mode
2 bytes are written and so on.

Not supported.

Reading data
through the
general register
interface.

Supported through:rs rd1byte, rs rd2byte,
rs rd3byte, andrs rd4byte.

Not supported.

Reading data
through the xtra
register
interface.

Not supported. Supported through ther rd dataregister.
The number of bytes read depends on how
the out FIFO is configured. Eg. in 8 bit
mode 1 byte is read and in 16 bit mode 2
bytes are read and so on.

Reading data
through
DIF-OUT.

Data is read through DIF-OUT by the
DMC. The bus-width and strobe signals
are controlled entirely by hardware.

Data is read by using an external strobe
source (such as a general I/O or timer), or
by using therw strb dif out register.

Table 13.61:FIFO, Access mechanisms and their relations to the in and out FIF Os

It is not possible to read or write data from two sources at the same time, e.g., writ-

538 CHAPTER 13. I/O PROCESSOR

ing through any register interface at the same time as the DIF-IN is active will write
corrupted data to the FIFO.

The FIFO has a mechanism for marking packet boundaries. Each byte in the FIFO can
be marked with a flag, thelast flag. Thelast flag keeps track of the last byte in a
packet, and can be configured to signal an interrupt when the last byte occurs. Marking
a byte differs slightly between the two types of FIFOs. The following methods are
available:

1. Thelast flag can be set through DIF-IN. This differs between the two types of
FIFOs according to the following:

· In the output FIFO: only DMC out can set thelast flag through the DIF-IN

· In the input FIFO:last can be set by an SPU, timer, or an external signal

2. The last flag can be set through the register interface by writing one of the
following registers:

· In the output FIFO:rw wr1byte last, rw wr2byte last, rw wr3byte last,
rw wr4byte last. For further information regarding these registers, please
see25.18

· In the input FIFO: Thelast can be set by writing to the registerrw set last
(available only in25.19) or rw strb dif in, which is available in both25.19
and25.21

13.12.1.1 The FIFO byte order

The FIFO has four different byte orders. The byte order is configured by writing to the
byte orderfield, in therw cfg register. In this text, the highest byte (bits 31 through 24)
will be called ”3”, the next highest byte (bits 23 through 16) will be called ”2” etc. The
FIFO can be configured to reorder the four bytes individually. There are four different
possibilities:

1. 8-bit order. This is the default byte order, data is not reordered at all (i.e., 3 2 1 0
-> 3 2 1 0).

2. 16-bit order. The two bytes of each word of incoming data will be reordered.
The result in the FIFO will be (3 2 1 0 -> 2 3 0 1).

3. 24-bit order. Only the lower three bytes of incoming data will be reordered, thus
the result will be (3 2 1 0 -> 3 0 1 2).

4. 32-bit order. In 32-bit order all the 32 bits are reordered. The result is (3 2 1 0
-> 0 1 2 3).

The byte ordering mechanism is independent of the configured width of the FIFO out-
put bus (see the section describing the FIFO output bus mode). When turned on, any
bytes written will be reordered bytes as described above regardless of the width of the
output bus. Care should be taken when using this mechanism with protocols less than
32 bits wide, as unused (and thus undefined) data can be swapped with payload data.
See the figure13.24below.

13.12. FIFO 539

Byte ordering mechanism

Example data:
General register if

FIFO output bus
(DIF - OUT) (variable in width)

FIFO memory

xtra register if

Incoming data
(DIF - IN)

(3 2 1 0) (Note 1)

(2 3 0 1) (Note 2)

Data entering the byte ordering mechanism of the FIFO is in this order.Note 1:

The order of the data the FIFO is able to access.Note 2:

Figure 13.24:FIFO, Byte ordering mechanism

13.12.1.2 FIFO Output bus mode

The width of the output bus (DIF-OUT) can be configured by accessing themode
field in therw cfg register. The FIFO (and thus the width of the output bus) can be
configured to operate in one of the following modes:

· 32-bit mode

· 24-bit mode

· 16-bit mode

· 8-bit mode

The width of the input bus is not affected by the configured FIFO output bus mode.
The table below shows the implications of the byte ordering mechanism with respect
to the various FIFO output bus modes:

Mode Description

32-bit Any byte ordering can be used.

24-bit It is only possible to read or write 24 bits at a time. Set the byte
ordering mechanism to either 8-bit or 24-bit order.

16-bit Use any byte order setting when writing 4 bytes at a time. If less than
4 bytes are written at any time, the byte ordering mechanism should
be set to 8-bit order.

8-bit Set the byte ordering mechanism to 8-bit order.

Table 13.62:FIFO, Output bus modes and byte ordering mechanism

13.12.1.3 Software interface

Interfacing the FIFO from software can be done using two different interfaces:

1. General Register interface: This interface is mapped to the primary owner through
the switch. The interface is used to configure the FIFO, and is also used for
writing or reading data to or from the FIFO. For further details regarding the
functionality available through this interface, please refer to [FIFOREGS].

2. The xtra register interface: The xtra-interface allows data to be read/written di-
rectly by a secondary owner. No other operations can be performed by this inter-
face. For further details regarding the functionality, please refer to [FIFOXTRA REGS].

540 CHAPTER 13. I/O PROCESSOR

13.12.1.4 Interrupts

Interrupts are generated by five different sources. Each interrupt has a mask bit in the
interrupt mask register allowing the interrupt to be turned on or off. The five interrupt
sources are:

1. Underrun interrupt (urun)

The underrun interrupt is generated if the reader reads data faster than it can be
written to the FIFO. The interrupt is generated when a read operation is detected
while the FIFO is empty. This interrupt is generated by both types of FIFOs (i.e.,
input and output).

2. Free interrupt (free)

The free interrupt is generated when the free space in the FIFO is equal to or
greater than a predefined limit set inrw cfg.freelim. This interrupt is an indica-
tion to a possible writer that it is possible to write data to the FIFO. This interrupt
is generated by the output FIFO only.

3. Data available interrupt (dav)

The data available interrupt is generated as soon as data becomes available in the
FIFO. This interrupt is generated as soon as payload data is available in either
type of FIFO (i.e., input and output).

4. Last interrupt (last data)

The last interrupt is generated if thelast flag is set when writing the FIFO or
when thelast is set by an external controller. The interrupt is generated by both
types of FIFOs (i.e., input and output).

5. Overrun interrupt (orun)

The overrun interrupt is generated when a write attempt will cause yet unread
data to be overwritten. This can never happen when the FIFO is written by
the DIF-IN. This interrupt is generated by both types of FIFOs (i.e., input and
output).

6. Available interrupt (avail)

The available interrupt is generated in the input FIFO when the number of bytes
in the input FIFO is greater than or equal to the value specified by theavail lim
field. This interrupt is only generated by the input FIFO.

13.13 Parallel CRC

The parallel CRC module can either check the CRC for the received data or calculate
and transmit CRC when transmitting data. There are a couple of predefined generator
polynomials which can be used.

13.13. PARALLEL CRC 541

Parallel CRC

Register interface

Data interface
transmit (out)

Data interface
receive (in)

Data interface
transmit (in)

Data interface
receive (out)

CALCULATE CHECK

Note: It is not possible to calculate and check CRC at the same time.

Figure 13.25:Parallel CRC, Overview

13.13.1 Functional description

The CRC module should be configured with the desired CRC polynomial. The CRC
calculation is performed on the incoming data from either the transmitting interface or
the receiving interface or from the register interface.

The parallel CRC module is disabled by default i.e.,rw ctrl.en is set tono. When
disabled, the incoming data will be sent out unchanged and the shift register will keep
its value. When the CRC module is enabled it must be configured to handle either data
from the received data interface or from the transmit data interface.

13.13.1.1 Data interfaces

There are five different data interfaces in the parallel CRC module. Two are used when
transmitting data (calculating CRC), the third and fourth interface are used when re-
ceiving data (checking CRC) and the last interface is the register interface which can be
used either when calculating or checking data depending on the value ofrw cfg.mode.
The five interfaces have all one to four bytes of data together with a strobe. Each
interface has also a status bit which tells if the data bytes are the last of the packet.

The data in the receive data interface (in) can be sampled by the CRC module on the
rising or falling edge of the strobe, which is configured inrw cfg.trig. A second way
of strobing data on the receive data interface is throughrw strb rec dif in.

The rw wr1byte, rw wr2byte, rw wr3byteor rw wr4byte register can be used when
writing data to the CRC module through the register interface. If the data should be
marked as last,rw wr1byte last, rw wr2byte last, rw wr3byte lastor rw wr4byte last
should be used instead. The data written to the registers will be output on the re-
ceive data interface (out) or transmit data interface (out), depending on the value of
rw cfg.mode. A zero-sized word marked as the last of the packet can be sent with
rw set last.

The CRC module calculates or checks CRC on only one data byte each clock cycle. For
example, if four bytes of data enter the data transmit (in) interface while in calculate
mode, no more data can enter that interface until those four bytes of data are calculated

542 CHAPTER 13. I/O PROCESSOR

(i.e., after four clock cycles). But data can still pass through the receive data interface.
The same is also true in check mode when data enters the data receive (in) interface. If
four bytes of data go into this interface of the CRC, no more data can enter until those
four bytes are checked. But data can still pass through the CRC through the transmit
data interface.

The r stat.busyfield should be read before writing data through the register interface
to the CRC module. If the CRC module is busy calculating or checking the CRC,
r stat.busywill be set toyes, which means that data must not be written to the CRC
through the register interface.

13.13.1.2 CRC Configuration

The initial shift register value (the value which is input to the shift register when reset
or after the last byte of the data stream was received) is configurable inrw init crc. The
CRC polynomial is selected inrw cfg.polyand can be one of the following:

crc32 p(x)=x 32+x26+x23+x22+x16+x12+x11+x10+x8+x7+x5+x4+x2+x+1

crc16 p(x)=x 16+x15+x2+1

ccitt p(x)=x 16+x12+x5+1

crc5 p(x)=x 5+x2+1

The current value of the CRC shift register is stored inr sh reg. The value ofr sh reg
can have its bits inverted (rw cfg.inv out) and the bit order can be reversed (rw cfg.rev out).
The result is the calculated CRC which is stored inr crc.

A data packet which is to be transmitted can have the value ofr crc appended at the
end of the packet. This is configured inrw cfg.crc out.

13.13.1.3 Error detection

When receiving data from the bus, the value of the shift register,r sh reg, is compared
with the value of a configurable register,rw correctcrc. If the registers are not equal,
a flag is raised in the status register (r stat.err). There is also a signal which is asserted
when the values are the same. The signal can be used as an input to the Slave Processing
Unit (iop spu.rstat in.pcrc correct).

13.14 Serial CRC In

CRC can be computed for the incoming serial bits and if the value does not match a
predefined value a status flag is raised. The CRC generator can be any polynomial with
a length up to 32.

13.15. SERIAL CRC OUT 543

Register
interface

Data interface

Serial CRC in

Figure 13.26:Serial CRC In, Overview

13.14.1 Functional description

The data bits which the CRC should be calculated on, are received from the data in-
terface or written to the serial CRC block inrw wr1bit. The value of the CRC shift
register can be read out at any time fromr computedcrc.

13.14.1.1 Configuration

The CRC generator polynomial is selected inrw crc and the initial value of the CRC
shift register is written torw init crc. The shift register is updated either when a value
is written torw wr1bit or when receiving a strobe from e.g. a Timer. Which source is
used as the strobe is selected in the Switch.

After data marked as the last of the packet is received, the value ofrw init crc will be
used for calculating CRC of the next data bit.

13.14.1.2 CRC Validation

The correct CRC is stored inrw correctcrc. When the value ofr computedcrc is not
equal the correct CRC, the status bit inr stat.erris raised. The value ofr stat.erris
updated for each new data bit.

13.15 Serial CRC Out

CRC can be computed for the outgoing serial bits and appended at the end of the data
stream. The CRC generator can be any polynomial with a length up to 32.

Register
interface

Data interface

Serial CRC out

Figure 13.27:Serial CRC Out, Overview

13.15.1 Functional description

The data bits which the CRC should be calculated on, are written to the serial CRC
block in rw data.val. The value of the CRC shift register can be read out at any time

544 CHAPTER 13. I/O PROCESSOR

from r computedcrc.

13.15.1.1 Configuration

The CRC generator polynomial is selected inrw crc and the initial value of the CRC
shift register is written torw init crc. The shift register is updated either when a value
is written torw dataor when receiving a strobe from e.g. a Timer. Which source is
used as the strobe is selected in the Switch.

13.15.1.2 Data interface

Whenrw ctrl.out src is set to output data, the value ofrw datawill be output on the
serial data interface.

When rw ctrl.out src is set to output CRC, a CRC bit will be output on the serial
data interface. The next CRC bit is transmitted when a strobe is received on the data
interface or when writing torw data. In this case it does not matter if it is a zero or a
one written toval since the value is never used.

13.16 Synchronization and Asynchronous Paths

The Synchronization and Asynchronous Paths (SAP) module is divided into two parts,
SAP in and SAPout. Both of these modules are controlled by registers and have their
own register banks. Like other modules in the I/O Processor the SAPin and SAPout
register banks can be owned by one of CPU/MPU/SPU0/SPU1, where CPU is the
default user. See25.23and25.24for a complete listing and explanation of the registers.

The SAPin module handles synchronization of I/O signals going into the I/O Proces-
sor, adapting them to the I/O Processor 200 MHz clock.

The SAPout module controls output clocking of I/O signals (including output enables,
OE) from the I/O Processor.

In ETRAX FS there are 72 bidirectional pins connected to the I/O Processor. The I/O
Processor uses these 72 pins to form three internal buses, refer to section13.7.1.4for
more information. The three internal buses are:

· Two 32 bit wide buses with one OE per byte.

· One 32 bit wide GIO bus with one OE per bit.

13.16.1 SAP in Functional description

The SAPin module handles synchronization of buses and GIO inputs to the I/O Pro-
cessor. See figure13.28below.

13.16. SYNCHRONIZATION AND ASYNCHRONOUS PATHS 545

io_in[71:0]
(from pads)

Switch

Route these
buses and GIO
to I/O Processor
modules

in_bus0 [31:0]

in_bus1 [31:0]

in_gio [31:0]

GIO_in [31:0]

BUS1_in [31:0]

BUS0_in [31:0]

Synchronization
stage

Optional
5ns delay

Logic
stage

Take io_in input
and create
I/O Processor
internal buses
and GIO

SAP_in

Figure 13.28:SAPin, Overview

13.16.1.1 Buses (in), synchronization

Each bus is divided into four parts, one per byte. The configuration of input synchro-
nization is done using therw bus0syncandrw bus1syncregisters. Each byte of the
bus is configured using four register fields. In the following sub-sections the register
fields are described.

13.16.1.1.1 byte0 sel ... byte3sel

These register fields are used to select input synchronization type. Each byte can be
synchronized with four different methods.

1. two clk200

Delay for this configuration is 2.5 - 7.5 ns. See figure13.29.

clk_200

in_bus0
in_bus1

in_gio

BUS0
BUS1
GIO

D Q D Q

Figure 13.29:SAPin, Synchronization method twoclk 200

2. tmr clk200

546 CHAPTER 13. I/O PROCESSOR

Delay for this configuration is 2.5 - 7.5 ns. See figure13.30.

ext_src

in_bus0
in_bus1

in_gio

Timers

BUS0
BUS1
GIO

clk_200

D Q D Q

Figure 13.30:SAPin, Synchronization method timerclk 200

3. ext clk200

Delay for this configuration is 2.5 - 7.5 ns (relative to the strobe). See figure
13.31.

ext clk200can handle input synchronization width zero hold time since data is
delayed to assure strobe to arrive before data.

ext_src

in_bus0
in_bus1

in_gio

in_gio

BUS0
BUS1
GIO

clk_200

D Q

3 ns delay

D Q

D Q

Edge
selection logicedge

D Q

Figure 13.31:SAPin, Synchronization method extclk 200

4. no del ext clk200

Delay for this configuration is 2.5 - 7.5 ns. See figure13.32.

no del ext clk200is used for protocols with short data setup time.

ext_src

in_bus0
in_bus1

in_gio

in_gio

BUS0
BUS1
GIO

clk_200

D QD Q

D Q

Edge
selection logicedge

D Q

Figure 13.32:SAPin, Synchronization method nodel ext clk 200

13.16.1.1.2 byte0 ext src ... byte3ext src

Used to specify which GIO (used byext clk200or no del ext clk200) or which Timer
(used bytmr clk200) to use as input synchronization strobe.

13.16. SYNCHRONIZATION AND ASYNCHRONOUS PATHS 547

The different GIO (not synchronized) which can be used as strobe are: gio1, gio6, gio7,
gio18, gio19, gio23.

The different Timers which can be used are: timergrp0 tmr3, timergrp3 tmr3.

13.16.1.1.3 byte0 edge ... byte3edge

These register fields are used to select which edge of the GIO (selected bybyte0ext src
... byte3ext src) to use as strobe.

13.16.1.1.4 byte0 delay ... byte3delay

These register fields are used to add a extra delay of 5 ns to the synchronized byte. See
figure13.33.

clk_200
byte0_delay ... byte3_delay

BUS0_in (to Switch)
BUS1_in (to Switch)

BUS0
BUS1

D Q

Figure 13.33:SAPin, BUS delay stage

13.16.1.2 GIO:s (in)

13.16.1.2.1 Synchronization

The 32 GIO:s have the same configuration options as the two buses, see section13.16.1.1.
The configuration of each GIO is done through the vector registerrw gio.

Each GIO bit can be synchronized using the same method as for the buses, described
in previous sections.

The different GIO (not synchronized) which can be used as strobe are: gio1, gio5, gio6,
gio7, gio13, gio18, gio21, gio29.

The different timers which can be used are: timergrp0 tmr3, timergrp1 tmr3, timergrp2 tmr3,
timer grp3 tmr3.

The delay option, delaying the signal 5 ns (using fielddelay), is performed after the
logic stage, see figure13.34.

13.16.1.2.2 Logic stage

After the synchronization of the GIO signals they pass a logic stage as shown in figure
13.34below. The logic to perform is selected by therw gio.logicregister field.

548 CHAPTER 13. I/O PROCESSOR

GIO[a] and GIO[a+1] are the synchronized GIO (but before delay is added by using
thedelayregister field).

GIO[a]

GIO[a+1]

rw_gio.logic

Note: For a=31, a+1 equals 0.

clk_200
rw_gio.delay

GIO_in[a] (to Switch)

D Q

Figure 13.34:SAPin, GIO logic stage

13.16.2 SAP out Functional description

The SAPout module selects different clocks for strobing out I/O signals and OE:s. See
figure13.35.

io_out [71:0]
(to pads)

SAP_out

Switch

Create
I/O Processor
I/O outputs and
oputput enables

out_bus0 [31:0]

out_bus1 [31:0]

out_gio [31:0]

BUS0_oe [3:0]

BUS1_oe [31:0]

GIO_oe [31:0]

bus0_oe [3:0]

bus1_oe [3:0]

gio_oe [31:0]

GIO_out [31:0]

BUS1_out [31:0]

BUS0_out [31:0]

io_oe [71:0]
(to pads)

Create
I/O Processor
internal buses
and GIO.
Also, set/clear
registers for xPU

in_gio (used as gated clock)

sync_gated_clock [3:0]

Figure 13.35:SAPout, Overview

13.16. SYNCHRONIZATION AND ASYNCHRONOUS PATHS 549

13.16.2.1 Gated clocks

Four gated clocks are specified/generated by using therw gengatedregister. A gated
clock can be used to clock out buses, GIO and output enable signals. Figure13.36
shows how gated clock 0 is generated, but all four gated clocks are generated in the
same way.

A synchronized version of the gated clock is generated using two 200 MHz flip-flops
(the first one on negedge), yielding a delay of 2.5 - 7.5 ns. These synchronized gated
clocks, syncgatedclock[3:0], can be used as strobes in the parallel data paths of the
I/O Processor.

Each gated clock uses three different fields in therw gengatedregister, see figure
13.36.

1. clk0 src... clk3 src

Selects an asynchronous GIO (taken before SAPin) to use as a gated clock.

The different asynchronous GIO which can be used as clock are:

gio1, gio5, gio13, gio18

2. clk0 gatesrc... clk3 gatesrc

Selects an asynchronous GIO (taken before SAPin) to use as a gate signal to the
clock selected by clksrc.

The different asynchronous GIO which can be used as gate signal are:

gio7, gio15, gio23, gio31

3. clk0 force src... clk3 force src

Selects an SPU gioout signal to be used to force the gate signal to one.

The different SPU gioout signals which can be used to force the gate signal are:

none, SPU0gio6, SPU0gio7, SPU0gio15, SPU1gio6, SPU1gio7, SPU1gio15

SPU gio_out

in_gio

clk0_force_src

clk0_gate_src

clk0_src

in_gio

gated_clock[0]La
tc

h

Figure 13.36:SAPout, Generating gated clock 0

550 CHAPTER 13. I/O PROCESSOR

13.16.2.2 Buses (out)

As for the SAPin module each bus is divided into four parts (one for each byte). For
controlling output clocking behavior of buses the registersrw bus0andrw bus1are
used. There are three fields for each byte of a bus. Each byte of a bus can be configured
to be clocked out. See figure13.37(figure shows byte 0 of BUS0).

out_bus0[7:0]

clk_200

gated_clk

BUS0_out [7:0] (to Switch)

byte0_clk_inv
byte_clk_sel

D Q

D Q

Figure 13.37:SAPout, Bus out synchronization, byte0 of BUS0

In the following sub-sections detailed description is given on the fields of the bus syn-
chronization registers,rw bus0andrw bus1. As for SAPin there are fields for each
byte.

13.16.2.2.1 byte0 clk sel ... byte3clk sel

These register fields are used to select output clocking type. Each byte can be clocked
out in three different ways:

· none

No output clocking. Signals do not pass any extra flip-flops.

· clk200

One 200 MHz flip-flop is used.

· gated

One flip-flop clocked by a generated gated clock, selected bybyte0gatedclk ...
byte3gatedclk. The selected gated clock can be inverted usingbyte0clk inv ...
byte3clk inv.

13.16.2.2.2 byte0 gated clk ... byte3 gated clk

Register fields used to select one of the four generated gated clocks, see section13.16.2.1.
Only used whenbyte0clk sel... byte3clk selis set togated.

13.16.2.2.3 byte0 clk inv ... byte3 clk inv

Thebyte0clk inv ... byte3clk inv fields give the opportunity to invert the gated clock.
This enables output clocking on negative clock edge. Only used whenbyte0clk sel...

13.16. SYNCHRONIZATION AND ASYNCHRONOUS PATHS 551

byte3clk selis set togated.

13.16.2.3 Bus output enables

There is one output enable for each byte of a bus. The configuration of the bus OE:s
are done through the following registers:

· rw bus0lo oe

Selects OE configuration of byte 0 and 1 of BUS0.

· rw bus0hi oe

Selects OE configuration of byte 2 and 3 of BUS0.

· rw bus1lo oe

Selects OE configuration of byte 0 and 1 of BUS1.

· rw bus1hi oe

Selects OE configuration of byte 2 and 3 of BUS1.

The output enable signal for each byte of a bus can be configured as shown in figure
13.38(figure shows OE for byte 0, BUS0).

bus0_oe[0]

clk_200

sap_bus0_oe[0]

clk_12

gated_clk

in_gio

byte0_clk_inv

byte0_gated_clk

byte0_clk_ext

byte0_clk_sel

D Q

D Q

D Q

D Q

Logic
stage BUS0_oe[0] (to Switch)

Figure 13.38:SAPout, Bus output enable configuration, byte 0 of BUS0

In the following sub-sections detailed description is given on the fields of the bus syn-
chronization registers,rw bus0hi oe, rw bus0lo oe, rw bus1hi oeandrw bus1lo oe.

552 CHAPTER 13. I/O PROCESSOR

13.16.2.3.1 byte0 clk sel ... byte3clk sel

These register fields are used to select output clocking type. Each OE can be clocked
out in five different ways:

1. none

No output clocking. Signals do not pass any extra flip-flops.

2. clk200

One 200 MHz flip-flop is used.

3. clk12

One 12 MHz flip-flop is used. The 12 MHz clock can be inverted using the
byte0clk inv ... byte3clk inv field.

4. gated

One flip-flop clocked by a generated gated clock, selected bybyte0gatedclk ...
byte3gatedclk. The selected gated clock can be inverted usingbyte0clk inv ...
byte3clk inv.

5. ext

One flip-flop clocked by an external (asynchronous) signal selected bybyte0clk ext
... byte3clk ext. The extclk can be inverted usingbyte0clk inv ... byte3clk inv.

13.16.2.3.2 byte0 clk ext ... byte3clk ext

Register field to select an asynchronous GIO (taken before SAPin) to use as external
clock. Only used whenbyte0clk sel... byte3clk selis set toext.

The different asynchronous GIO which can be used as clock are:

gio5, gio13, gio21, gio29

13.16.2.3.3 byte0 gated clk ... byte3 gated clk

Register field used to select one of the four generated gated clocks. Only used when
byte0clk sel... byte3clk selis set togated.

13.16.2.3.4 byte0 clk inv ... byte3 clk inv

The byte0clk inv ... byte3clk inv fields give the opportunity to invert the 12 MHz,
external or gated clock. This enables output clocking on negative clock edge. Only
used whenbyte0clk sel... byte3clk selis set toclk12, extor gated.

13.16. SYNCHRONIZATION AND ASYNCHRONOUS PATHS 553

13.16.2.3.5 byte0 logic ... byte3logic

These registers configure the logic stage for each OE signal. See figure13.39(figure
shows OE for byte 0 of BUS0). The outgio which can be used to mask the output
enable signal is outgio[4] for BUS0 and outgio[0] for BUS1.

sap_bus0_oe[0]

out_gio[4]

BUS0_oe[0] (to Switch)

byte0_logic

Figure 13.39:SAPout, Bus output enable logic stage, byte 0 of BUS0

13.16.2.4 GIO:s (out)

Each bit of the 32 bit wide GIOout can have its own output clocking configuration.
The vector registerrw gio contains ten fields where five of them are used for GIO
and the other five are used for output enable (OE) of each GIO. The GIO out signal
can be configured to be clocked out according to figure See figure13.40(figure shows
GIO[0]).

In the following sub-sections the register fields of therw gio register which are used to
select output clocking of GIO are described.

13.16.2.4.1 out clk sel

This register field is used to select output clocking type. Each GIO can be clocked out
in six different ways:

1. none

No output clocking. Signals do not pass any extra flip-flops.

2. clk200

One 200 MHz flip-flop is used.

3. tmr

One flip-flop clocked by a 200 MHz clock. Data to the flip-flop is only changed
when the timer signal, selected by theout clk ext field, is active.

554 CHAPTER 13. I/O PROCESSOR

out_gio[0]

clk_200

GIO_out[0] (to Switch)
Timers

clk_12

gated_clk

in_gio

out_clk_inv

out_logic

out_gated_clk

out_clk_ext

out_clk_ext

out_clk_sel

D Q

D Q

D Q

D Q

D Q

Figure 13.40:SAPout, GIO out synchronization, GIOout 0

4. clk12

One 12 MHz flip-flop is used. The 12 MHz clock can be inverted using the
out clk inv field.

5. gated

One flip-flop clocked by a generated gated clock, selected by theout gatedclk
field. The selected gated clock can be inverted by theout clk inv field.

6. ext

One flip-flop clocked by an external (asynchronous) signal selected by field
out clk ext. The extclk can be inverted by theout clk inv field.

13.16.2.4.2 out clk ext

Register field to select an asynchronous GIO (taken before SAPin) to use as an external
clock or to select a timer. Only used whenout clk selis set toextor tmr.

The different asynchronous GIO which can be used as clock are:

gio1, gio5, gio6, gio7, gio13, gio18, gio21, gio29

The different timers that can be used are:

timer grp0 timer[2], timer grp1 timer[2], timer grp2 timer[2], timer grp3 timer[2]

13.16. SYNCHRONIZATION AND ASYNCHRONOUS PATHS 555

13.16.2.4.3 out gated clk

Register field used to select one of the four generated gated clocks, see13.16.2.1. Only
used whenout clk selis set togated.

13.16.2.4.4 out clk inv

The out clk inv field gives the opportunity to invert the 12 MHz, external or gated
clock. This enables output clocking on negative clock edge. Only used whenout clk sel
is set toclk12, extor gated.

13.16.2.4.5 out logic

Selects if the signal will be inverted or not.

13.16.2.5 GIO output enables

There is one output enable for each GIO out signal. As for the GIO out signals the OE:s
are controlled by therw gio vector registers. Each GIO OE signal can be configured
according to figure13.41(figure shows GIOoe[0]).

gio_oe[0]

clk_200

clk_12

gated_clk

in_gio

oe_clk_inv

oe_gated_clk

oe_clk_ext

oe_clk_sel

D Q

D Q

D Q

D Q

sap_gio_oe[0] Logic
stage GIO_oe[0] (to Switch)

Figure 13.41:SAPout, GIO output enable configuration, GIOoe 0

In the following sub-sections the register fields of therw gio register which are used to
select output clocking of the GIO OE:s are described.

556 CHAPTER 13. I/O PROCESSOR

13.16.2.5.1 oe clk sel

This register field is used to select output clocking type. Each OE can be clocked out
in five different ways:

1. none

No output clocking. Signals do not pass any extra flip-flops.

2. clk200

One 200 MHz flip-flop is used.

3. clk12

One 12 MHz flip-flop is used. The 12 MHz clock can be inverted by theoe clk inv
field.

4. gated

One flip-flop clocked by a generated gated clock, selected byoe gatedclk. The
selected gated clock can be inverted by theoe clk inv field.

5. ext

One flip-flop clocked by an external (asynchronous) signal selected byoe clk ext.
The extclk can be inverted by theoe clk inv field.

13.16.2.5.2 oe clk ext

Register field to select an asynchronous GIO (taken before SAPin) to use as external
clock. Only used whenoe clk selis set toext.

The different asynchronous GIO which can be used as clock are:

gio5, gio13, gio21, gio29

13.16.2.5.3 oe gated clk

Register field used to select one of the four generated gated clocks, see13.16.2.1. Only
used whenoe clk selis set togated.

13.16.2.5.4 oe clk inv

Theoe clk inv field gives the opportunity to invert the 12 MHz, external or gated clock.
This enables output clocking on negative clock edge. Only used whenoe clk selis set
to clk12, extor gated.

13.16. SYNCHRONIZATION AND ASYNCHRONOUS PATHS 557

sap_gio_oe[X]

out_gio[a]

GIO_oe[X] (to Switch)

rw_gio.oe_logic

Figure 13.42:SAPout, GIO output enable logic stage

13.16.2.5.5 oe logic

Configures the logic stage for the OE. The OE can be inverted, and:ed or nand:ed. See
figure13.42.

Where X and a can be read from the following table:

X a

31:28 4

27:24 0

23:16 4

15:8 0

7:5 4

4:1 0

0 4

558 CHAPTER 13. I/O PROCESSOR

Chapter 14

Memory Arbiter

14.1 References

Reference Description

[CMB] The Cache Memory Book, second edition, Jim Handy,
Academic Press 1998, ISBN 0-12-322980-4

[REGS] Memory arbiter registers

[MACROS] Register macros for C programming

[REGSBP] Memory arbiter breakpoint registers

[MACROS BP] Breakpoint register macros for C programming

Table 14.1:References

14.2 Definitions

Term Description

Client An entity that requests access to memory such as a
CPU or a DMA channel

Arbiter A unit that sequences conflicting accesses to a memory
according to some arbitration scheme

Memory Crossbar The crossbar that routes accesses from clients to the
requested memory

Table 14.2:Definitions

14.3 Overview

The memory arbiter crossbar gives multiple Clients access to multiple memories and
supplies cache coherence using the MESI protocol.

The memory arbiter also implements address breakpoints. These breakpoints may be
used to debug e.g. DMA behavior.

559

560 CHAPTER 14. MEMORY ARBITER

The clients are:

dma0 DMA channel 0

dma1 DMA channel 1

dma2 DMA channel 2

dma3 DMA channel 3

dma4 DMA channel 4

dma5 DMA channel 5

dma6 DMA channel 6

dma7 DMA channel 7

dma8 DMA channel 8

dma9 DMA channel 9

cpui CPU instruction cache

cpud CPU data cache

iop I/O processor

slave External memory bus slave mode

The memories are:

int Internal 128KB RAM and 8KB ROM

ext External memory

regs Mode registers

14.4 Functional description

14.4.1 Memory arbitration scheme

The order in which client requests to access a specific memory are processed is decided
by a memory arbitration scheme. Here a slot allocation based arbitration scheme is
used. This means that the arbiter for each memory has a vector of slot owners, i.e. each
slot is owned by a specific client. The arbiter state is the current position in this vector.
The position is moved one step for each access made. In each state (or slot), the owner
of the slot has the right to access the memory if it wants to. If a client does not use
its slot, another client that wants to access the memory is chosen using a fixed priority
scheme where ”client 0” has highest priority. The allocation vector is programmable to
enable allocation of different bandwidths to different clients. For example,an allocation
vector looking like this:

0 1 2 1 3 1 0 1 2 1 3 1 0 ...

allocates half the bandwidth to client 1, and 1/6 of the bandwidth to each of clients 0,
2 and 3. In other words, client 1 has the highest priority in every other slot while the
other clients have the highest priority in every 6 slots.

The client numbers for the different clients, and the sizes of the allocation vectors can
be found in [REGS].

14.4. FUNCTIONAL DESCRIPTION 561

14.4.2 Cache coherence

A mechanism making sure that all accesses to memory read or write the proper data in
the presence of one or more caches is called a cache coherence protocol. The protocol
used here is called MESI. More information about this can be found in e.g. [CMB].

Normally, this mechanism is invisible and exists for the convenience of the program-
mer. It gives the programmer the illusion of a single shared coherent memory.

14.4.3 Breakpoints

The memory crossbar contains ”global” breakpoints. They are global in the sense that
they may break on accesses to memory performed by any client, CPUs, as well as
DMA controllers. The breakpoints are specified as an address range, a set of access
types (read, write, read exclusive etc), and a set of clients. When a breakpoint triggers,
an interrupt may be generated, and the client triggering the breakpoint may be stopped.
Information about the access causing a breakpoint to trigger is saved and may be read
by the CPU. This entire process is controlled through mode registers.

This process can also be seen in the diagram below. The logic for one breakpoint and
the common logic for interrupts and client stopping is shown:

last_addrfirst_addr op clients options

Access:
addr, size, op Trigger

break_sizebreak_addr break_op break_clients

stopped

stop_mask

int

masked_int

int_mask AND

OR

AND

Figure 14.1:Logic for one beakpoint and interrupts

14.4.3.1 Setting up breakpoints

A breakpoint is set up by specifying the following:

Item Description

562 CHAPTER 14. MEMORY ARBITER

Address range Address range in which the breakpoint shall trigger. This is
specified in the rwfirst addr and rwlast addr registers of each
breakpoint.

Access types Access types on which the breakpoint shall trigger. This is
specified in the rwop register of each breakpoint. The breakpoint
is turned off by specifying no access types.

Clients Clients from which an access triggering the breakpoint may come.
This is specified in the rwclients register of each breakpoint.

Wrap If set the breakpoint will trigger if any of the addresses covered by
an access is greater or equal to rwfirst addr OR less or equal to
rw last addr. If not set the breakpoint will trigger if any of the
addresses covered by an access is greater or equal to rwfirst addr
AND less or equal to rwlast addr.

Table 14.5:Breakpoint Setup

The following table lists shows some setup examples:

Break on first addr last addr wrap op clients

reads to 0x00000000-0x0000fff4
by any client

0x00000000 0x0000fff4 0 rd rd excl usrd
us rd excl

all

any access to 0x0af4ebc3 0x0af4ebc3 0x0af4ebc3 0 all all

any access outside 0x0af4ebc3 0x0af4ebc4 0x0af4ebc2 1 all all

any access by client cli3 0x00000000 0xffffffff 0 all cli3

ordinary writes outside
0x43000000-0x4400000 by
clients cli4-cli7

0x44000001 0x42ffffff 1 wr cli4- cli7

Table 14.6:Breakpoint Setup Examples

14.4.3.2 Breakpoint status

When a breakpoint is triggered, the following status is saved:

Status Item Description

Address Address of the first access triggering the breakpoint. This is saved
in the r brk addr register of each breakpoint.

Size Size of the first access triggering the breakpoint. This is saved in
the r brk size register of each breakpoint.

Access type Access type of the first access triggering the breakpoint. This is
saved in the rbrk op register of each breakpoint.

Clients Clients which have made accesses triggering the breakpoint. This
is saved in the rbrk clients register of each breakpoint.

First Client Client that made the first accesses triggering the breakpoint. This is
saved in the rbrk first client register of each breakpoint.

Table 14.7:Breakpoint Status

14.4.3.3 Acknowledging a breakpoint

When a breakpoint has been triggered, it has to be acknowledged (or reset) to be able
to be triggered on a new access. This can be done in two ways. Either write anything

14.5. SOFTWARE INTERFACE 563

to the breakpoints rwack register, or write to the corresponding bit in the rwack intr
register.

14.4.3.4 Interrupts

When a breakpoint is triggered, an interrupt may be generated. This is controlled by
the interrupt registers of the memory arbiter crossbar.

Enabling and disabling of interrupts for each breakpoint is done in the rwintr mask
register. The rintr register tells which breakpoints have been triggered. The rmaskedintr
register tells which breakpoints are generating interrupts. Interrupts may be acknowl-
edged in rwack intr (or by writing to the rwack register of the corresponding break-
point).

14.4.3.5 Stopping clients

It is possible to stop further accesses from a client that has triggered a breakpoint. This
feature is enabled or disabled in the rwstopmask register. In the rstopped register the
currently stopped clients are listed.

14.4.3.5.1 Writes

When stopping is enabled for a client, the memory access triggering the breakpoint is
not stopped, only the following accesses are stopped. A write triggering the breakpoint
is thus not stopped, and the address written will contain the newly written value and not
the old value as one might have expected. The reason is that stopping the client before
the write has taken effect would degrade memory access performance in general.

14.5 Software interface

The memory arbiter crossbar is configured through a set of registers, see [REGS] and
[REGSBP]. for details. To access the registers, fields and register constants from a C
program, a set of macros is defined in [MACROS] and [MACROSBP].

14.5.1 Allocation of arbitration slots

14.5.1.1 Registers

The arbitration slot owners are programmed by writing to registers in the memory ar-
biter crossbar. Each memory arbiter has its own vector register containing its arbitration
slots. The name of the register is:

rw_<mem-name>_slots

564 CHAPTER 14. MEMORY ARBITER

where<mem-name> is the name of the memory. The default value of the slots register
is 0. In other words, ”client 0” has the right to all slots after reset. For example, the
memory ’ext’ having 64 slots has a vector register named ’rwext slots’ of length 64
for setting the slots. See [REGS] for a detailed description of all registers.

14.5.1.2 Bandwidth versus latency

When specifying the slot allocation vector for a memory, the latency requirements of
each client should be considered. For example, while the following two allocation
vectors:

V1: 0 0 0 0 1 1 1 1

V2: 0 1 0 1 0 1 0 1

are equivalent regarding bandwidth, they are not equivalent in regards to latency. The
maximum latency for each client is more than two times larger for V1 than for V2 (For
V1 the maximum latency is almost 6 slots, for V2 it is almost 3).

14.5.1.3 Examples

14.5.1.3.1 Setting an allocation vector

· Example: Set the owner of one slot for memory ’ext’

void mem_ext_set_slot_owner(unsigned slot_no,
unsigned char owner) {

reg_marb_rw_ext_slots r = { 0 };
r.owner = owner;
REG_WR_VECT(marb, regi_memarb, rw_ext_slots, slot_no, r);

}

· Example: Set all slot owners for memory ’ext’

void mem_ext_set_slot_vector(unsigned char *vector) {
int i;
for(i = 0; i < regk_marb_rw_ext_slots_size; i++)

mem_ext_set_slot_owner(i, vector[i]);
}

unsigned char mem_ext_slot_vector[] = {
regk_marb_cpu,
regk_marb_dma0,
regk_marb_dma1,
regk_marb_dma2,
regk_marb_dma0,
regk_marb_dma3,
regk_marb_dma4,
regk_marb_dma0,

14.5. SOFTWARE INTERFACE 565

regk_marb_dma5,
regk_marb_dma6,
...

};

...
mem_ext_set_slot_vector(mem_ext_slot_vector);

...

14.5.2 Breakpoints

Each breakpoint has its own set of registers. See [REGSBP] for a detailed description
of these.

14.5.2.1 Setting up a breakpoint

typedef struct {
unsigned first_addr;
unsigned last_addr;
reg_marb_bp_rw_op op;
reg_marb_bp_rw_clients clients;
reg_marb_bp_rw_options options;

} bp_desc;

void bp_set(unsigned bp_ptr, // Pointer to registers for a bp
bp_desc *bp) { // Breakpoint data

reg_marb_bp_rw_op r_op = { 0 };
REG_WR(marb_bp, bp_ptr, rw_op, r_op); // turn bp off
REG_WR(marb_bp, bp_ptr, rw_ack, 0); // reset bp for new trig

REG_WR(marb_bp, bp_ptr, rw_first_addr, bp->first_addr);
REG_WR(marb_bp, bp_ptr, rw_last_addr, bp->last_addr);
REG_WR(marb_bp, bp_ptr, rw_clients, bp->clients);
REG_WR(marb_bp, bp_ptr, rw_options, bp->options);

REG_WR(marb_bp, bp_ptr, rw_op, bp->op); // turn bp on
}

14.5.2.2 To tell if a breakpoint has been triggered

· For a fixed breakpoint

reg_marb_r_intr i = REG_RD(marb, regi_marb, r_intr);
if(i.bp3) {

// bp3 has been triggered
}

566 CHAPTER 14. MEMORY ARBITER

· Using breakpoint number

int bp_triggered(int bp_no) {
int t = REG_RD_INT(marb, regi_marb, r_intr);
return (t >> bp_no) == 1;

}

· Using breakpoint register pointer

int bp_triggered(unsigned bp_ptr) {
int c = REG_RD_INT(marb_bp, bp_ptr, r_brk_clients);
return c != 0;

}

14.5.2.3 Get information from a triggered breakpoint

typedef struct {
unsigned addr;
unsigned size;
reg_memarb_bp_r_brk_op op;
reg_memarb_bp_r_brk_clients clients;

} bp_data;

void bp_info(unsigned bp_ptr,
bp_data *info) {

// read clients first, as this tells if the bp has been triggered
// reading it after e.g. the address may give a false break address
info->clients = REG_RD(marb_bp, bp_ptr, r_brk_clients);
info->addr = REG_RD(marb_bp, bp_ptr, r_brk_addr);
info->size = REG_RD(marb_bp, bp_ptr, r_brk_size);
info->op = REG_RD(marb_bp, bp_ptr, r_brk_op);

}

14.5.2.4 Reset a breakpoint

There are two almost equivalent ways of resetting a breakpoint:

1. Using the breakpoints ”ack” register:

REG_WR(marb_bp, regi_marb_bp0, rw_ack, 0); // reset bp0

2. Using the common ”ackintr” register:

reg_marb_rw_ack_intr r = { .bp0 = regk_marb_yes, // reset bp0 and bp4
.bp4 = regk_marb_yes };

REG_WR(marb, regi_marb, rw_ack_intr, r);

14.5. SOFTWARE INTERFACE 567

The first way is useful for resetting a single breakpoint without having to access the
common interrupt control registers. The second way is useful for resetting more than
one breakpoint at a time.

14.5.2.5 Stopping clients

The possibility to stop clients after they have triggered a breakpoint should be used
with care. Stopping a caching client is generally not a good idea. It may stop the entire
system as a result of blocked cache coherence writes that were supposed to be carried
out by the stopped client.

14.5.2.5.1 Examples

· Example: Enable stopping of client dma0 on breakpoint trig

reg_marb_rw_stop_mask r = REG_RD(marb, regi_marb, rw_stop_mask);
r.dma0 = regk_marb_yes;
REG_WR(marb, regi_marb, rw_stop_mask, r);

· Example: Tell if client dma0 has been stopped or not

reg_marb_r_stopped r = REG_RD(marb, regi_marb, r_stopped);
if(r.dma0 == regk_marb_yes) {

// dma0 has been stopped
}

14.5.3 Cache coherence

14.5.3.1 Cache coherence considerations

The cache coherence mechanism exists for the convenience of the programmer. It gives
the programmer the illusion of a single shared coherent memory. However, this same
mechanism may seriously degrade performance of the system if triggered too often. A
bit of knowledge on how to avoid this is thus in place.

A bit simplified the mechanism works as follows:

Consider an access to main memory from a client (C):

1. C requests access to memory.

2. The request is granted.

3. All caches in the system check if they have cached the requested data. If a cache
has cached the data and also modified it inside the cache:

3.1. The modified data is written to main memory before the access from C
may continue. (The protocol makes sure only one cache at a time may have a
modified copy of the same data).

568 CHAPTER 14. MEMORY ARBITER

4. C’s access is completed.

In the sequence above, step 3 infers no penalty on the access time as it is done in
parallel with the actual memory access. Step 3.1, on the other hand, does require a lot
of time if it has to be done. The total sequence does, in these cases, take about 3-4
times longer than without step 3.1.

As a result, ensure that step 3.1 above rarely occurs. In practice this means that one
should take care when sharing data between a caching client (like the CPU) and other
(caching or non-caching) clients (like a DMA channel). Below is a list of things to
remember:

· Don’t share data unless necessary. No sharing means no conflicts for the cache
coherence protocol to handle.

· Make the ”hand over” of data between clients infrequent.

· Avoid false sharing. If two clients are using different parts of a memory block
that fit into the same cache line, unnecessary cache coherence actions may take
place.

· Avoid caching rarely used shared data. For example, use hardware (memory to
memory DMA or alike) for copying blocks of data instead of letting the CPU do
it (via the cache).

14.5.3.2 Controlling cache coherency

Though cache coherence normally should be turned on, it it possible to turn it off in
a couple of ways. One way is to force clients into only making accesses that are not
snooped by the cache. This is done through the rwno snoop register. The other way
is to tell caches to stop snooping accesses. This is done through the rwno snooprq
register. See [REGS] for details.

14.5.3.3 Examples

14.5.3.3.1 Telling a client to avoid snooping

· Example: Make dma0 only use unsnooped accesses

reg_marb_rw_no_snoop r = REG_RD(marb, regi_marb, rw_no_snoop);
r.dma0 = regk_marb_yes;
REG_WR(marb, regi_marb, rw_no_snoop, r);

14.5.3.3.2 Telling a cache not to snoop

· Example: Make cpud’s cache not snoop

14.5. SOFTWARE INTERFACE 569

reg_marb_rw_no_snoop_rq r = REG_RD(marb, regi_marb, rw_no_snoop_rq);
r.cpud = regk_marb_yes;
REG_WR(marb, regi_marb, rw_no_snoop_rq, r);

570 CHAPTER 14. MEMORY ARBITER

Chapter 15

Real Time Trace

15.1 References

Reference Description

[MREG] Mode registers, chapter25.39

[MACROS] Register macros for C programming:
http://developer.axis.com

[1149] IEEE Std 1149.1-2001

[CPU] CPU, chapter2

[PINS] Pinout, chapter16

15.2 Definitions

Term Description

TAP Test Access Port (The IEEE 1149.1 access port)

Guru Mode An execution mode in the CRIS v32 CPU intended for
debugging. See2.

15.3 Overview

The real time trace block handles two software debug related interfaces. One is a real
time trace port that enables tracing of the CPUs program counter in real time. The other
is control of debug functionality through a register in the IEEE 1149 TAP controller.

571

http://developer.axis.com

572 CHAPTER 15. REAL TIME TRACE

15.4 Functional description

15.4.1 Real time tracing

The real time trace port outputs messages that can be used to reconstruct the execu-
tion sequence of the program running on the internal CPU. After the messages has
been sampled by external logic, the execution sequence can be reconstructed using the
messages and the object code of the traced program.

15.4.1.1 Configuration

Real time tracing is turned on/off and configured in the mode registerrw cfg. See
25.39. This register is also writable through the TAP. See section15.4.3for details.

15.4.1.2 PC tracing

The main type of tracing available is tracking of the CPUs program counter (PC). This
tracing comes in two flavors: Lossy and lossless.

As the bandwidth of the trace port is limited, it is not always possible to track the PC at
full speed at all times. When the trace logic can’t keep up it is called a trace overflow.
A trace overflow can either be handled (lossy tracing) or avoided (lossless tracing).

In lossy tracing, trace overflows are detected and signalled by an error message on the
trace port. Then a synchronization message is output to get the tracing back on track.
In this process a piece of the program flow is lost.

In lossless tracing, the CPU is stopped (stalled) when needed to avoid trace overflows.
This will in most cases make the CPU run somewhat slower. Observe that if watchpoint
and/or ownership tracing is enabled, see15.4.1.3and15.4.1.4, there is a small risk of
trace overflows even when lossless tracing is used. This is because the trace bandwidth
is shared between the different trace types, and PC tracing does not consider the other
trace types when avoiding overflows. Overflows in lossless mode are signaled in the
same way as in lossy mode.

15.4.1.2.1 Overflow situations

Overflows occur when the trace data FIFO is full and can’t hold new trace data from
the CPU.

In lossy tracing mode, overflows typically occurs when there is a lot of jumps with
dynamic target addresses within a short amount of time. In these cases the amount of
trace data generated is larger than what can be output and stored by the FIFO.

In lossless tracing mode, overflows only occurs when there are a lot of PC tracing mes-
sages simultaneously with watchpoint and/or ownership messages. When the amount
of free space in the trace data FIFO is less than a certain level the CPU is stopped. As
it takes a few cycles for the CPU to stop, this level is adjusted to the worst case amount
of trace data that can be generated by the CPU during the time it takes for it to stop. If

15.4. FUNCTIONAL DESCRIPTION 573

ownership or watchpoint messages are generated during the stopping of the CPU, there
is a possibility that the amount of free space in the FIFO isn’t enough, and an overflow
occurs.

15.4.1.3 Watchpoint tracing

Breakpoints in the CPU may be configured to generate watchpoint events (as well as
generating breakpoint exceptions, see2). These watchpoint events may be configured
to generate messages on the real time trace port. The watchpoint messages may be
used by external logic to e.g. start and/or stop storing of the trace data.

15.4.1.4 Ownership tracing

Process ownership in the CPU is assumed to be indicated by the value of bit 0-7 in the
PID register. Whenever this register changes value it is possible to get a message on
the real time trace port. These messages may be used to keep track of which process is
currently running.

15.4.1.5 Starting and stopping tracing

Tracing may be started and stopped in two ways. Manually by writing to therw cfg
register, or by the use of CPU watchpoints. In the latter case one set of watchpoints may
be configured to start tracing and another to stop tracing. This is all done in therw cfg
register. It is not possible to use the same watchpoint for both starting and stopping the
tracing.

15.4.2 Real time trace messages

Here follows a description of the messages that may be output on the real time trace
port. The port signals are defined in section15.5.2.

15.4.2.1 Message start and end

Messages start when themseon signal is set to 1. When themseon signal is 1, the
mdo signals contain the message id number, which indicates the message type. A
message ends either when a new message is started, or as described for each message
type (e.g. when the maximum message length has been sent). If a message ends, and
there are no new messages to send at the moment,mdo andmseon will be 0 until
there is a new message to send.

15.4.2.2 Message types

This section describes the different messages output on the real time trace port. An
overview of the messages is listed in the table below.

574 CHAPTER 15. REAL TIME TRACE

message id description

owner 2 process ownership change

sjmp 3 jumps with static target address

djmp 4 jump with dynamic target address

error 8 error message

sync 9 synchronization, output full PC

exception 11 jump to exception routine

wp 15 watchpoint trigger

Table 15.3:Message types

15.4.2.2.1 owner - process ownership change

id number: 2 (0x2)

Tells that the 8 least significant bits in the PID register in the CPU have changed. If
the PID register is updated, and the 8 least significant bits are unchanged, no process
ownership change message will be generated.

The id number is followed by the 8 least significant bits of the PID register.

The message vector ends when the new PID value has been sent. I.e. the message
length is fixed to 3 nibbles.

· Example:

mseo_n: 1 0 0
mdo: 2 e 3

= ===

This message tells that the least significant byte of PID has changed its value to
0x3e.

15.4.2.2.2 sjmp - jumps with static target address

id number: 3 (0x3)

Outputs a vector of instruction word counts between taken branches/jumps with static
target addresses. Each vector element is 8 bits (2 nibbles).

The message vector ends when an instruction count is zero or when a new message
starts.

· Example:

mseo_n: 1 0 0 0 0 0 0 0 0
mdo: 3 7 0 e 1 2 0 0 0

= === === === ===

15.4. FUNCTIONAL DESCRIPTION 575

Here the vector is 7,1e,2. This means that since the last message, the following
has happened:

· 7 instruction words have been executed consecutively.

· A jump or branch with static target address has been taken.

· 30 (0x1e) instruction words have been executed consecutively.

· A jump or branch with static target address has been taken.

· 2 instruction words have been executed consecutively.

· A jump or branch with static target address has been taken.

15.4.2.2.3 djmp - jump with dynamic target address

id number: 4 (0x4)

Outputs an instruction count of consecutively executed instructions followed by a jump
target address. The instruction count is encoded with 8 bits (2 nibbles). The address is
encoded as: Calculated PC after last message XOR-ed with the target address. This is
done to reduce the number of bits needed to encode the address.

The message vector ends when 32 bits of the encoded target address have been sent.
I.e. after the maximum message length (11 nibbles), or when a new message starts.

· Example:

mseo_n: 1 0 0 0 0 0
mdo: 4 6 0 8 a 1

= === =====

This means that since the last message, 6 instruction words have been executed
consecutively. Then a jump with non-static target address has been executed. If
the calculated PC after the last message is 333aab02, then the target address is
333aab02̂ 1a80 == 333ab182.

15.4.2.2.4 error

id number: 8 (0x8)

Outputs an error code. The error code is 8 bits (2 nibbles).

Error codes:

1 Program trace overflow. The internal trace buffer has been filled, and messages have
been discarded. This message will be followed by a sync message.

3 Program trace overflow where at least one watchpoint message has been lost. The
internal trace buffer has been filled, and messages have been discarded. This
message will be followed by a sync message.

576 CHAPTER 15. REAL TIME TRACE

The message vector ends when the error code has been sent. I.e the message length is
fixed to 3 nibbles.

· Example:

mseo_n: 1 0 0
mdo: 8 1 0

= ===

This outputs error code 1, program trace overflow.

15.4.2.2.5 sync - synchronization

id number: 9 (0x9)

Outputs the PID and the full PC. This message is sent in the following cases:

· After the trace logic has been turned on

· After an error message

· When there is more than the maximum number of consecutively executed in-
struction words (255).

· When there has been more than about 250-300 number of PC trace messages
since the last sync.

· When theevti n input signal has been asserted.

The message vector ends when the entire PC has been output (8 nibbles), or when a
new message starts. If the PC in the message consists of less than 8 nibbles, it shall be
zero extended to 32 bits.

· Example:

mseo_n: 1 0 0 0 0 0 0 0 0
mdo: 9 1 4 2 f 3 7 a 1

= === ===========

Says that PID == 0x41 and PC == 001a73f2.

15.4.2.2.6 exception - jump to exception routine

id number: 11 (0xb)

Outputs an instruction count of consecutively executed instructions followed by an
absolute jump target address.

15.5. HARDWARE INTERFACE 577

The message vector ends when 32 bits of the encoded target address have been sent.
I.e. the maximum message length (11 nibbles), or when a new message starts. If the
address in the message consists of less than 8 nibbles, it shall be zero extended to 32
bits.

· Example:

mseo_n: 1 0 0 0 0 0
mdo: b 6 0 8 a 1

= === =====

A jump to an exception routine at 0x1a8.

15.4.2.2.7 wp - watchpoint trigger

id number: 15 (0xf)

Indicates that one or more watchpoints has been triggered. Each watchpoint is repre-
sented by one bit in an 8 bit vector. If the bit is set the corresponding watchpoint was
triggered.

The message vector ends when the watchpoint vector has been sent. I.e. the message
length is fixed to 3 nibbles.

· Example:

mseo_n: 1 0 0
mdo: f 4 0

= ===

This message indicates that watchpoint 2 was triggered.

15.4.3 TAP controller interface

Debug functionality can be accessed by an external client via a data register in the on
chip TAP controller. This functionality includes controlling the real time tracing, as
well as doing more traditional debugging with breakpoints and single step by commu-
nicating with debug software in on chip ROM. More about this in section15.6.

15.5 Hardware interface

15.5.1 TAP interface

Is described in [1149]. The pinout is described in16.

578 CHAPTER 15. REAL TIME TRACE

15.5.2 Real time trace interface

The real time trace interface is a synchronous interface where output data is qualified
by a clock. It consists of the following signals:

Signal Direction Description

mcko Output Trace data clock

mdo[3:0] Output Trace data

mseon Output Trace message start

evti n Input Event in

The data outputs,mdo[3:0] and mseon, are qualified by both edges of the clock,
mcko. The only input,evti n, is asynchronous to the clock.

The real time trace signals are mapped to physical chip pins as described in16.

15.5.2.1 Timing

t4

t5

t4t3 t3

t1t1

t2

mcko

mdo/mseo_n

evti_n

t6

Figure 15.1:Real time trace port timing

Parameter Name Description min nom max unit

t1 tpw Clock pulse width 4 5 6 ns

t2 tc Clock cycle - 10 - ns

t3 th Data hold time 1.0 - - ns

t4 tsu Data setup time 1.5 - - ns

t5 tevpw Event in pulse width 20 - - ns

t6 tevit Event in inactive time 20 - - ns

Table 15.5:Real time trace port timing

15.6. SOFTWARE INTERFACE 579

15.6 Software interface

15.6.1 TAP debug data register

This is a 40 bit data register in the TAP controller. The register can be used to control
the real time trace and the ROM resident on chip debugging functionality. The register
is accessed through the chip TAP port.

The layout of this register is as follows:

39 - 8 7 - 4 3 - 0

data (32 bits) sub-op (4bits) op (4bits)

Bit 0 is the last bit shifted into the TAP controller via the TDI pin.

When the TAP debug data register is written, and the op field is not zero, the mode
registersrw tap dataandrw tap hdataare updated with the written value.

The following operations are defined:

op sub-op Description Data

0x0 nop - No operation.rw tap dataand
rw tap hdataare not updated.

-

0x1 trcfg - Controls real time tracing by
writing therw cfg register.

reg data

0x3 dbg - Make CPU enter Guru Mode. Must
be acknowledged in therw tap ctrl
register.

-

0x4 dgbdi See25.39, rw tap hdata Data to debug software in on-chip
ROM.

data in

0x5 dgbdo See25.39, rw tap hdata Data from debug software in
on-chip ROM.

data out

Table 15.7:Debug data register operation codes.

From software running on the chip, this register is accessed through a set of memory
mapped mode registers:

· rw tap ctrl

· r tap stat

· rw tap data

· rw tap hdata

These registers are described in25.39. A set of macros for accessing these registers
from a C program is defined in [MACROS].

580 CHAPTER 15. REAL TIME TRACE

Chapter 16

Pinout and pin multiplexing

16.1 References

[REGS] Mode registers, chapter25.38

[MACROS] C macros,http://developer.axis.com

16.2 Overview

The package of the ETRAX FS is a 256 lead Plastic Ball Grid Array (PBGA). There
are 80 configurable I/O pins, 125 fixed function signal pins and 51 power/ground pins.

All pins are listed in section16.3 below. The connection alternatives for the con-
figurable I/O pins are described in section16.4. Configuration of the USB pins is
described in16.5.

16.3 Pinout

16.3.1 Power and ground pins

16.3.1.1 3.3 V Power pins

Name Ball Pad Type Description

vdd33 A4 power vdd for I/O ring

vdd33 A8 power vdd for I/O ring

vdd33 A12 power vdd for I/O ring

vdd33 A17 power vdd for I/O ring

vdd33 D1 power vdd for I/O ring

vdd33 D20 power vdd for I/O ring

vdd33 H20 power vdd for I/O ring

581

http://developer.axis.com

582 CHAPTER 16. PINOUT AND PIN MULTIPLEXING

vdd33 J1 power vdd for I/O ring

vdd33 M20 power vdd for I/O ring

vdd33 N1 power vdd for I/O ring

vdd33 U1 power vdd for I/O ring

vdd33 U20 power vdd for I/O ring

vdd33 Y4 power vdd for I/O ring

vdd33 Y8 power vdd for I/O ring

vdd33 Y12 power vdd for I/O ring

vdd33 Y13 power vdd for I/O ring

vdd33 Y17 power vdd for I/O ring

Table 16.2:3.3 V Power pins

16.3.1.2 1.5 V Power pins

Name Ball Pad Type Description

vdd15 D6 power Core vdd

vdd15 D11 power Core vdd

vdd15 D15 power Core vdd

vdd15 F4 power Core vdd

vdd15 F17 power Core vdd

vdd15 K4 power Core vdd

vdd15 L17 power Core vdd

vdd15 R4 power Core vdd

vdd15 R17 power Core vdd

vdd15 U6 power Core vdd

vdd15 U10 power Core vdd

vdd15 U11 power Core vdd

vdd15 U15 power Core vdd

vdd15 V10 power Core vdd

Table 16.3:1.5 V Power pins

16.3.1.3 Ground pins

Name Ball Pad Type Description

vss A1 power General vss

vss B1 power General vss

vss C3 power General vss

vss C18 power General vss

vss D4 power General vss

vss D8 power General vss

vss D13 power General vss

vss D17 power General vss

vss H4 power General vss

vss H17 power General vss

vss N4 power General vss

vss N17 power General vss

16.3. PINOUT 583

vss U4 power General vss

vss U8 power General vss

vss U13 power General vss

vss U17 power General vss

vss V3 power General vss

vss V11 power General vss

vss W11 power General vss

vss Y10 power General vss

Table 16.4:Ground pins

16.3.2 Miscellaneous pins

Name Ball Pad Type Description

clk Y9 input 12 MHz clock input

rst n U9 input Chip reset input

irq n B13 input Interrupt request input

nmi n A14 input Non maskable interrupt input

test W9 input Test mode select input (tie to Vss for
normal operation)

plllpf Y11 output PLL loop filter output

phyrst n W3 output Software controlled reset output

Table 16.5:Miscellaneous pins

16.3.3 Boot select pins

Name Ball Pad Type Description

bs0 P4 bidir Boot select 0/debug data out 0

bs1 R3 bidir Boot select 1/debug data out 1

bs2 T2 bidir Boot select 2/debug data out 2

bs3 T3 bidir Boot select 3/debug data out 3

bs4 U2 bidir Boot select 4/debug start

bs5 V1 bidir Boot select 5/debug clk

bs6 T4 input Boot select 6/debug data in

Table 16.6:Boot select pins

16.3.4 Test access port (TAP)

Name Ball Pad Type Description

tck W13 input JTAG TAP clock input

tdi V9 input JTAG TAP data in

tdo V18 output JTAG TAP data out

tms U12 input JTAG TAP mode select

trst W10 input JTAG TAP reset input

Table 16.7:Test access port pins

584 CHAPTER 16. PINOUT AND PIN MULTIPLEXING

16.3.5 Bus interface pins

16.3.5.1 Data bus pins

Name Ball Pad Type Description

d0 F3 bidir Data bit 0

d1 G4 bidir Data bit 1

d2 F2 bidir Data bit 2

d3 F1 bidir Data bit 3

d4 G3 bidir Data bit 4

d5 G2 bidir Data bit 5

d6 G1 bidir Data bit 6

d7 H3 bidir Data bit 7

d8 H2 bidir Data bit 8

d9 H1 bidir Data bit 9

d10 J4 bidir Data bit 10

d11 J3 bidir Data bit 11

d12 J2 bidir Data bit 12

d13 K2 bidir Data bit 13

d14 K3 bidir Data bit 14

d15 K1 bidir Data bit 15

d16 L1 bidir Data bit 16

d17 L2 bidir Data bit 17

d18 L3 bidir Data bit 18

d19 L4 bidir Data bit 19

d20 M1 bidir Data bit 20

d21 M2 bidir Data bit 21

d22 M3 bidir Data bit 22

d23 M4 bidir Data bit 23

d24 N2 bidir Data bit 24

d25 N3 bidir Data bit 25

d26 P1 bidir Data bit 26

d27 P2 bidir Data bit 27

d28 R1 bidir Data bit 28

d29 P3 bidir Data bit 29

d30 R2 bidir Data bit 30

d31 T1 bidir Data bit 31

Table 16.8:Data bus pins

16.3.5.2 Address bus pins

Name Ball Pad Type Description

a1 B10 bidir Address bit 1/SDRAM dqm7

a2 C10 bidir Address bit 2

a3 D10 bidir Address bit 3

a4 A9 bidir Address bit 4

a5 B9 bidir Address bit 5

a6 C9 bidir Address bit 6

16.3. PINOUT 585

a7 D9 bidir Address bit 7

a8 B8 bidir Address bit 8

a9 C8 bidir Address bit 9

a10 A7 bidir Address bit 10

a11 B7 bidir Address bit 11

a12 A6 bidir Address bit 12

a13 C7 bidir Address bit 13

a14 B6 bidir Address bit 14

a15 A5 bidir Address bit 15

a16 D7 bidir Address bit 16

a17 C6 bidir Address bit 17/SDRAM bank address 0

a18 B5 bidir Address bit 18/SDRAM bank address 1

a19 C5 bidir Address bit 19/SDRAM dqm0

a20 B4 bidir Address bit 20/SDRAM dqm1

a21 A3 bidir Address bit 21/SDRAM dqm2

a22 D5 bidir Address bit 22/SDRAM dqm3

a23 C4 bidir Address bit 23/SDRAM write enable

a24 B3 bidir Address bit 24/SDRAM cas

a25 B2 bidir Address bit 25/SDRAM ras

Table 16.9:Address bus pins

16.3.5.3 Chip select pins

Chip select signals that have dedicated pins are listed in the table below. Thecsp2n,
csp3n, csp5n andcsp6n chip selects are multiplexed on configurable I/O pins, see
16.4.3.1.

Name Ball Pad Type Description

csd0n E1 bidir SDRAM chip select 0

csd1n E2 bidir SDRAM chip select 1

cse0n A10 output Flash/EPROM chip select 0

cse1n A11 output Flash/EPROM chip select 1

csp0n B12 bidir Peripheral chip select 0

csp1n C12 bidir Peripheral chip select 1

csp4n D12 bidir Peripheral chip select 4

csr0 n C11 bidir SRAM chip select 0

csr1 n B11 bidir SRAM chip select 1

cssn A13 bidir Slave chip select

Table 16.10:Chip select pins

16.3.5.4 Bus interface control pins

Name Ball Pad Type Description

rd n E4 bidir Read signal

wr0 n A2 bidir Write signal for byte 0/SDRAM dqm4

wr1 n C2 bidir Write signal for byte 1/SDRAM dqm5

586 CHAPTER 16. PINOUT AND PIN MULTIPLEXING

wr2 n D2 bidir Write signal for byte 2/SDRAM dqm6

wr3 n D3 bidir Write signal for byte 3

wait n C13 input Wait input

sdcke E3 bidir SDRAM clock enable

sdclk C1 bidir SDRAM clock output

Table 16.11:Bus interface control pins

16.3.5.5 External DMA/slave mode handshake pins

External DMA/slave mode hand shake signals that have dedicated pins are listed in the
table below. Thehsh4 - hsh7handshake signals are multiplexed on configurable I/O
pins, see16.4.3.1.

Name Ball Pad Type Description

hsh0 A15 bidir DMA/slave mode handshake signal 0

hsh1 B15 bidir DMA/slave mode handshake signal 1

hsh2 C15 bidir DMA/slave mode handshake signal 2

hsh3 A16 bidir DMA/slave mode handshake signal 3

Table 16.12:External DMA/slave mode handshake pins

16.3.5.6 Bus arbitration pins

Name Ball Pad Type Description

bg C14 bidir Bus grant input/output

brin D14 input Bus request input

brout B14 bidir Bus request output

Table 16.13:Bus arbitration pins

16.3.6 Ethernet interface 0

Name Ball Pad Type Description

e0col V6 input Ethernet collision detect

e0crs V8 input Ethernet carrier sense

e0mdc Y1 output Ethernet management clock

e0mdio Y2 bidir Ethernet management data

e0phyclk Y3 output Ethernet transceiver clock/txer

e0rxclk Y7 input Ethernet receive clock

e0rxd0 W6 input Ethernet receive data bit 0

e0rxd1 Y6 input Ethernet receive data bit 1

e0rxd2 V7 input Ethernet receive data bit 2

e0rxd3 W7 input Ethernet receive data bit 3

e0rxdv U7 input Ethernet receive data valid

e0rxer W8 input Ethernet receive error

e0txclk Y5 input Ethernet transmit clock

16.3. PINOUT 587

e0txd0 V4 output Ethernet transmit data bit 0

e0txd1 U5 output Ethernet transmit data bit 1

e0txd2 V5 output Ethernet transmit data bit 2

e0txd3 W5 output Ethernet transmit data bit 3

e0txen W4 output Ethernet transmit enable

Table 16.14:Ethernet interface 0 pins

16.3.7 Asynchronous serial port 0

Name Ball Pad Type Description

s0ctsn U3 input Asynchronous serial port 0 clear to send

s0rts n W2 output Asynchronous serial port 0 request to send

s0rxd V2 input Asynchronous serial port 0 data in

s0txd W1 output Asynchronous serial port 0 data out

Table 16.15:Asynchronous serial port 0 pins

The external clock input signalext clk is shared between all asynchronous and syn-
chronous serial ports and the timer module, see16.4.3.4.1.

16.3.8 USB pins

Name Ball Pad Type Description

u0vm V12 bidir USB minus in/out

u0vp W12 bidir USB plus in/out

Table 16.16:USB pins

16.3.9 Configurable I/O pins

16.3.9.1 Port pa

Name Ball Pad Type Description

pa0 B16 bidir Configurable I/O port pa bit 0

pa1 C16 bidir Configurable I/O port pa bit 1

pa2 A18 bidir Configurable I/O port pa bit 2

pa3 D16 bidir Configurable I/O port pa bit 3

pa4 C17 bidir Configurable I/O port pa bit 4

pa5 B17 bidir Configurable I/O port pa bit 5

pa6 B18 bidir Configurable I/O port pa bit 6

pa7 A19 bidir Configurable I/O port pa bit 7

Table 16.17:Configurable I/O port pa pins

588 CHAPTER 16. PINOUT AND PIN MULTIPLEXING

16.3.9.2 Port pb

Name Ball Pad Type Description

pb0 A20 bidir Configurable I/O port pb bit 0

pb1 B19 bidir Configurable I/O port pb bit 1

pb2 B20 bidir Configurable I/O port pb bit 2

pb3 C19 bidir Configurable I/O port pb bit 3

pb4 D18 bidir Configurable I/O port pb bit 4

pb5 E17 bidir Configurable I/O port pb bit 5

pb6 C20 bidir Configurable I/O port pb bit 6

pb7 D19 bidir Configurable I/O port pb bit 7

pb8 E18 bidir Configurable I/O port pb bit 8

pb9 E19 bidir Configurable I/O port pb bit 9

pb10 F18 bidir Configurable I/O port pb bit 10

pb11 G17 bidir Configurable I/O port pb bit 11

pb12 E20 bidir Configurable I/O port pb bit 12

pb13 F19 bidir Configurable I/O port pb bit 13

pb14 G18 bidir Configurable I/O port pb bit 14

pb15 F20 bidir Configurable I/O port pb bit 15

pb16 G19 bidir Configurable I/O port pb bit 16

pb17 G20 bidir Configurable I/O port pb bit 17

Table 16.18:Configurable I/O port pb pins

16.3.9.3 Port pc

Name Ball Pad Type Description

pc0 H18 bidir Configurable I/O port pc bit 0

pc1 H19 bidir Configurable I/O port pc bit 1

pc2 J17 bidir Configurable I/O port pc bit 2

pc3 J18 bidir Configurable I/O port pc bit 3

pc4 J19 bidir Configurable I/O port pc bit 4

pc5 J20 bidir Configurable I/O port pc bit 5

pc6 K17 bidir Configurable I/O port pc bit 6

pc7 K18 bidir Configurable I/O port pc bit 7

pc8 K19 bidir Configurable I/O port pc bit 8

pc9 K20 bidir Configurable I/O port pc bit 9

pc10 L20 bidir Configurable I/O port pc bit 10

pc11 L18 bidir Configurable I/O port pc bit 11

pc12 L19 bidir Configurable I/O port pc bit 12

pc13 M19 bidir Configurable I/O port pc bit 13

pc14 M18 bidir Configurable I/O port pc bit 14

pc15 M17 bidir Configurable I/O port pc bit 15

pc16 N20 bidir Configurable I/O port pc bit 16

pc17 N19 bidir Configurable I/O port pc bit 17

Table 16.19:Configurable I/O port pc pins

16.3. PINOUT 589

16.3.9.4 Port pd

Name Ball Pad Type Description

pd0 N18 bidir Configurable I/O port pd bit 0

pd1 P20 bidir Configurable I/O port pd bit 1

pd2 P19 bidir Configurable I/O port pd bit 2

pd3 P18 bidir Configurable I/O port pd bit 3

pd4 R20 bidir Configurable I/O port pd bit 4

pd5 R19 bidir Configurable I/O port pd bit 5

pd6 P17 bidir Configurable I/O port pd bit 6

pd7 R18 bidir Configurable I/O port pd bit 7

pd8 T20 bidir Configurable I/O port pd bit 8

pd9 T19 bidir Configurable I/O port pd bit 9

pd10 T18 bidir Configurable I/O port pd bit 10

pd11 V20 bidir Configurable I/O port pd bit 11

pd12 T17 bidir Configurable I/O port pe bit 12

pd13 U18 bidir Configurable I/O port pd bit 13

pd14 U19 bidir Configurable I/O port pd bit 14

pd15 V19 bidir Configurable I/O port pd bit 15

pd16 W20 bidir Configurable I/O port pd bit 16

pd17 Y20 bidir Configurable I/O port pd bit 17

Table 16.20:Configurable I/O port pd pins

16.3.9.5 Port pe

Name Ball Pad Type Description

pe0 W19 bidir Configurable I/O port pe bit 0

pe1 Y19 bidir Configurable I/O port pe bit 1

pe2 W18 bidir Configurable I/O port pe bit 2

pe3 V17 bidir Configurable I/O port pe bit 3

pe4 U16 bidir Configurable I/O port pe bit 4

pe5 Y18 bidir Configurable I/O port pe bit 5

pe6 W17 bidir Configurable I/O port pe bit 6

pe7 V16 bidir Configurable I/O port pe bit 7

pe8 W16 bidir Configurable I/O port pe bit 8

pe9 V15 bidir Configurable I/O port pe bit 9

pe10 U14 bidir Configurable I/O port pe bit 10

pe11 Y16 bidir Configurable I/O port pe bit 11

pe12 W15 bidir Configurable I/O port pe bit 12

pe13 V14 bidir Configurable I/O port pe bit 13

pe14 Y15 bidir Configurable I/O port pe bit 14

pe15 W14 bidir Configurable I/O port pe bit 15

pe16 Y14 bidir Configurable I/O port pe bit 16

pe17 V13 bidir Configurable I/O port pe bit 17

Table 16.21:Configurable I/O port pe pins

590 CHAPTER 16. PINOUT AND PIN MULTIPLEXING

16.4 Multiplexing of configurable I/O pins

The configurable I/O pins are grouped in five groups,pa to pe. Port pa contains 8
pins, whilepb to pe contain 18 pins each. Multiplexing between the different I/O
alternatives is done by the pinmux block. The pinmux also controls the connection of
the USB pinsu0vp andu0vm to the I/O processor, see section16.5.

Portpa is shared between General I/O and bus interface functions.

Portspb to pe are shared between General I/O, fixed protocol I/O, and the I/O proces-
sor.

The pinmux is controlled through a set of registers, see25.38for details. To access the
registers, fields and register constants from a C program, a set of macros is defined in
[MACROS].

16.4.1 Overview

An overview of the pin mapping alternatives for thepa to peports is given in the figure
below:

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

Port pe Port pd

Port pc Port pb

Port pa

e1

iop

gio

a1

iop

gio

iop

gio

iop

gio

ag

a0 ag

s1

a1a0

tm

s0

b

s0

r1r2r3

a3a2 a3

gio

hs cs

a2

Figure 16.1:Port pa to pe pin mapping alternatives

The list below defines the abbreviations used in figure16.1.

gio General I/O

iop I/O processor

hs External DMA/slave mode handshake pinshsh4-hsh7

16.4. MULTIPLEXING OF CONFIGURABLE I/O PINS 591

cs Chip select pinscsp2n, csp3n, csp5n andcsp6n

r1 Asynchronous serial port 1

r2 Asynchronous serial port 2

r3 Asynchronous serial port 3

b External baud rate clock input

s0 Synchronous serial port 0

s1 Synchronous serial port 1

ag ATA general pins

a0 ATA bus 0 pins

a1 ATA bus 1 pins

a2 ATA bus 2 pins

a3 ATA bus 3 pins

e1 Ethernet interface 1

tm Timer

16.4.2 Principles for signal multiplexing

16.4.2.1 Input signals

Input signals from the configurable I/O pins are connected to the different I/O units
in parallel, without any gating. This means that the I/O interface will always have
access to its inputs, regardless of whether the I/O interface is selected in the pinmux
configuration registers or not.

The only exception to this is that the input signals from the USB pinsu0vp andu0vm
to the I/O processor are multiplexed with a few signals from pins in portpc andpe, see
section16.5.

16.4.2.2 Output signals

The output signals are multiplexed using an AND-OR structure. The pinmux configu-
ration registers have one or several configuration bits for each I/O interface. Each bit
selects one or several signals and/or output enables from the I/O interface to control the
corresponding pins.

The AND-OR structure will look like this:

If the pinmux registers are configured in a way that allows more than one I/O interface
to control the same pin, the signals and output enables from the different I/O interfaces
will be OR-ed together.

Pins that are not configured to be controlled by any I/O interface will have their outputs
turned off.

592 CHAPTER 16. PINOUT AND PIN MULTIPLEXING

rst

oe

en

data

oe

en

data

Output pin

Internal
unit 1

Internal
unit n

Figure 16.2:AND-OR structure for output signals

16.4.2.3 Reset behavior

All pinmux configuration registers have the default value 0. This results in that no I/O
interfaces control any pins after a reset, and all pins will therefore have their outputs
turned off. The pinmux will turn off all outputs immediately (asynchronously) at reset,
and keep them turned off until the software enables them.

16.4.3 Pin mapping

16.4.3.1 Bus interface signals on port pa

Portpa is shared between General I/O and bus interface functions. Portpa is config-
ured inrw pa. Each pin is separately configurable. The bus interface functions mapped
to portpa are shown in the tables below:

· Chip selects:

Chip select Pin Direction used

csp2n pa0 bidir

csp3n pa1 bidir

csp5n pa2 output

csp6n pa3 output

Table 16.22:Chip selects shared with General I/O

· External DMA/slave mode handshake signals:

Handshake signal Pin Direction used

hsh4 pa4 bidir

hsh5 pa5 bidir

hsh6 pa6 bidir

hsh7 pa7 bidir

Table 16.23:Handshake signals shared with General I/O

16.4. MULTIPLEXING OF CONFIGURABLE I/O PINS 593

The multiplexing between thedreq, dack, tc in, tc out andsreq functions is done
internally in the bus interface.

16.4.3.2 General I/O

The General I/O block has 80 I/O signals that can be connected to configurable I/O
portspa to pe. For the general I/O there are individual configuration bits for each I/O
signal.

The General I/O signals are configured inrw pa, rw pb gio, rw pc gio, rw pd gio and
rw pe gio.

General I/O signals Pins Direction used

pa0 - pa7 pa0 - pa7 bidir

pb0 - pb17 pb0 - pb17 bidir

pc0 - pc17 pc0 - pc17 bidir

pd0 - pd17 pd0 - pd17 bidir

pe0- pe17 pe0- pe17 bidir

Table 16.24:General I/O signals

16.4.3.3 I/O processor

The I/O processor has 72 I/O signals that can be connected to configurable I/O portspb
to pe. For the I/O processor there are individual configuration bits for each I/O signal.

The I/O processor signals are configured inrw pb iop, rw pc iop, rw pd iopandrw pe iop.

I/O processor signals Pins Direction used

pb0 - pb17 pb0 - pb17 bidir

pc0 - pc17 pc0 - pc17 bidir

pd0 - pd17 pd0 - pd17 bidir

pe0- pe17 pe0- pe17 bidir

Table 16.25:I/O processor signals

16.4.3.4 Fixed protocol I/O blocks

The fixed protocol I/O block connections are configured inrw hwprot.

16.4.3.4.1 Asynchronous serial ports

The asynchronous serial ports 1-3 are mapped to the configurable I/O portpc accord-
ing to the tables below. Asynchronous serial port 0 shares theext clk input with the
other ports, but has otherwise dedicated pins that are not controlled by the pinmux, see
16.3.7.

· Asynchronous serial port 1:

594 CHAPTER 16. PINOUT AND PIN MULTIPLEXING

Serial port 1 signal Pin Used direction

txd pc4 output

rts n pc5 output

rxd pc6 input

cts n pc7 input

Table 16.26:Asynchronous serial port 1 signals

· Asynchronous serial port 2:

Serial port 2 signal Pin Used direction

txd pc8 output

rts n pc9 output

rxd pc10 input

cts n pc11 input

Table 16.27:Asynchronous serial port 2 signals

· Asynchronous serial port 3:

Serial port 3 signal Pin Used direction

txd pc12 output

rts n pc13 output

rxd pc14 input

cts n pc15 input

Table 16.28:Asynchronous serial port 3 signals

· General:

The asynchronous serial ports share an external clock input with the synchronous
serial ports and the timer block.

External clock signal Pin Used direction

ext clk pc17 input

Table 16.29:External serial port clock signal

16.4.3.4.2 Synchronous serial ports

The synchronous serial ports 0-1 are mapped to configurable I/O ports pc and pd ac-
cording to the tables below.

· Synchronous serial port 0:

Serial port 0 signal Pin Used direction

data pc0 bidir

16.4. MULTIPLEXING OF CONFIGURABLE I/O PINS 595

clk pc1 bidir

status pc2 bidir

frame pc3 bidir

din pc16 input

Table 16.30:Synchronous serial port 0 signals

· Synchronous serial port 1:

Serial port 1 signal Pin Used direction

data pd0 bidir

clk pd1 bidir

status pd2 bidir

frame pd3 bidir

din pd4 input

Table 16.31:Synchronous serial port 1 signals

· General:

The synchronous serial ports share an external clock input with the asynchronous
serial ports and the timer block.

External clock signal Pin Used direction

ext clk pc17 input

Table 16.32:External serial port clock signal

16.4.3.4.3 ATA

The ATA interface is mapped to configurable I/O ports pb to pe according to the tables
below. There is one configuration bit for each of the four ATA buses, and one bit for
the signals that are common between the buses.

· General ATA signals:

ATA signal Pin Used direction

data0 pb0 bidir

data1 pb1 bidir

data2 pb2 bidir

data3 pb3 bidir

data4 pb4 bidir

data5 pb5 bidir

data6 pb6 bidir

data7 pb7 bidir

data8 pb8 bidir

data9 pb9 bidir

data10 pb10 bidir

data11 pb11 bidir

596 CHAPTER 16. PINOUT AND PIN MULTIPLEXING

data12 pb12 bidir

data13 pb13 bidir

data14 pb14 bidir

data15 pb15 bidir

a0 pd8 output

a1 pd9 output

a2 pd10 output

cs0n pd11 output

cs1n pd12 output

ext oe pd13 output

reset n pd14 output

Table 16.33:General ATA signals

· Ata bus 0 signals:

ATA bus 0 signal Pin Used direction

dior0 n pd5 output

diow0 n pd6 output

dmack0 n pd7 output

iordy0 pd15 input

dmarq0 pd16 input

intrq0 pd17 input

Table 16.34:ATA bus 0 signals

· Ata bus 1 signals:

ATA bus 1 signal Pin Used direction

dior1 n pd0 output

diow1 n pd1 output

dmack1 n pd2 output

iordy1 pe17 input

dmarq1 pd3 input

intrq1 pd4 input

Table 16.35:ATA bus 1 signals

· Ata bus 2 signals:

ATA bus 2 signal Pin Used direction

dior2 n pc11 output

diow2 n pc12 output

dmack2 n pc13 output

iordy2 pc3 input

dmarq2 pc14 input

intrq2 pc15 input

Table 16.36:ATA bus 2 signals

16.4. MULTIPLEXING OF CONFIGURABLE I/O PINS 597

· Ata bus 3 signals:

ATA bus 3 signal Pin Used direction

dior3 n pc0 output

diow3 n pc1 output

dmack3 n pc8 output

iordy3 pc2 input

dmarq3 pc9 input

intrq3 pc10 input

Table 16.37:ATA bus 3 signals

16.4.3.4.4 Ethernet interface 1

Ethernet interface 1 is mapped to configurable I/O port pe according to the tables below.
There is one configuration bit for the transceiver management signals and one bit for
the rest of the signals. Ethernet interface 0 has dedicated pins that are not controlled by
the pinmux.

· Ethernet interface 1:

Ethernet 1 signal Pin Used direction

rxd0 pe0 input

rxd1 pe1 input

rxd2 pe2 input

rxd3 pe3 input

rxdv pe4 input

rxer pe5 input

col pe6 input

crs pe7 input

rxclk pe8 input

txclk pe9 input

phyclk pe10 output

txen pe11 output

txd0 pe12 output

txd1 pe13 output

txd2 pe14 output

txd3 pe15 output

Table 16.38:Ethernet interface 1 signals

· Ethernet interface 1 transceiver management:

Ethernet 1 signal Pin Used direction

mdc pe16 output

mdio pe17 bidir

Table 16.39:Ethernet interface 1 transceiver management signals

598 CHAPTER 16. PINOUT AND PIN MULTIPLEXING

16.4.3.4.5 timer

The timer has one external clock input and one terminal count output, that are mapped
to configurable I/O port pc according to the table below. The external clock inputext
is shared with the asynchronous and synchronous serial ports.

Timer signal Pin Used direction

tc pc16 output

ext pc17 input

Table 16.40:Timer signals

16.5 USB pin mapping

The internal USB transceiver has two external pins,u0vp andu0vm, and seven internal
signals.

oe_n
speed_n

vmo
vpo

vmi
vpi
rcv

Internal
Signals

External
pins

USB
transceiver

u0vm
u0vp

Figure 16.3:USB pin mapping

The pinmux can be configured to connect the internal signals of the USB transceiver to
the I/O processor in two different ways, controlled by theen usb0anden usb1fields
of therw usbphy register.

· Mapping enabled byen usb0:

Transceiver signal I/O processor signal

oe n pc12output

speedn pc13output

vmo pc8output

vpo pc9output

vmi pc10 input

vpi pc11 input

rcv pc14 input

Table 16.41:Mapping enabled by enusb0.

· Mapping enabled byen usb1:

16.5. USB PIN MAPPING 599

Transceiver signal I/O processor signal

oe n pe12output

speedn pe13output

vmo pe8output

vpo pe9output

vmi pe10input

vpi pe11input

rcv pe14input

Table 16.42:Mapping enabled by enusb1.

The normal connections for the I/O processor outputs are not affected. I/O pro-
cessor output signals that are configured to control the internal USB transceiver
can be configured to go out on their normal pins in the pc or pe port in parallel.

If both en usb0anden usb1are enabled, the two I/O processor output signals
for each transceiver signal will be OR-ed together, and the input signals from the
transceiver will go to both I/O processor inputs. If none is enabled, the USB pins
will be high-z.

Inputs from the internal USB transceiver to the I/O processor are multiplexed
with the normal input signals from the pc and pe ports.

USB transceiver vmi

I/O processor pc10 input

1

0

en_usb0

Input from pin pc10

USB transceiver vpi

I/O processor pc11 input

1

0Input from pin pc11

USB transceiver rcv

I/O processor pc14 input

1

0Input from pin pc14

USB transceiver vmi

I/O processor pe10 input

1

0Input from pin pe10

USB transceiver vpi

I/O processor pe11 input

1

0Input from pin pe11

USB transceiver rcv

I/O processor pe14 input

1

0Input from pin pe14

en_usb1

Figure 16.4:Multiplexing of internal USB transceiver inputs

600 CHAPTER 16. PINOUT AND PIN MULTIPLEXING

Chapter 17

Stubless Debugging

17.1 Introduction

Stubless debugging is a method which makes it possible to debug software without us-
ing special debug software in RAM. An external debugger interfaces with the internal
debug functionality in ETRAX FS using the TAP controller described in15. It is pos-
sible to read and write all CPU registers, mode registers, internal and external memory.
Using these commands it is also possible to set break points etc. All functionality to
implement GDB from the external debugger is available.

The internal debug functionality is partly implemented by the CPU and partly by a
program in an internal ROM. The functionality is available after the chip enters guru
mode, described in2.1.10.6. When this mode is entered the ETRAX FS does some
initialization, described in the aforementioned chapter, and control is given to the pro-
gram in ROM which awaits further commands in the mode registers, written to by the
external debugger using the TAP controller. The mode registers arerw tap dataand
rw tap hdata, further described in15.

17.2 Entering guru mode

By settingrw tap hdata.op.dbgguru mode is entered. Guru mode can also be entered
by internal events as described in2.1.10.6.

op subop rw tap data

dbg unused unused

Regardless of how guru mode is entered in ETRAX FS it is signalled to the exter-
nal debugger byrw tap hdata.op.dbgdoandrw tap hdata.subop.gmodein the mode
registers. After that the internal debugger is waiting for further commands.

op subop rw tap data

dbgdo gmode unused

601

602 CHAPTER 17. STUBLESS DEBUGGING

17.3 Debug functions

All further communication between internal and external debugger is withrw tap hdata.op
codesdbgdi anddbgdo. The former should always be set by the external debugger
when writing to the mode registers and the latter is always set when the internal debug-
ger replies.

The function to be performed is communicated to the internal debugger inrw tap hdata.subop.
The functions are described in table17.3.

subop Function

gmode Guru mode entered

rdreg Read general register

rdpreg Read special register

rdsreg Read support register

wrreg Write general register

wrpreg Write special register

wrsreg Write support register

rdmem Read dword from memory

wrmem Write dword to memory

rdmemb Read byte from memory

wrmemb Write byte to memory

ret Return from guru mode

Table 17.3:Debug functions and sub-op codes.

17.3.1 Read/write register

General registers, special registers and support registers can all be written to individu-
ally. The bank for support registers is chosen by setting the SRS special register before
calling read/write on a specific support register.

Among the things done when guru mode is entered is that R0-R3 and CCS are saved
in support registers. After this they are used by the internal debugger and may not
be changed while in guru mode. Instead the copies, which all will be restored when
leaving guru mode, should be used. This, and the other register actions done by the
CPU when guru mode was entered, has to be taken into consideration by the external
debugger. The details are specified in2.1.10.6.

17.3.1.1 Read register

The register set to operate on is selected withrw tap hdata.subop and the register
number should be inrw tap data. Reading of reserved general registers R0-R3 is un-
defined.

op subop rw tap data

dbgdi cmd regnr

The contents of the register is returned inrw tap dataandsubopcommand repeated.

17.3. DEBUG FUNCTIONS 603

op subop rw tap data

dbgdo cmd value

17.3.1.2 Write register

The register set is selected inrw tap hdata.subop.

op subop rw tap data

dbgdi cmd unused

This is acknowledged withrw tap hdata.op.dbgdoset and the command is repeated in
rw tap hdata.subop.

op subop rw tap data

dbgdo cmd unused

Next the data for the write should be provided with the register number inrw tap hdata.subop
and the new register value inrw tap data.

op subop rw tap data

dbgdi regnr value

This is acknowledged with the register number inrw tap hdata.subopand the updated
value inrw tap data.

op subop rw tap data

dbgdo regnr value

17.3.2 Read/write memory

Memory accesses can be done with 8 or 32 bit data.

17.3.2.1 Read

A memory read is performed withrw tap hdata.subop commandrdmemor rdmemb
and address inrw tap data.

op subop rw tap data

dbgdi cmd address

Data from this location is returned inrw tap datawith rw tap hdata.subopunchanged.

op subop rw tap data

dbgdo cmd value

604 CHAPTER 17. STUBLESS DEBUGGING

17.3.2.2 Write

A memory write is performed by settingrw tap hdata.subop commandwrmem or
wrmemband address inrw tap data.

op subop rw tap data

dbgdi cmd address

This is acknowledged withrw tap hdata.op.dbgdoset andrw tap hdata.suboprepeated.

op subop rw tap data

dbgdo cmd unused

Next the data for the write should be provided with the command repeated inrw tap hdata.subop
and the new value inrw tap data.

op subop rw tap data

dbgdi cmd value

This is acknowledged with the command repeated inrw tap hdata.subop and the up-
dated value inrw tap data.

op subop rw tap data

dbgdo cmd value

17.3.3 Return from guru mode

Guru mode will be exited using the RETN instruction. If the external debugger wishes
to jump to another address than that which was interrupted by the guru mode, this can
be done by setting the NRP special register before continuing. Note that it is the NRP
register that should be modified directly and not the copy made by the CPU in the
support function registers when guru mode was entered. See2.1.10.6.

op subop rw tap data

dbgdi ret unused

Chapter 18

Timers

18.1 References

Reference Description

[REGS] Mode registers, chapter25.44

[MACROS] http://developer.axis.com

[PINMAP] Pinout, chapter16

18.2 Overview

The timer block contains the following functions:

· Two programmable 32-bit timers that can be clocked by an internal or external
clock. The timers can be set up to generate interrupts at selected intervals.

· One 8-bit counter that can count either external events or terminal count events
from the programmable timers.

· One 32-bit read-only timer, running at 100 MHz.

· One trig point, which can be set up to generate an interrupt when one of the
programmable timers or the read-only timer reaches a selected value.

· One watchdog timer which can be set up to generate a non-maskable interrupt
and a system reset if not stopped or re-activated within a selected amount of time.

18.3 Functional Description

18.3.1 Programmable Timers

The timer block contains two programmable 32-bit timers, tmr0 and tmr1.

605

http://developer.axis.com

606 CHAPTER 18. TIMERS

18.3.1.1 Timer Operation

Each timer counts downwards from a programmable start value set in therw tmr0 div
or rw tmr1 div register. When the timer counts down from 1, it reloads the start value
and generates an interrupt. The programmed start value is thus equal to the loop time
of the timer (in number of timer clock cycles, see18.3.1.2). A start value of 0 will give
a loop time of 232 clock cycles.

Each timer has three operation states, which are set in therw tmr0 ctrl or rw tmr1 ctrl
register:

Mode Description

ld The start value is continuously loaded into the timer.

hold The timer is stopped but keeps its current value.

run The timer is running.

Table 18.2:Timer States

The current values of the timers are readable from ther tmr0 dataand r tmr1 data
registers.

18.3.1.2 Timer Clock Frequency

The input frequency can be selected individually for each timer. The following alterna-
tives are available, and can be configured in therw tmr0 ctrl or rw tmr1 ctrl register:

· Off

· External serial/timer clock input, see16

· 29.493088 MHz

· 32.000 MHz

· 32.768362 MHz

· 100.000 MHz

(The frequencies listed assume an exact 12 MHz input clock to the chip.)

18.3.1.3 Timer Output

One pin can be configured as a timer output, see16. This pin can be configured in
rw out to use either of the two timers. The timer output will toggle each time the
selected timer wraps.

18.3.1.4 Reset Behavior

The timers are in the load (ld) state after reset, with the input clock turned off. The start
value is undefined after reset. The timer output is off (i.e. constant 0) after reset.

18.3. FUNCTIONAL DESCRIPTION 607

18.3.2 Counter

18.3.2.1 Counter Operation

There is one 8-bit counter that can be configured to count either external events (pulses
on the serial/timer clock input), or number of loops in either of the two programmable
timers.

The counter starts from 0, and increases by 1 for each event. The counter saturates at
255. The counter is readable from registerrs cnt datawith the side effect of resetting
the counter to 0, or from registerr cnt datawithout the side effect.

The counter keeps thecnt interrupt set whenever the counter value is non-zero. To clear
the interrupt, the counter must first be cleared by reading thers cnt dataregister.

18.3.2.2 Reading the Counter

Reading the counter value yields a 32-bit value where the counter value is the upper 8
bits. When a timer is selected as the source for the counter events, the lower 24 bits
of that timer are read from the lower 24 bits ofrs cnt data/ r cnt data. This makes it
possible to read a timer, read the counter, and reset the counter all in one indivisible
operation. (This assumes that only the 24 lower bits of the timer are used.)

When counting external events, the lower 24 bits ofrs cnt data/ r cnt datacome from
the 24 lower bits of the continuous read-only timer.

18.3.2.3 Reset Behavior

The counter value is 0 after reset, and the counter is turned off.

18.3.3 Continuous Read-Only Timer

There is a continuous 32-bit read-only timer that starts from 0 at reset, and counts
upwards. The input frequency of the read-only timer is 100 MHz (given a 12 MHz
clock input to the chip). The value of the read-only timer can be read from ther time
register.

18.3.3.1 Test Mode

The read-only timer has a test mode to allow it to be tested quickly. While test mode is
enabled, the timer is set to 0xffffff00. When test mode is released, the timer continues
from this value. Since the watchdog uses bit 16 of the read-only timer as its input clock,
going in and out of test mode can be used to clock the watchdog for test purposes.

The test mode becomes permanently disabled when the read-only timer reaches 65536
(0x00010000). It can also be permanently disabled via thedis field in the rw test
register. Once permanently disabled, the test mode can not be re-enabled until after a
system reset.

608 CHAPTER 18. TIMERS

18.3.4 Timer Trig Point

The timer block contains one timer trig point. The trig point can be used when an
interrupt is wanted at a certain point in time, relative to the read-only timer or one of
the programmable timers.

18.3.4.1 Trig Point Operation

The timer trig point can be set in therw trig register. The value of therw trig register is
compared with one of the programmable timers or with the read-only timer, as selected
in rw trig cfg.

The trig interrupt is generated when the trig point matches the value of the selected
timer and the timer is clocked to leave that value. The interrupt is only generated if the
selected timer is running.

18.3.4.2 Reset Behavior

The trig point is disabled after a system reset, and the trig point value is undefined.

18.3.5 Watchdog Timer

18.3.5.1 Watchdog Operation

The watchdog timer is an 8-bit timer with a configurable start value. Once started the
watchdog counts downwards with a frequency of 763 Hz (100/131072 MHz). When
the watchdog counts down to 1, it generates an NMI (Non Maskable Interrupt), and
when it counts down to 0, it resets the chip.

There are two possible commands to the watchdog:

Command Description

stop Stops the watchdog.

start Starts the watchdog with the selected start value. If the watchdog is already
running, it is re-started from the start value.

Table 18.3:Watchdog Commands

When starting the watchdog, a 7 bit key value is supplied. Further commands while
the watchdog is running will only take effect if the new key value matches the bitwise
inversion of the key value of the previous valid command. This mechanism will protect
the watchdog from being re-started or stopped by accident.

18.3.5.2 Configuring and reading the Watchdog

The watchdog is configured in therw wd ctrl register. This register will always give
0 when read. The effective watchdog command and the current value of the watchdog
timer can be read from ther wd statregister. The key value can not be read.

18.4. HARDWARE INTERFACE 609

18.3.5.3 Reset Behavior

The watchdog is turned off after reset.

18.3.6 Interrupts

The timer block can generate the following interrupts:

tmr0 Thetmr0 interrupt is generated when the tmr0 timer counts down from 1.

tmr1 Thetmr1 interrupt is generated when tmr1 timer counts down from 1.

cnt Thecnt interrupt is generated whenever the counter value is non-zero.

trig Thetrig interrupt is generated when the trigpoint matches the selected timer and
the timer counts down from that value.

The interrupts are cleared by writing to therw ack intr register. For thecnt interrupt,
the counter must first be cleared or the clear of the interrupt will not take effect.

All interrupts can be masked through therw intr maskregister. The masked and non-
masked interrupts can be read from ther maskedintr andr intr registers.

18.4 Hardware Interface

18.4.1 Timer Input Clock

There is one external input clock signal to the timer block. This clock input is shared
with the serial ports, see16.

The input clock is sampled and synchronized with the internal 100 MHz system clock.
This results in a maximum input clock frequency of slightly below 100 MHz. Operation
is guaranteed up to 83 MHz. The synchronization detects the positive edge of the input
clock.

The timing for the timer clock input is given below.

1

Clock in

1

2

Figure 18.1:Timer input

Parameter
Number

Explanation Min Nom Max Unit

t1 External clock pulse width 4 - - ns

t2 External clock cycle 12 - - ns

Table 18.4:Timer Input Clock

610 CHAPTER 18. TIMERS

18.4.2 Timer Output

There is one pin that can be configured as timer output, see16. The timing for the timer
output is given below.

t1

Internal clock

Timer output

Figure 18.2:Timer output

Parameter
Number

Explanation Min Nom Max Unit

t1 Timer output delay from internal clock 2 - 8 ns

Table 18.5:Timer Ouput

18.5 Software Interface

The different functions within the timer block are controlled by a set of registers, see
25.44for a detailed description. To access the registers, fields and register constants
from a C program, a set of macros is defined in [MACROS].

A few things that may need special programming considerations are described below:

18.5.1 Timer and counter

A typical use for programmable timers is to generate a periodic timer interrupt. The
interrupt is generated each time the timer wraps. With short timer interrupt period in a
system with long interrupt latency, the timer may wrap a second or more times before
the interrupt is serviced.

To still be able to count the number of timer loops, the counter can be connected to the
timer output. Thers cnt dataregister allows reading the counter, resetting the counter
and reading the lower 24 bits of the selected timer, all in one indivisible operation. This
avoids partly updated values when reading the timer and counter while the timer wraps.

When the counter is used in this way, either the timer interrupt (tmr0 or tmr1) or the
counter interrupt (cnt) may be used as the periodic interrupt. The unused interrupt
should be masked off. The interrupt should be acknowledged (throughrw ack intr)
after the counter has been read and cleared. Using the counter interrupt may give
shorter response times than using the timer interrupt. If the timer wraps after the clear
of the counter but before the acknowledge of the interrupt, the counter interrupt will
occur again immediately, while the timer interrupt will not occur until the timer wraps
a second time.

18.5. SOFTWARE INTERFACE 611

18.5.2 Trig point

The trig point can be used when an interrupt is wanted at a certain point in time, relative
to the read-only timer or one of the programmable timers. If the time until the desired
trig point interrupt is short, you may not be able to guarantee that the software will set
the trig point in time to actually get the interrupt in the expected cycle of the selected
timer. To handle this, the following procedure could be used:

1. Mask off the trig interrupt inrw intr mask.

2. Set the trig point value inrw trig.

3. Enable the trig point and select timer inrw trig cfg.

4. Read the timer value to check if we have already passed the trig point.

5. If the trig point was not yet reached, you enable the trig interrupt inrw intr mask.
The trig interrupt will now occur when expected.

6. If the trig point was already reached, you disable the trigpoint in reg:rwtrig cfg,
acknowledge the trig interrupt inrw ack intr and call the trig point interrupt
routine directly.

612 CHAPTER 18. TIMERS

Chapter 19

Asynchronous serial port

19.1 References

Reference Description

[REGS] Mode registers, chapter25.40

[MACROS] Register macros,http://developer.axis.com

[STRMUX] DMA connections, chapter10

[PINMAP] Pinout, chapter16

[DMA] DMA, chapter5

Table 19.1:References

19.2 Overview

The asynchronous serial module contains one asynchronous serial port with full buffer-
ing and parity control. The serial port has one handshake signal in each direction. The
port can be polled, interrupt driven or DMA controlled.

The receiver and transmitter can be operated independently. They support baud rates
from 56.25 baud to 12.5 Mbaud.

The ETRAX FS contains four instances of the asynchronous serial port. One port is
always available, and three ports are multiplexed with other functions, see16.

19.3 Functional Description

19.3.1 Asynchronous serial port registers

The mode registers for the asynchronous serial port are described in25.40. There are
15 registers for each serial port:

613

http://developer.axis.com

614 CHAPTER 19. ASYNCHRONOUS SERIAL PORT

Registers Description

rw tr ctrl
rw rec ctrl

Control registers for transmitter and receiver.

rw tr bauddiv
rw rec bauddiv

Baud rate divider values.

rw dout Transmit data.

rs statdin
r statdin

Status and receive data registers. Reading thers statdin
register will clear the receiver status fields, whiler statdin is
read without any side effect.

rw tr dmaen Transmitter DMA enable.

rw xoff
rw xoff clr

Controls automatic xoff detection.

rw rec eop Generates end of packet for the receive DMA.

rw intr mask
rw ack intr
r intr
r maskedintr

Interrupt control.

Table 19.2:Asynchronous serial port registers

19.3.2 Baud rate selection

The baud rate is set by a combination of a base frequency and a divide factor. The baud
rate will be:

base frequency / (8 * divide factor)

The following base frequencies are available:

· 100 MHz

· 32.768 MHz

· 32 MHz

· 29.493 MHz

· External clock (maximum 83 MHz)

The divide factor can be set in the range 1-65536. This gives a baud rate range from
56.25 baud to 12.5 Mbaud.

The baud rate can be set individually for the receiver and transmitter. For the transmit-
ter, the base frequency is set in thebasefreqfield of rw tr ctrl, and the divide factor is
set inrw tr bauddiv. For the receiver, the base frequency is set in thebasefreq field
of rw rec ctrl, and the divide factor is set inrw rec bauddiv. For a divide factor of
65536, the corresponding register should be set to 0.

Standard baud rates in the range 75 baud to 3.6864 Mbaud can be achieved with the
29.493 MHz base frequency:

19.3. FUNCTIONAL DESCRIPTION 615

Baud rate Divide factor

75 49152

150 24576

300 12288

600 6144

1200 3072

2400 1536

4800 768

9600 384

19200 192

38400 96

57600 64

76800 48

115200 32

230400 16

460800 8

921600 4

1843200 2

3686400 1

Table 19.3:Baud rates and divide factors

The baud rates derived from this table will be 64 ppm faster than the nominal baud rate
value.

19.3.3 Serial protocol operation modes

The operation modes for the transmitter are configured inrw tr ctrl, and for the receiver
they are configured inrw rec ctrl.

19.3.3.1 Character format

The receiver and transmitter can be individually configured for 7 or 8 data bits and odd,
even, mark, space or no parity.

The transmitter can be configured for one or two stop bits.

The receiver can be configured to take one sample in the middle of each bit or to take
the majority of three samples.

19.3.3.2 Handshake signals

The transmitter can be configured to handlects n automatically, or to ignorects n.
When automaticcts n handling is selected, a high on thects n input will halt the
transmitter after the ongoing byte, and keep it halted untilcts n becomes low again.

The rts n output can be controlled via therw rec ctrl register. Therts n output can
also be used as a direction control to the external transceiver for RS 485 operation, see
section19.3.3.4below.

616 CHAPTER 19. ASYNCHRONOUS SERIAL PORT

19.3.3.3 Automatic xoff handling

The serial port can be configured to detect when an xoff character is received, and to
automatically stop transmission after the ongoing byte. The enabling of the automatic
xoff mode and the character code for the xoff character are configured in therw xoff
register.

A detected xoff character will set thexoff detectfield in thers statdin andr statdin
registers. After the ongoing byte is completely transmitted, thetr idle andtr empty
status fields and interrupts will also be set. The xoff detected condition is cleared by
writing to the rw xoff clr register. The xoff detected condition will also be cleared
when the automatic xoff handling is turned off, or when the serial receiver is disabled.

19.3.3.4 RS 485 operation

For RS 485 operation, therts n signal is used as a direction control for an external
transceiver. The value of therts n field in therw rec ctrl register should be set to the
value corresponding to the ”transmitter off” state of the external transceiver.

RS 485 direction control is enabled by theauto rts field of rw tr ctrl. When enabled,
the rts n output will toggle in the beginning and end of a transmission. The set up
time for rts n before the transmission and the hold time after the transmission can be
configured in therts setupandrts delayfields of rw tr ctrl. If transmission of a new
byte is initiated before the time set byrts delayhas expired, norts n toggling will
occur between the two bytes.

To avoid reception of the transmitted data, the receiver can be configured for half du-
plex operation. In this mode, the receiver is disabled while there is an ongoing trans-
mission. The half duplex mode is set in thehalf duplexfield of rw rec ctrl.

19.3.3.5 Stop transmitter

The transmitter can be stopped in a controlled way by using thestop field of the
rw tr ctrl register.

When thestopfield is set, the transmission of the ongoing byte (if any) will be com-
pleted including the specified number of stop bits. Thereafter thetr emptyandtr idle
fields of thers statdin andr statdin registers will be set, and thetxd output will be
set to the value of thetxd field of rw tr ctrl.

19.3.3.6 Internal loop back

The serial port has an internal loop back mode which is controlled by theloopbackfield
of rw rec ctrl. When set, thetxd signal is internally looped back to therxd signal, and
the externalrxd input is ignored. The transmitted data is still output on the external
txd signal. Therts n andcts n signals are not affected by the loop back mode.

19.3. FUNCTIONAL DESCRIPTION 617

19.3.4 CPU controlled operation

19.3.4.1 Transmitter

Data to be transmitted is written to therw dout register. This starts the transmission
and clears thetr rdy field in rs statdin andr statdin. If interrupts are used, thetr rdy
interrupt should be cleared by writing to therw ack intr register after the transmission
is started.

When the transmitter is ready to accept new data from the CPU, thetr rdy field is set
in rs statdin andr statdin. This also sets thetr rdy interrupt.

CPU controlled transmission can take place independent of whether DMA is enabled
or not. If data is available from both sources, the CPU transmission will have priority.

The two status fieldstr emptyandtr idle in rs statdin andr statdin can be used to
check when a transmission is completed.

The condition fortr idle is:

(no ongoing transmission) and
((DMA disabled) or
((automatic xoff) and (xoff detected)) or
(transmitter stopped) or (transmitter disabled))

The condition fortr emptyis:

(no ongoing transmission) and
((DMA disabled) or (DMA FIFO empty) or
((automatic xoff) and (xoff detected)) or
(transmitter stopped) or (transmitter disabled))

19.3.4.2 Receiver

When data is available from the receiver, thedav in rs statdin andr statdin is set.
This also sets thedavinterrupt.

Received data is available in thedatafield of thers statdin andr statdin registers.
Reading thers statdin register will clear thedavfield, while reading ther statdin will
leave the status unchanged.

When interrupts are used, thedavinterrupt should be cleared by writing torw ack intr
after thedavstatus has been cleared.

If the serial receiver encounters a parity error, framing error or overrun error, the er-
rors are indicated in thers statdin andr statdin registers. The error status is valid
whenever thedavfield is set, and is cleared when thers statdin register is read.

Data can be read by the CPU even if the receiver is in DMA mode. This will not affect
the DMA data stream.

618 CHAPTER 19. ASYNCHRONOUS SERIAL PORT

19.3.5 DMA controlled operation

19.3.5.1 DMA channel connections

The serial port can be connected to internal DMA. The transmitter and receiver have
separate DMA channels and can be configured independently. The mapping between
serial ports and DMA channels is described in10.

19.3.5.2 Transmitter

DMA transmission is enabled in therw tr dmaen register. Before a DMA transmis-
sion can take place, the internal DMA channel must be connected to the serial port and
started. How to set up the internal DMA is described in5.

The transmission continues as long as there is data available, or until an outeop is
present in a DMA descriptor, see5. When outeop is set, theenfield of rw tr dmaen
is cleared after the data buffer associated with the DMA descriptor has been fully pro-
cessed. An outeop will thus stop further DMA transfers. To continue, theenfield of
therw tr dmaenmust be set again.

The completion of a DMA transmission can be detected by thetr empty or tr idle
fields in rs statdin andr statdin. The criteria for the two status bits are defined in
section19.3.4.1above. Note that thetr emptystatus can be used as an indication of a
completed DMA transfer only if the associated DMA channel has reached end of list.
The use oftr idle for indication of DMA completion requires that the outeop is set in
the last descriptor of the DMA transfer.

19.3.5.3 Receiver

Receiver DMA is enabled in thedmamodefield of rw rec ctrl. Before reception
through DMA can take place, the internal DMA channel must be connected and started.
How to set up the internal DMA is described in5.

In a DMA controlled operation, received data is sent to the connected internal DMA
channel. The DMA may buffer up to 32 bytes before any data is written to memory.
Therefore, after the last byte is received there may be up to 32 bytes left in the DMA. To
write out the remaining data to memory, an ineop must be issued to the DMA channel.
This can be done in two ways:

1. Software generated ineop

2. Time out based ineop

The software can generate an ineop by writing to therw rec eopregister.

Time out based ineop generation is enabled by setting theautoeopfield in rw rec ctrl.
An in eop will be generated if no new data is received after the timeout configured in
thetimeoutfield of rw rec ctrl. The timeout can be configured to 0-7 character times.
A value of 0 will result in an ineop as soon as characters are not received back to back.

19.3. FUNCTIONAL DESCRIPTION 619

At least one character must be received in DMA mode before a time out based ineop
is generated.

If autoeopis set during DMA mode reception, and the DMA mode is disabled while
keeping theautoeopset, an ineop is generated immediately provided that at least one
byte was received since the DMA was started or the previous ineop was given. If
autoeopis disabled at the same time as the DMA mode, no ineop is generated.

To handle receive errors in a DMA controlled operation, there are two different modes,
controlled by thedmaerr field in rw rec ctrl:

1. Stop on error

2. Ignore errors

Stop on error In this mode, a receive error generates an ineop to the DMA, and halts
the receiver. The byte causing the error, and any bytes arriving thereafter, will be
discarded until the error condition is cleared.

The error status and the data inrs statdin andr statdin will be updated accord-
ing to the last discarded byte. For example, if a parity error or framing error
occurs, and a correct byte arrives thereafter, both bytes will be discarded, the
parity error and framing error status will be cleared and the overrun error status
and recerr status will be set. The last discarded byte will be present in thedata
field of thers statdin andr statdin registers.

The error condition is cleared by reading thers statdin register. The occurrence
of an error can be detected through the ineop interrupt from the DMA channel.

Ignore errors In this mode, bytes containing parity errors or framing errors will be
forwarded to the DMA. Overrun errors will cause lost bytes, but no errors will
halt the DMA. The error status will be updated according to the last arriving
byte. Therec err field in rs statdin andr statdin can be used to check whether
any errors occurred during the data transfer.

The dav field will not be affected by whether DMA is enabled for the receiver or
not. Thus,dav will be set as soon as a byte is received, and will remain set until the
rs statdin register is read by software. When disabling the DMA mode, thedavfield
must be cleared in order to avoid overrun errors if polled or interrupt driven operation
will follow.

19.3.6 Interrupts

The serial port has the following interrupts:

tr rdy The tr rdy interrupt is generated whenever the serial transmitter is ready to
receive a new data byte for transmission.

tr empty Thetr emptyinterrupt is generated whenever thetr emptystatus is set. The
criteria for generating trempty are defined in section19.3.4.1above.

620 CHAPTER 19. ASYNCHRONOUS SERIAL PORT

tr idle Thetr idle interrupt is generated whenever thetr idle status is set. The criteria
for generating tridle are defined in section19.3.4.1above.

dav Thedavinterrupt is set whenever new data is available from the serial receiver.

Note that all interrupts are generated whenever the corresponding status bits are set, but
the interrupts remain active until they are cleared by writing to therw ack intr register.
If the corresponding status bit is still set when the interrupt is cleared, the interrupt will
be generated again immediately.

All interrupts can be masked through therw intr maskregister. The masked and non-
masked interrupts can be read from ther maskedintr andr intr registers.

19.4 Hardware Interface

19.4.1 Input and output signals

Each serial port has five I/O signals:

Signal Direction Description

cts n in Clear to send

ext clk in Clock input for external baud rate clock.

rxd in Receive data

rts n out Request to send / transceiver direction

txd out Transmit data

Table 19.4:Serial port signals

The ETRAX FS contains four asynchronous serial ports. Port 0 is always available,
and the three other ports are shared with other functions. The mapping of serial port
signals to I/O pins is described in16. Theext clk input signal is shared between all
four serial ports and also shared with other functions.

I/O pins have LVTTL signal levels, and external buffers are needed to adapt to the
RS232 or RS485 standard. Thes0txd ands0rts n outputs of serial port 0 will go high
immediately at reset. If the application requires immediately defined output values on
the other serial ports, it can be achieved with pull up resistors.

19.5. SOFTWARE INTERFACE 621

19.4.2 Signal timing

t1

t2 t3

t2 t3

t4

t5 t5

clk

rts_n
txd

ext_clk

cts_n
rxd

Figure 19.1:Signal timing

Nbr Name Description min max unit note

t1 tod Output delay from internal clock 2 9 ns -

t2 tsu Input setup to internal clock 4 - ns 1

t3 th Input hold time from internal clock 0 - ns 1

t4 tecp Clock period of extclk 12 - ns -

t5 tecw Pulse width of extclk 4 - ns -

Table 19.5:Asynchronous serial timing

Note 1: Thects n, rxd andext clk are internally synchronized. Setup and hold times
can be ignored unless recognition in a specific clock cycle is required.

19.5 Software Interface

19.5.1 General

The serial port is controlled through a set of registers, see25.40for details. To access
the registers, fields and register constants from a C program, a set of macros is defined
in [MACROS].

The I/O signals of serial ports 1 to 3 are multiplexed with other functions. Before the
output signals of serial port 1 to 3 can be used, the pins must be configured, see16.
Serial port 0 is always available.

19.5.2 DMA operation

The serial port can be polled, interrupt driven or DMA controlled. If DMA is used, the
corresponding DMA channels must first be connected to the serial port, see10, and the

622 CHAPTER 19. ASYNCHRONOUS SERIAL PORT

DMA must be set up and started, see5. The serial port DMA operation uses simple
data descriptor lists. Data descriptors for serial port operation should not have the wait
field set.

For output descriptors, the outeop field of the descriptor can be used to stop the DMA
operation of the transmitter after all data associated with the descriptor has been trans-
mitted. Thetr idle status and/or interrupt can be used to indicate that the transmitter
has stopped. The DMA transmissions can be resumed by writing torw tr dmaen.

If the output DMA reaches end of list the transmitter will halt when all data has been
transmitted. This condition can be detected by thetr emptystatus and/or interrupt in
conjunction with the end of list status from the DMA. Note that it is not sufficient to
look only at tr emptysince this status may occur also in case of a temporary DMA
underrun situation.

The input DMA channel may buffer up to 32 bytes before any data is written to the
memory. To write out the remaining data, an ineop has to be issued to the DMA. How
to do this is described in19.3.5.3.

Chapter 20

ATA Interface

20.1 References

reference Description

[DMA MDS] Documentation for the internal DMA channels, chapter5.

[ATAREGS] ATA interface mode registers, chapter25.3.

[ATASTD] Information technology - AT Attachment with Packet Interface
- 6 (ATA/ATAPI-6)

[PINMAP] The ETRAX FS external pin database, chapter16.

[STRMUX] Documentation for the DMA channel connections, chapter10.

[MACROS] Register macros for the ATA interface,
http://developer.axis.com

Table 20.1:References

20.2 Definitions

ATA Advanced Technology Attachment interface, described in this
document.

PIO The Programmed Input/Output ATA transfer mode

DMA Direct Memory Access, referring to the ATA transfer mode unless it
is explicitly stated that DMA refers to an internal DMA channel.

UDMA The Ultra Direct Memory Access ATA transfer mode

Table 20.2:Definitions

20.3 Overview

The Advanced Technology Attachment (ATA) interface implements PIO mode, DMA
mode and UDMA mode transfers between the ETRAX FS and an externally connected
ATA compliant device, for example a hard disk, CD-ROM or CD writer.

623

http://developer.axis.com

624 CHAPTER 20. ATA INTERFACE

In ATA, most of the state logic and intelligence resides in the host’s driver software and
in the connected device’s firmware, so the interface is not very complex.

Basically, the PIO mode transfers allow the host to read and write internal device regis-
ters. This is useful when configuring future data transfers which are done over the bus
using one of the three transfer modes mentioned above.

It is up to the driver software to decide what commands to use to tell the device to send
or receive the desired data, and to know what to do with received data or when to send
data. The hardware interface just does the transfer.

The interface communicates its state and initiates transfers based on software accesses
to its registers. Preferably, data should be transferred to or from memory via internal
DMA channels to achieve maximum performance.

Data can also be transferred via registers in the PIO and DMA ATA transfer modes. For
example, data can be transferred using these modes to simplify driver software where
performance is not an issue, or if the internal DMA channels are unavailable.

Configuration registers for selecting the ATA bus handshaking timings to use exist as
well, so different submodes of the supported transfer modes can be selected.

The attached devices can signal an interrupt to the host. This interrupt is transparent to
the ATA interface itself - it is only used for communication between the device and the
host software.

While there is only a single ATA controller in the ETRAX FS, support for up to four
external ATA buses exists, by duplicating the necessary control wires and multiplexing
them internally. As a result, parallel transfers among the buses are not possible.

20.4 Functional description

The ATA interface is controlled through registers, see the ATA interface register de-
scription25.3for details on registers mentioned below.

20.4.1 Transfer parameters

Each transfer has a number of parameters:

· Bus selection (0-3)

· Bus address A0/A1/A2/CS0/CS1

· Transfer length

· Transfer handshaking mode (PIO/DMA/UDMA)

· Transfer speed/timing (referred to as submode timing below, and sometimes re-
ferred to as PIO/DMA mode 0, 1, 2 etc)

· Memory transfer mode (register based or internal DMA based)

20.4. FUNCTIONAL DESCRIPTION 625

Except for the transfer submode timings and transfer length, the other parameters are
set at the same time as the transfer is started by a single write to therw ctrl2 register.
The submode timings as well as some other configuration bits need to be written to
the rw ctrl0 and rw ctrl1 registers before any transfer is started. If the transfer is a
multiword transfer (most are, except for device register accesses) then therw trf cnt
register also needs to be loaded with the number of words to transfer before any transfer
is initiated.

For all transfers, the software must wait for the busy bit inrs statdatato clear before
initiating the transfer.

20.4.2 Host transfer method

If memory transfer is done through an internal DMA channel, the associated channel
should be initialized and started before any transfer is initiated. The ATA interface used
in ETRAX FS uses internal DMA channels 2 and 3. In order for the interface to get
access to them, the strmux must be configured. For details about how to configure the
strmux, please refer to10.

In a typical software driver, device commands are issued through register-based PIO
transfers and bulk data is transferred using internal DMA in combination with ATA
DMA or UltraDMA mode bus transfers at the highest speed the device supports.

There are three transfer lengths involved in an ATA data transfer:

1. the transfer counter in the interfacerw trf cnt

2. the internal DMA descriptor lengths (if internal DMA is used)

3. the transfer length written by an ATA command to the device.

Normally, the transfer length written to therw trf cnt register should match the total
length of the enabled DMA descriptors and the amount of data requested to transfer
to/from the ATA device. During device reads, the ATA interface will issue an EOP
to the internal DMA channel when the transfer counter reaches zero. The transfer
counter also controls the length of the transfer during writes. When the interface is
configured for UltraDMA, the transfer counter value shall include the word containing
CRC meaning that the value must be increased by one. The EOP bit in the out channel
descriptors should not be set.

The software has to set up the DMA channels to have the same transfer width as the
ATA transfer to be started. In most circumstances this should be 16 bits wide.

20.4.3 Address counter

The ATA address bus is 3 bits wide. Address 0 is used when doing bulk data transfer,
but the other 7 addresses usually correspond to device registers that are to be loaded
with data to initiate an ATA command. Usually the software writes these registers
individually using PIO mode and a register controlled data transfer.

626 CHAPTER 20. ATA INTERFACE

However, internal DMA can also be used to load the different registers in succession
because when any of the registers except the data transfer register (0) is accessed, the
address is increased by one. So in order to load ATA registers 1 to 7 with data, a DMA
descriptor of length 7 can be set up and the transfer initialized to ATA address 1. This
is usually only a very minor optimization compared to a register controlled load, since
the device specifications often mandates that the actual ATA bus transfer mode used
for the register access is a relatively slow PIO mode anyway.

20.4.4 Interrupts

Each ATA bus has an interrupt signal that can be raised by an attached device. The
interrupts can be masked using therw intr maskregister.

The interrupts are level triggered, i.e., the internal interrupt will be set whenever the
ATA bus interrupt signal is active, and will remain set until acknowledged in the
rw ack intr register inside the ATA interface. If the ATA bus interrupt signal is still
active when the corresponding internal interrupt is acknowledged, the internal inter-
rupt will immediately be set again.

20.4.5 Handling timeouts and errors

High-level error conditions are reported to the host software by the ATA devices us-
ing the normal ATA register polling and interrupt methods and does not require any
separate support in the ATA interface.

However sometimes the low-level handshaking can be disrupted, either because of
faulty device implementations, faulty cabling/electronics or configuration errors. The
interface’s internal state might get stuck waiting for a protocol event that never happens
or the internal DMA channels might be configured to read more data than the device is
commanded to read.

The interface hardware does not detect such conditions since for most protocol opera-
tions, it is legal for the device to pause indefinitely. It is up to the driver software to set
timeouts and reset the interface if it decides something is wrong.

20.5 Hardware interface

In this document we specify the ATA interface external signals. These signals will in
turn be mapped onto the ETRAX FS’s external pins. For details about the mapping of
the signal names mentioned below onto the ETRAX FS’s pins, please refer to16.

The direction of the signals in the ATA interface is given below. Signal names ending
with an underscore and n (n) are active low. Explanations:

I/O Bidirectional signal that changes direction during operation.

In Input signal, signal from device to host.

Out Output signal, signal from host to device.

20.5. HARDWARE INTERFACE 627

The ATA interface has the following external signals:

General
signals

Direction Description

resetn Out Reset

ext oe Out Data output enable

cs n[0] Out Chip select bit 0

cs n[1] Out Chip select bit 1

Table 20.3:General signals

Address/data
signals

Direction Description

a[0] Out Device address0

a[1] Out Device address1

a[2] Out Device address2

data[0] I/O Data bus bit0

data[1] I/O Data bus bit1

data[2] I/O Data bus bit2

data[3] I/O Data bus bit3

data[4] I/O Data bus bit4

data[5] I/O Data bus bit5

data[6] I/O Data bus bit6

data[7] I/O Data bus bit7

data[8] I/O Data bus bit8

data[9] I/O Data bus bit9

data[10] I/O Data bus bit10

data[11] I/O Data bus bit11

data[12] I/O Data bus bit12

data[13] I/O Data bus bit13

data[14] I/O Data bus bit14

data[15] I/O Data bus bit15

Table 20.4:Address/data signals

Control signals Direction Description

dior n[0] Out I/O read device 0

dior n[1] Out I/O read device 1

dior n[2] Out I/O read device 2

dior n[3] Out I/O read device 3

diow n[0] Out I/O write device 0

diow n[1] Out I/O write device 1

diow n[2] Out I/O write device 2

diow n[3] Out I/O write device 3

iordy[0] Out I/O ready device 0

iordy[1] Out I/O ready device 1

iordy[2] Out I/O ready device 2

iordy[3] Out I/O ready device 3

dmackn[0] Out DMA acknowledge device 0

628 CHAPTER 20. ATA INTERFACE

dmackn[1] Out DMA acknowledge device 1

dmackn[2] Out DMA acknowledge device 2

dmackn[3] Out DMA acknowledge device 3

dmarq[0] In DMA request device 0

dmarq[1] In DMA request device 1

dmarq[2] In DMA request device 2

dmarq[3] In DMA request device 3

intrq[0] In Interrupt request, device 0

intrq[1] In Interrupt request, device 1

intrq[2] In Interrupt request, device 2

intrq[3] In Interrupt request, device 3

Table 20.5:Control signals

Most signals in the ATA interface are independent of operating mode. However there
are three control signals that are multiplexed for different usage depending on operating
mode and they are explained below. I/O read (diorn) is used as DMA ready during
Ultra DMA data in bursts and as data strobe during UltraDMA data out bursts. I/O
write (diow n) is used as stop during UltraDMA data bursts. Finally the iordy signal
is used as DMA ready during UltraDMA data out bursts and as data strobe during
UltraDMA data in bursts.

To be able to handle up to 4 devices in parallel, the ATA interface has 4 sets of control
signals. The data and address lines are multiplexed so only one device may use them
at any given time.

20.6 Software interface

In the following sections a short description of the ATA interface’s software interface
is given.

20.6.1 Configuration registers

There are a number of registers which may be configured by software. All registers
are described in25.3. To access the registers, fields and register constants from a C
program, a set of macros is defined in [MACROS].

20.6.2 DMA descriptors

The ATA interface requires at least one data descriptor for each DMA channel. When
creating a DMA descriptor list, the EOP bit should not be set in any descriptor while
the EOL bit should be set in the last descriptor of the list. The width of the data channel
used by the DMA must be configured by software before any transfers are initiated. In
most cases the width will be 16 bits. The above is true for both the in and out channel.
For further details on how to configure the DMA, please refer to5.

20.6. SOFTWARE INTERFACE 629

20.6.3 Transfer modes

There are three available transfer modes, PIO, DMA and UDMA. Please refer to25.3
for details on how to configure the interface for each mode.

20.6.4 Software reset

The interface state can be reset using theenfield in therw ctrl0 register, thus allowing
the interface to be reconfigured. Therstfield in the same register can be used to reset a
device connected to the ATA interface.

630 CHAPTER 20. ATA INTERFACE

Chapter 21

Ethernet Interface

21.1 References

Reference Description

[IEEE8023] IEEE Std 802.3, 1998 Edition

[ETHREGS] Mode registers, chapter25.12

[ETH H] C macros,http://developer.axis.com

[DMA MDS] DMA, chapter5

[PINMAP] Pinout, chapter16

[STRMUX] DMA connection, chapter10

[BOOT MDS] Boot methods, chapter6

Table 21.1:References

21.2 Definitions

Term Description

DMA out DMA out means DMA out from memory into the Ethernet interface.

DMA in DMA in is DMA from the Ethernet interface to the memory.

EOP The DMA data descriptor end of packet control bit.

EOL The DMA data descriptor end of list control bit.

PHY Physical Layer in the OSI 7 layer model described in section 3.1

(Ethernet)
Station

The portion of the Ethernet hardware that resides in any networked
computer equipment, such as a personal computer (PC) file server,
mainframe computer or printer

MAC Media Access Control sublayer in the OSI 7 layer model. See section
3.1.

GAT Group Address Table, used for deciding if if a group addressed frame
should be received or not, see section 4.2.2.

MDIO Management Data Input Output interface, a serial interface used for
communicating with the PHY.

SOF Start Of Frame delimiter byte, which is part of an Ethernet frame.

Table 21.2:Definitions

631

http://developer.axis.com

632 CHAPTER 21. ETHERNET INTERFACE

21.3 Overview

The ETRAX FS includes two on-chip instances of the Ethernet interface. The interface
supports transfer rates of 10 Mbit/s and 100 Mbit/s, using the the Media Independent
Interface (MII) as external interface toward the Physical layer. The Ethernet interface
is connected to two DMA channels, one in each direction. When receiving and trans-
mitting packets over a Local Area Network (LAN) the Ethernet MAC sublayer keeps
track of the network status and checks that packets has been transmitted and received
correctly. To understand where the Ethernet interface fits in the network hierarchy the
OSI 7 layer model can be of help. In the table below the Ethernet interface implements
part of the Data Link Layer, more precisely the MAC sublayer.

Application layer (7)
User interface to network

Presentation layer (6)
Compression, transformation, syntax and presentation

Session layer (5)
Sets up and manages sessions between users

Transport layer (4)
Creates and manages connection between

sender and recipient

Network layer (3)
Controls routing of information and packet

congestion control

Data link layer (2)
Ensures error free transmission, dividing data into frames

and acknowledgement and recognition of frames

Physical layer (1)
Transmits raw bits over communications

channel, ensures bit value

LLC Sublayer

MAC Sublayer

PHY layer

IEEE 802.3 CSMA/CD model

OSI 7 Layer reference model

Figure 21.1:OCI and IEEE 802.3 model comparison

When sending data over an Ethernet network, data is separated into frames (packets).
The frame format is shown in the figure below, all lengths are in bytes.

Destination
Address

S
O
F

Source
Address Type Data CRC

7

Preamble

1 6 6 2 46-1500 4

Figure 21.2:Frame format

Before using the interface there are two things that needs to be done. First you need to
configure the interface’s registers such as MAC address and half or full duplex etc. A
full description of the Ethernet interface registers is given in25.12. After configuring
the interface the user needs to setup and activate one or multiple DMA descriptors

21.4. FUNCTIONAL DESCRIPTION 633

linked together as a list for each of the DMA channels. When finished the Ethernet
interface is ready to receive and transmit data over a network.

A system overview diagram:

System memory

Ethernet MAC
(Transmit)

DMA out

Network
(LAN)

DMA in

Ethernet MAC
(Receive)

Figure 21.3:System overview

21.4 Functional description

21.4.1 Transmitter

When transmitting, the Ethernet interface starts by sending the preamble and the SOF.
After that the interface continues by reading data from the memory via the DMA,
starting with the destination and source addresses followed by the type field, continuing
with the data payload. The interface continues to read data from the DMA out channel
until EOP is reached. When EOP is reached, the transmitter will automatically append
the frame’s CRC. Thecrc field in the rw tr ctrl register can be used to disable the
transmitter from appending the CRC. The table below shows which parts of the frame
that are provided by the Ethernet interface and which parts that are read from memory.

Frame field Source

Preamble Generated by the Ethernet interface

SOF delimiter Generated by the Ethernet interface

Destination address Read from memory

Source address Read from memory

Type Read from memory

Data Read from memory

CRC Generated by the Ethernet interface

Table 21.3:Transmit frame source

Packets shorter than minimum length (64 bytes) can be automatically padded by the
interface. The interface will in this case increase the length by appending zeros to
the data payload. Automatic padding is enabled by configuring thepadfield in the
rw tr ctrl register.

634 CHAPTER 21. ETHERNET INTERFACE

21.4.1.1 Error handling

If the medium is free the transmitter may start a transmission. There are two events
that will cause an error when transmitting, these are:

· Collisions

· Buffer underrun

When a collision is detected, a jam sequence will be sent. The jam sequence ensures
that all stations on the network detect the collision. The sequence consists of 32 bits,
all 1’s. After that, the Ethernet interface will wait a random backoff time before trying
to transmit the frame again. After a collision has been handled the appropriate error
counter in ther tr cnt register will be incremented. If 15 retries are made without
success the DMA list will be restored and the excessive collision interrupt will be
generated. The transmitter will then wait until theclr field in therw clr err register has
been set. When theclr field is set, the transmitter will resume operation again, starting
with the packet that generated the excessive collision.

Buffer underrun is handled in much the same way as excessive collisions. Buffer un-
derrun occurs when the DMA out channel can not deliver data at the rate required by
the Ethernet interface. In this case the interface will detect the underrun condition and
abort the transmission by sending a 32 bit jam sequence. After that, the interface will
stop and generate an underrun interrupt. By setting theclr bit in therw clr err register,
the transmitter will resume operation again starting with the packet that generated the
underrun.

21.4.2 Receiver

When receiving, the Ethernet interface starts by sensing the preamble and SOF which
are used by the receiver to lock to an incoming bit stream. After that it receives the
destination and source addresses. The rest of the frame will be received if one of
following three criteria is fulfilled:

1. The destination address matches an enabled station address.

2. The destination address is a broadcast address and the reception of broadcast
frames has been enabled. Please refer to section 4.2.1.

3. The destination address is a group (multicast) address that matches the GAT or
it is a unicast address that matches the GAT at same time as theindividual field
in therw rec ctrl register is set.

If none of the above is fulfilled, the frame will be discarded.

Assuming that one of the criteria above is fulfilled, the interface then continues by
receiving the type field, followed by the frame payload. In parallel with receiving the
frame, the interface calculates the CRC for the frame. This value is compared with the
CRC included in the frame. If these two matches, the frame is received without errors

21.4. FUNCTIONAL DESCRIPTION 635

and the CRC is written to memory. If not, the frame is discarded unless thebadcrc
field in therw rec ctrl register is configured to allow erroneous CRC.

Table 4.2 illustrates which frame segments that are written to memory and which that
are removed by the receiver.

Frame field Action

Preamble removed by the receiver

SOF delimiter removed by the receiver

Destination address written to memory

Source address written to memory

Type written to memory

Data written to memory

CRC written to memory

Table 21.4:Receiver frame format

21.4.2.1 Address recognition

There are three types of addresses defined in the IEEE 802.3 standard [IEEE8023].
Below is a description of each type and how they are used:

· Individual address

The individual address is a 48 bit unique address assigned to one station on the
network. The Ethernet interface supports two different station addresses, MA0
and MA1. The addresses are defined by writing to therw ma0 lo/rw ma0hi and
rw ma1 lo/rw ma1hi registers. To enable recognition of each address thema0
andma1fields in therw rec ctrl register are used.

· Group address

The group (multicast) address is used to index the 64-bit Group Address Table
(GAT). The 6-bit hash address used to index the GAT is derived from the 48 bit
destination address (DA) using the following formula:

GAT index[5:0] = DA[5:0]ˆ DA[11:6] ˆ DA[17:12] ˆ DA[23:18] ˆ DA[29:24]
ˆ DA[35:30] ˆ DA[41:36] ˆ DA[47:42]

Note:ˆ means XOR

There are two registersrw ga hi andrw ga lo which contains the GAT.

The indexed entry in the GAT indicates whether the frame should be copied to
memory or discarded.

· Broadcast address

Reception of frames with broadcast address, FF:FF:FF:FF:FF:FF, can be enabled
using thebroadcastfield in therw rec ctrl register.

21.4.2.2 Received frame length check

The lengths of the incoming frames can be checked against the specific limits of the
IEEE 802.3 [IEEE8023] frame format:

636 CHAPTER 21. ETHERNET INTERFACE

- Minimum: 64 bytes - Maximum: 1518 or 1522 bytes

The maximum length of a standard Ethernet packet is 1518 bytes. The length can be
extended to 1522 bytes when VLAN tagging, according to IEEE 802.1q, is used. The
maximum length is configured with themax sizefield in therw rec ctrl register.

If the frame length check is enabled and the frame length is outside of these boundaries,
the frame is discarded. The frame length check is enabled using theoversizeand
undersizefields in therw rec ctrl register.

21.4.2.3 Error handling

There is a number of error events that the receiver can detect:

· Buffer overrun

· CRC and alignment errors

· Oversized/undersized frames

These errors are all handled in the same way. The interface detects an error, discards
the current frame, increments the appropriate error counter and then waits for a new
frame.

21.4.3 Duplex and flow control

The choice of half or full duplex is made manually by configuring theduplexfield in
therw rec ctrl register. However, when the ETRAX FS is configured for network boot
mode, the choice of half or full duplex is made automatically by reading an external
pin, please refer to6 for further details. If half duplex is used the interface will not
transmit and receive packets at the same time. If full duplex is used the interface may
transmit and receive frames at the same time. Both the CRS and COL signals are
ignored in full duplex mode. When configured for full duplex mode, the interface can
be configured to react on 802.3x flow control frames through theflow ctrl field in the
rw genctrl register.

Note: If a flow control frame is received with an incorrect OP code, this frame will
be received and written to memory. The software handling the memory buffers should
discard these packets.

21.4.4 MDIO interface

The MDIO interface is used when reading and writing the MII management registers
inside the PHY. Externally the interface consists of two signals, mdio (management
data input output) and mdc (management data clock). To control these signals there are
three fields available in therw mgm ctrl register,mdio, mdcandmdoe(management
data output enable). The mdoe signal selects the direction of the mdio pin. Themdio
field selects the value on the mdio pin. Themdcfield controls the mdc pin which is used
as clock for the mdio pin regardless of direction. To read the value of the mdio pin the

21.4. FUNCTIONAL DESCRIPTION 637

mdio field in ther statregister should be read. All three fields should be controlled by
the software driver. The exact details of how to configure the MDIO interface depends
on which PHY that is used.

21.4.5 Error and statistics counters

There are 10 different error and statistics counters. The purpose of these counters are to
track certain statistics like number of frames with CRC errors and number of collisions.
This is useful when analyzing a network. Below is a list of all counters available with
a short explanation:

· crc err

This counter tracks the number of frames with CRC error. The counter is used
to update the aFrameCheckSequenceErrors counter described in [IEEE8023].

· align err

This counter tracks the number of frames with alignment error. The counter is
used to update the aAlignmentErrors counter described in [IEEE8023].

· oversize

This counter tracks the number of oversized frames. The counter is used to
update the aFrameToLongErrors counter described in [IEEE8023].

· congestion

This counter tracks the number of otherwise correct frames that were not re-
ceived due to a receiver overrun condition. The counter is used to update the
aFramesLostDueToIntMACRcvError counter described in [IEEE8023].

· singlecol

This counter tracks the number of frames involved in exactly one collision.
The counter is used to update the aSingleCollisionFrames counter described in
[IEEE8023].

· mult col

This counter tracks the number of frames involved in multiple collisions. The
counter is used to update the aMultipleCollisionFrames counter described in
[IEEE8023].

· late col

This counter tracks the number of frames involved in late collisions. The counter
is used to update the aLateCollisions counter in [IEEE8023].

· deferred

This counter tracks the number of deferred transmit frames. The counter is used
to update the aFramesWithDeferredXmissions counter in [IEEE8023].

638 CHAPTER 21. ETHERNET INTERFACE

· carrier loss

This counter tracks the number of transmit frames for which the carrier sense
signal was not constantly present during the transmission. The counter is used to
update the aCarrierSenseErrors counter described in [IEEE8023]. In full duplex
mode the contents of this counter is undefined.

· sqeerr

This counter tracks the number of transmit frames for which the sqe test sig-
nal was not recognized, 10 Mbit mode only. The counter is used to update the
aSQETestErrors counter described in [IEEE8023].

Each counter is 8 bits wide and all 10 counters occupy a total of three status registers.
Each counter will generate an interrupt when it reaches 128 and will saturate when it
reaches 255. The counter values can be read with or without side effects. When reading
a register with side effects, all counters in that register will be reset to zero.

21.4.6 Interrupts

There are 14 different interrupts that the Ethernet interface can generate, below is a list
and a short explanation for each one:

Interrupt Explanation

crc Generated when the CRC error counter reaches 128.

align Generated when the alignment error counter reaches 128.

oversize Generated when the oversize counter reaches 128.

congestion Generated when the congestion counter reaches 128.

singlecol Generated when the single collision counter reaches 128.

mult col Generated when the multiple collision counter reaches 128.

late col Generated when the late collision counter reaches 128.

deferred Generated when the frame deferred counter reaches 128.

carrier loss Generated when the carrier loss counter reaches 128. This
interrupt should be masked off while in full duplex mode.

sqetesterr Generated when the SQE test error counter reaches 128.

orun Generated when receiver overrun has occurred.

urun Generated when transmitter underrun has occurred.

exc col Generated when an excessive collision has occurred.

mdio Generated when the MDIO pin is low. This interrupt should
be masked off during normal transfers over the MDIO
interface.

Table 21.5:Ethernet interrupts

21.4.7 Loop back mode

The Ethernet interface supports internal loop back mode. This means that packets can
be passed directly from the transmitter to the receiver. The loop back mode can be
enabled using theloopbackfield in therw genctrl register.

21.5. HARDWARE INTERFACE 639

21.4.8 Handshake protocol

The Ethernet interface can be configured to operate in handshake mode using thepro-
tocolfield in therw genctrl register. The mode implements a mechanism, allowing the
Ethernet protocol to be used in a simplified manner, where the col and crs pins are used
for requesting and acknowledging data transfers. This mode is intended for a direct
connection between two units as most of the error handling and control mechanisms
has been removed. Please contact Axis Communications AB for further details.

21.4.9 Phyclk pin

Thephyclk pin can be configured to have one of three different functions, by writing
to thephyfield in therw genctrl register:

21.4.9.1 25MHz clock output

A 25 MHz clock that can be used by the PHY is output on thephyclk pin. Set thephy
field tomii clk for this mode.

21.4.9.2 Transmit error

A transmit error signal can be output on thephyclk pin. Set thephyfield tomii for this
mode. It is possible to deliberately corrupt a frame by setting the txer bit in a DMA
data descriptor meta data field (bit 1 of the user configurable meta data field).

21.4.9.3 Address recognized output

In this mode, thephyclk pin will signal if an incoming packet matches the station
address. Set thephyfield tomii arecfor this mode.

21.5 Hardware Interface

The Ethernet interface uses the Media Independent Interface (MII) as external hardware
interface. The signals are described below. The ETRAX FS has two instances of the
Ethernet interface. Ethernet port 0 is always available while port 1 is shared with other
functions. For details on how the MII signals are mapped to the external pins please
refer to16.

21.5.1 External pin description

The direction of the signals in the Ethernet MAC interface is given below. Explana-
tions:

· In Input signal, signal from PHY to MAC.

640 CHAPTER 21. ETHERNET INTERFACE

· Out Output signal, signal from MAC to PHY.

· I/O Bidirectional signal.

The Ethernet MAC interface has the following external pins:

21.5.1.1 Transmitter signals

Signal Direction MII usage

txclk In Transmit clock

txd[0] Out Data out, bit 0

txd[1] Out Data out, bit 1

txd[2] Out Data out, bit 2

txd[3] Out Data out, bit 3

txen Out Transmit enable

phyclk Out 25MHz clock /
Transmit error /
Address recognized

Table 21.6:Transmitter signals

21.5.1.2 Receiver signals

Signal Direction MII usage

rxclk In Receive clock

rxd[0] In Data in, bit 0

rxd[1] In Data in, bit 1

rxd[2] In Data in, bit 2

rxd[3] In Data in, bit 3

rxdv In Receive data valid

rxer In Receive error

Table 21.7:Receiver signals

21.5.1.3 Network status signals

Signal Direction MII usage

crs In Carrier sense

col In Collision

Table 21.8:Network status signals

21.5.1.4 Transceiver management signals

Signal Direction MII Usage

mdc Out Management clock

mdio I/O Management data

21.5. HARDWARE INTERFACE 641

Table 21.9:Transceiver management signals

21.5.2 Reset behavior

At reset, all pins of Ethernet port 0 will be defined within 18clk cycles after the rise
of rst n. All outputs will then be low and thee0mdiopin will be turned off until the
Ethernet interface is started. Since Ethernet port 1 is shared with other functions, all of
its pins will be turned off immediately at reset.

21.5.3 Signal timing

t1

t2 t2

t3

txclk

txdata, txen; phyclk
when used as txer

rxclk

rxdata, rxdv, rxer

t4

phyclk when used
as mii_clk

txdata, phyclk, mdc

t6

t1

t2 t2

t5

t6 t6

t7 t7

t9 t8

mdio

Figure 21.4:Network interface timing

Nbr Name Description min typ max unit

t1 tcp txclk and rxclk clock period 35 - - ns

t2 tcw txclk and rxclk pulse width 10 - - ns

642 CHAPTER 21. ETHERNET INTERFACE

t3 tdd txdata and txen delay from txclk, phyclk
delay from txclk when used as txer

3 - 10 ns

t4 tds rxdata, rxdv and rxer setup time to rxclk 1 - - ns

t5 tdh rxdata, rxdv and rxer hold time from
rxclk

2 - - ns

t6 tcd phyclk delay from internal clock, when
used as 25MHz clock output

2 - 8 ns

t7 tmd txdata, phyclk, mdc and mdio delay
from internal clock when controlled by
therw mgm ctrl register

2 - 8 ns

t8 tme mdio output enable from internal clock 3 - - ns

t9 tmz mdio turn off time from internal clock 1 - 7 ns

Table 21.10:Ethernet interface timing

21.6 Software Interface

In the following sections a detailed description of how to configure and use the Ethernet
interface is given.

21.6.1 Configuration registers

There are a number of registers which may be configured by software. In addition
to these registers there are also a number of status registers which are software read-
only. All registers are described in25.12. C programing macros that can be used when
accessing the registers are available in [ETHH].

21.6.2 DMA and pin configuration

Before the Ethernet interface can be started, it must be connected to the corresponding
internal DMA channels, see10, and the DMA channels must be configured and started,
see5. Ethernet interface 0 has dedicated pins. For Ethernet interface 1, the signals are
multiplexed with other functions, and the pins must be configured before they are used,
see16.

21.6.3 DMA descriptors

The Ethernet interface requires one context descriptor for each DMA channel and at
least one data descriptor for each channel. For details on how to configure the DMA
and set up the descriptors, please refer to5.

21.6.3.1 Transmitter

When configuring the out channel descriptors the last descriptor of a packet must have
the EOP bit and wait bit set. This is signalling to the interface when the last byte of
the data payload is being delivered. The interface continues by sending the four bytes

21.6. SOFTWARE INTERFACE 643

containing the calculated CRC. The interface will then command the DMA to move on
to the next packet or, for example after a collision, to restore the DMA list position.

21.6.3.2 Receiver

When the Ethernet interface is receiving an incoming bit stream, it will write it to
memory via the DMA. When the bit stream reaches its end, the Ethernet interface will
detect it and stop writing data to the DMA in channel. It will then start comparing the
received CRC with its own calculated CRC. If the bit stream is received successfully
the Ethernet interface will store the current DMA context descriptor, signal EOP and
move on to the next descriptor. If the reception of the bit stream is unsuccessful, the
DMA will restore the context descriptor and wait for a new packet.

21.6.4 Software reset

The interface state can be reset using theen field in therw genctrl register, thus al-
lowing the interface to be reconfigured. In order to not reset the interface while it is
transmitting a frame, thecancelfield in therw tr ctrl register can be used. This bit will
stop the transmitter after the current transmission attempt (if any). The transmitter will
then enter the excessive retry state. In order to get the transmitter to resume operation
theclr field in therw clr err register must be set.

21.6.5 Configuration example

Setup of the Ethernet interface can be divided into two parts:

· Setup of DMA data descriptors

· Configuration of Ethernet interface registers

The focus of this section is on how to configure the Ethernet interface, examples of how
to setup a basic DMA descriptor list can be found in5. The following sections show
a typical configuration of the Ethernet interface’s registers, after which the interface is
ready for both reception and transmission of frames.

21.6.5.1 rw gen ctrl

Field Value Explanation

loopback no Normal mode

protocol ether Ethernet (CSMA/CD)

phy mii clk MII with 25MHz clock output on the phyclk pin

en yes Enable interface

Table 21.11:rw genctrl configuration example

644 CHAPTER 21. ETHERNET INTERFACE

21.6.5.2 rw rec ctrl

Field Value Explanation

max size size1518 Max packet size = 1518 bytes

duplex full Full duplex

badcrc discard Discard frames with CRC error

oversize discard Discard oversized frames

undersize discard Discard undersized frames

broadcast rec Receive broadcast frames

individual no The GAT only matches group addresses

ma1 no Enable MA1 address

ma0 yes Enable MA0 address

Table 21.12:rw rec ctrl configuration example

21.6.5.3 rw tr ctrl

Field Value Explanation

ignorecrs no Measure interframe gap from last neg. edge of crs.

hshdelay no No delay (Don’t care in Ethernet CSMA/CD mode)

cancel no Don’t cancel pending transmission attempts

ignorecol no Use collision detection (Don’t care in full duplex)

retry yes Enable transmission retries

pad yes Add padding of short frames in hardware

crc yes Add CRC in hardware

Table 21.13:rw tr ctrl configuration example

21.6.5.4 rw ma0 lo

Lower 32 bits of the Ethernet MAC address, station 0.

21.6.5.5 rw ma0 hi

Upper 16 bits of the Ethernet MAC address, station 0.

21.6.5.6 rw ma1 lo

Lower 32 bits of the Ethernet MAC address, station 1.

21.6.5.7 rw ma1 hi

Upper 16 bits of the Ethernet MAC address, station 1.

21.6. SOFTWARE INTERFACE 645

21.6.5.8 rw ga lo

Lower 32 bits of the group address table.

21.6.5.9 rw ga hi

Upper 32 bits of the group address table.

21.6.5.10 rw test ctrl

Field Value Explanation

backoff no Used during testing, backoff test mode disabled.

snmp no Used during testing, SNMP test mode disabled.

snmpinc dont Used during testing, SNMP test mode increment clock.

Table 21.14:rw test ctrl configuration example

646 CHAPTER 21. ETHERNET INTERFACE

Chapter 22

General I/O

22.1 References

Reference Description

[REGS] Mode registers, chapter25.13

[MACROS] http://developer.axis.com

[PINMAP] Pinout, chapter16

Table 22.1:References

22.2 Overview

The General I/O block controls outputs and reads data on the 80 configurable I/O pins
of the ETRAX FS chip, portspa, pb, pc, pd andpe. The General I/O is multiplexed
with other I/O functions according to [PINMUX].

The interrupt inputs on the 8 pins of portpa are also handled by the General I/O block.

22.3 Functional description

22.3.1 General I/O ports

The general I/O is partitioned into five ports:pa, pb, pc, pd and pe. Port pa is 8
bits wide, and portspb to pe are each 18 bits wide. This partitioning matches the
partitioning of the configurable I/O pins in the ETRAX FS chip, see16.

Each port has one read/write register for output data, and a separate read-only register
for input data. Reading the output data register just returns the data written to the
register, while the input data register returns the actual data on the pins. There is also
one output enable register per port, with an individual direction control field for each
signal in the port.

647

http://developer.axis.com

648 CHAPTER 22. GENERAL I/O

The output data registers drive the output buffers directly without any further logic
except the pin multiplexing described in16. The input data registers read the values on
the pins directly without any intermediate logic.

22.3.2 Interrupts on port pa

The 8 pins on portpa can serve as interrupt inputs. Each of the 8 interrupts can be
individually disabled or set to one of 6 different interrupt modes:

· Level triggered active high

· Level triggered active low

· Interrupt always set

· Positive edge triggered

· Negative edge triggered

· Triggered on both edges

In the level triggered modes, the interrupt will be set as soon as the input goes to the
active level. The interrupt will be active until it is acknowledged in therw ack intr
register, even if the input goes to the inactive level. If the input is still at the active level
when acknowledged, the interrupt will immediately be set again.

Thesetmode always keeps the interrupt set regardless of the level on the input pin. This
mode is intended mainly for test purposes, but it can also be used as a software initiated
interrupt if the pin is not used as an input for an external interrupt. The interrupt will be
active until it is acknowledged in therw ack intr register. If the mode is stillsetwhen
the interrupt is acknowledged, the interrupt will immediately be set again.

The edge triggered modes will set an interrupt when the input makes a transition in
the specified direction. The interrupt will be active until it is acknowledged in the
rw ack intr register.

22.3.3 Reset behavior

After a system reset, all General I/O ports are set to inputs, and all General I/O inter-
rupts are turned off. The content of the output data registers is undefined.

22.4 Hardware interface

22.4.1 General I/O signals

The General I/O is connected to the configurable I/O ports of the ETRAX FS chip:

ETRAX FS Pin General I/O Signals

22.4. HARDWARE INTERFACE 649

pa[7:0] General I/O port pa data + interrupts

pb[17:0] General I/O port pb data

pc[17:0] General I/O port pc data

pd[17:0] General I/O port pd data

pe[17:0] General I/O port pe data

Table 22.2:Configurable I/O Ports

22.4.2 Data output timing

Outputs and output enables are controlled directly from the General I/O mode registers,
with only the combinatorial delay through16and the output buffers.

The timing is given below. The timing figures assume a load of 50 pF on the pins.

1 2 3

clk (100 MHz)

Output

Figure 22.1:Data Outputs

Parameter Explanation Min Max Unit

1 Turn on time from clock 2 9 ns

2 Data delay time from clock 2 8 ns

3 Turn off time from clock 1 8 ns

Table 22.3:Data Outputs

22.4.3 Data input timing

Inputs are read directly from the pins, with only the combinatorial delay through the
input pads.

The timing is given below.

1 2

clk (100 MHz)

Input

Figure 22.2:Data Inputs

650 CHAPTER 22. GENERAL I/O

Parameter Explanation Min Max Unit

1 Set up time to clock 4 - ns

2 Hold time from clock 0 - ns

Table 22.4:Data Inputs

The inputs are synchronized internally, and the setup and hold times only need to be
taken into consideration if detection in a specific clock cycle is required.

22.4.4 Interrupt input timing

The interrupts are synchronized with double flip-flops before they are forwarded to the
r intr register.The interrupt timing is given below.

1 2

clk (100 MHz)

Interrupt in

3

Internal irq

4

Figure 22.3:Interrupt Inputs

Parameter Explanation: Min Nom Max Unit

1 Set up time to clock 4 - - ns

2 Hold time from clock 0 - - ns

3 Pulse width 12 - - ns

4 Detection latency - 20 - ns

Table 22.5:Interrupt Inputs

The setup and hold times only need to be taken into consideration if detection in a
specific clock cycle is required.

22.5 Software interface

The General I/O is controlled through a set of registers, see25.13for details. To access
the registers, fields and register constants from a C program, a set of macros is defined
in [MACROS].

Before General I/O signals can be used as outputs, they must be configured as Gen-
eral I/O in the pin multiplexer for the configurable I/O pins, see16. Input values are
always available for reading through the General I/O, regardless of the pin multiplexer
configuration.

22.5. SOFTWARE INTERFACE 651

22.5.1 Programming considerations

22.5.1.1 Port read after write

Reading the value on a pin immediately after changing the output on the same pin may
give an undefined result.

To read the new value on the pin, the signal must propagate from the output data register
to the input data register within one clock cycle. This may or may not be the case,
depending on the external load on the pin and other factors like e.g. temperature. With
an external load of 50 pF or less, an inserted delay of one clock cycle between the write
and the read is sufficient to always read the updated value on the pin.

22.5.1.2 Acknowledge of level triggered interrupts

In the level triggered interrupt modes, the interrupt will be set whenever the input
is at the active level. In these modes, you will typically need to acknowledge the
interrupts in the external module driving the pin first, and then, after an appropriate
delay, acknowledge the General I/O interrupt through therw ack intr register.

When the required delay is calculated, the two cycle interrupt detection latency, see
22.4.4, must be taken into consideration, as well as any delay in the external unit.

652 CHAPTER 22. GENERAL I/O

Chapter 23

Synchronous Serial Interface

23.1 References

Reference Description

[SSERREG DOC] Registers, chapter25.41

[MACROS] http://developer.axis.com

[PINSPEC] Pinout, chapter16

[I2S] I2S bus specification

[IEC] The IEC60958 standard,http://www.iec.ch

[SPI] Motorola MC68HC08AS32A datasheet

[OKI] OKI Semiconductor MSM7731-02 datasheet

[MAX1202] MAXIM MAX1202 datasheet

[I2C] I2C bus specification

[ATMEL] Atmel AT45CS1282 datasheet

23.2 Definitions

SSI Synchronous Serial Interface (this block)

GIO General Input/Output

GI General Input

I2C Inter-IC Control bus

I2S Inter-IC Sound bus

LSB Least significant bit

MSB Most significant bit

SPI Serial Peripheral Interface

synchronous The term synchronous refers to the existence of a dedicated clock signal
in the SSI interface. All supported protocols (except IEC60958) have a clock

653

http://developer.axis.com
http://www.iec.ch

654 CHAPTER 23. SYNCHRONOUS SERIAL INTERFACE

signal that is used to sample or synchronize the other signals, and is connected
between the transmitting and the receiving unit.

Serial Serial means that data is sent one bit at a time over one wire. Some protocols
have been extended to two or three data wires in the same direction.

Clock The serial clock (also called bit clock) signal toggles two times during the trans-
mission of one data bit (see figure23.2). In most protocols, the transmitter uses
one of the edges to output its data, and the receiver uses the opposite clock edge
to lock the incoming data in a flip-flop. The clock signal can be produced by the
transmitting or the receiving unit, or can come from an external source.

Master The unit deciding when data transfers shall occur. Need not be the unit that
produces the clock. The master always produces the frame signal (if a frame
signal exists).

Slave A unit communicating at the demand of another unit.

Clock gating A gated clock is a clock where some pulses have been masked away. In
the SSI context, this means that the clock only toggles when there are data bits
to transfer. A gated clock is always created by the master.

Frame A physical signal or an SSI-internal event marking the beginning and, option-
ally, the duration of a serial word.

Word A word is any collection of binary digits that form one unit. In this chapter,
different kinds of words are discussed. When there can be ambiguities, a word
that is transferred over the serial interface is denoted aserial wordor asample,
and a word stored in a memory is called amemory word. The number of bits in
a word is called its word length or its sample size. The word length of a serial
word is the number of data bits associated with one frame event.

Bulk mode In bulk mode, data is sent whenever data is available. Typical examples
are: Register read or write commands to an external device, and a print job to a
printer.

Isochronous mode In isochronous mode, data is sent at periodical intervals, con-
trolled by a timer. If no data is available in the transmitter when the timer expires,
an error occurs (underrun). A typical example is any stream of real-time sam-
ples, e.g., audio or video. The rate at which serial words start is called the word
rate.

Flow control Flow control is a means for the receiver to tell the transmitter to stop and
continue transmission. Without flow control, overrun errors might occur if the
receiver is unable to process all the received data quickly enough.

23.3 Overview

The ETRAX FS includes two on-chip instances of the SSI block. The SSI is designed to
interface to many simple synchronous serial protocols, with an emphasis on protocols
used to transport digital audio between ICs on a circuit board. A connection example
can be seen in figure23.1.

23.4. FUNCTIONAL DESCRIPTION 655

External
device

SSI

Data

Frame

Clock

DMA

Registers

Interrupts

On-chip interfaces

Figure 23.1:SSI connection

Clock

Data

Frame

d0 d1 d2 d3 d4 d5 d6 d7 d0

Figure 23.2:Typical unidirectional synchronous serial protocol

Most of the protocols that the SSI handle are very simple (See figure23.2), but many
variations of these protocols are supported.

The SSI contains one transmitter and one receiver block. There is also some common
logic for generating and decoding frame signals, and a clock generator.

Up to six external pins can be used by the SSI, and the maximum supported clock
frequency is 110 MHz.

23.4 Functional description

23.4.1 Operating modes

Below is a brief introduction to the different main modes. For further information see
the respective subsection for each mode below.

Lowspeed modeLowspeed mode is designed to support the following:

· I2S, master, slave, internal and external clock.

· SPI, similar to the MC68HC08 microprocessor SPI interface (all modes),
and specifically compatible with the MAX1202 A/D converter.

· Compatibility with both audio and control interfaces of the Oki MSM7731
acoustic echo canceller.

· A subset of I2C.

· Many other simple synchronous serial protocols.

656 CHAPTER 23. SYNCHRONOUS SERIAL INTERFACE

Lowspeed mode operates up to 16.67 MHz. There can be up to two simultaneous
I2S output streams, and up to three simultaneous I2S input streams. The word
length can be set with bit precision between 4 and 64 bits, and clock gating is
possible.

Highspeed modeHighspeed mode operates up to 100 MHz with the internal clock,
and 110 MHz with an external clock. The word length can be controlled with
nibble precision, up to 256 bits. This mode also supports fast SPI mode as de-
fined by [ATMEL] and SPI as used by SDCARD/MMC.

Wiresave mode Wiresave mode operates up to 100 MHz with the internal clock, and
110 MHz with an external clock. There is one data output, with up to approxi-
mately 100 Mbit/s transmission. There can also be up to three data inputs, en-
abling up to approximately 300 Mbit/s reception.

Wiresave mode has common or separate transmit/receive clocks and does not
support clock gating. There is specialized framing and flow control and fixed
word length at 16 bits per word, LSB first transmission. Wiresave mode requires
only two pins for output (clock, data), and requires only #inputs + 1 pins for
input (clock, data0, data1, data2).

IEC60958 mode IEC60958 mode supports consumer and professional modes with 32,
44.1, 48 or 96 k samples per second, in stereo. Bit-level data formatting has to
be performed by software. 32 bits per word are always used, of which up to
24 are used for audio data. IEC60958 mode uses isochronous communication.
Only one data pin is required for the receiver and one for the transmitter, but the
transmitter also requires an external clock to operate.

In all main modes except IEC60958, the transmitter can run in either bulk or isochronous
mode, selected with therw tr cfg.ratectrl mode register field. For further information
on this topic see section23.4.2.

The idle value of thedatapin is not defined for protocols other than wiresave mode. If a
defined value is required, use therw tr cfg.datapin use.gio0or rw tr cfg.datapin use.gio1
settings.

23.4.1.1 Lowspeed mode

This is the most flexible main mode of the SSI. Lowspeed mode is selected by setting
rw tr cfg.modeor rw rec cfg.modeto lospeedand by clearing the IEC60958 fields.
Also clear the fieldrw tr cfg.usemd in the transmitter. Most options for lowspeed
mode are explained in the sections on clocking, reset, frame signalling and flow control.
A few more are covered here.

By setting therw tr cfg.dual i2s field, two I2S transmitters are enabled1. They will
share the same clock and frame signal and have one data output each. In other words,
data will be output in exactly the same clock cycles on both outputs. Similarly, two
or three I2S inputs can be enabled by setting the fieldsrw rec cfg.slave2en and/or
rw rec cfg.slave3en(slave 3 without slave 2 is not a valid mode).

1When using both I2S transmitters in mode register driven mode, one word of dummy data might be sent
as the first word after the SSI is enabled. If this can not be tolerated, use DMA mode instead.

23.4. FUNCTIONAL DESCRIPTION 657

The available pins limit the total number of I2S inputs and outputs. Two I/O pins
and one pure input pin are available for data transfer. Note that each I2S input/output
normally carries one stereo audio channel or two mono channels. For information on
how to set up data in memory when using multiple receivers or transmitters, see section
23.6.1.

The fieldsrw tr cfg.shdir andrw rec cfg.shdir select whether the MSB or the LSB is
sent first over the serial line. When serial word size is less than or equal to 16 bits, this
does not affect the way data is organized in memory, but for larger word sizes it does.
See section23.6.1for more details.

23.4.1.1.1 SPI

The [SPI] datasheet has been used as the basis for this implementation. According
to the [SPI], the maximum clock frequency is 8.4 MHz, but this SSI implementation
can use somewhat higher frequencies. As the clock frequency approaches 10 MHz,
however, not all timing figures in [SPI] will be fulfilled (e.g. clk high/low time will
fall below 50 ns, setup time of miso will fall below 45 ns, access time of slaves must
be shorter than 40 ns). Also note the high speed SPI mode in section23.4.1.2.2. A
configuration example for SPI is available in section23.7.2.

23.4.1.1.2 OKI MSM7731 microprocessor interface

According to [OKI], the minimum period of the microprocessor interface (not the audio
interface) is 100 ns (10 MHz). With this SSI however, it is not possible to use a shorter
period than 140 ns (7.14 MHz) while still fulfilling the other timing requirements of
the interface. This should have no practical implications.

23.4.1.1.3 MAX1202 A/D converter interface

The data sheet [MAX1202] specifies a maximum serial interface clock frequency of
2.0 MHz. However, due to the slow access time of the MAX1202, the maximum clock
frequency that can be guaranteed to work with the SSI without detailed timing analysis
is 1.92 MHz.

An example of MAX1202 configuration is provided in section23.7.3.

23.4.1.1.4 I2C

The SSI can act as an I2C master in single master environments. Note however that the
SSI is not capable of ”clock stretching” (see [I2C]). If the device uses clock stretching,
a lower communication frequency might avoid clock stretching to occur. An attempt by
a device to use clock stretching will not cause electrical problems, only logical failure.

Further, the I2C mode of the SSI is not fully automatic. The CPU has to generate the
start and stop conditions, but the SSI can take care of the rest of the communication.

658 CHAPTER 23. SYNCHRONOUS SERIAL INTERFACE

Since there is no maximum limits in the involved timing, this is generally not much of
a problem.

Both standard-mode (100 kbit/s) and fast-mode (400 kbit/s) communication is possible,
but in fast mode the clock frequency has to be lowered to 384 kbit/s not to violate
the tLOW time of the I2C specification (fast-mode I2C requires a non-square clock
waveform to run at 400 kbit/s).

An example of how to connect and program the SSI for I2C communication can be
found in section23.7.4.

23.4.1.2 Highspeed mode

This mode is, like lowspeed mode, quite generic, but it lacks some of the low speed
mode features:

· Word length with nibble precision instead of bit precision, on the other hand
word length can be up to 256 bits.

· The normal clock gating features (in and out) are not available. There is another
feature available to gate an internal clock output, though.

· Only positive edge clocking is possible when using internal clock at 100 MHz
(the fieldsrw tr cfg.clk pol, rw rec cfg.clk pol andrw frm cfg.clk pol have no
effect at 100 MHz internal clock).

23.4.1.2.1 Special output clock gating feature

Since the normal clock gating features mentioned elsewhere in this document are not
available in highspeed mode, other semi-automatic clock gating features have been
added. They are controlled by the register fieldsrw extra.clkonen, rw extra.clkoff en
andrw extra.clkoff cyclesand enables the clock to be turned on once, and turned off
once.

Note that these features only turn on/off the output clock. This means that the trans-
mitter and receiver will start and continue unaffected. To make the first output data bit
appear to be clocked out by the first edge of the output clock, setrw frm cfg.tr delayto
2 (assuming internal frame source, external frame source will not work with this clock
gating feature).

Further, set up the transmitter DMA with just the needed amount of data, set EOP at
the end and set therw tr cfg.eopstopfield, so that atidle interrupt is generated when
finished and so that no extra data is output after the clock is turned off.

The receiver will also continue receiving as usual even though there is no external
clock, and bogus data will be fed to the DMA after the normal data.

Another thing to keep in mind is that the clock will not be turned off if the DMA can
not supply or remove data fast enough. Therefore the communication will be corrupted
in that case (i.e. bulk mode will not work as intended). As a consequence isochronous
communication is recommended, then underrun/overrun interrupts will be issued in
case of data corruption.

23.4. FUNCTIONAL DESCRIPTION 659

The clock will not be turned off between words either, so words should usually be sent
back-to-back in this mode.

23.4.1.2.2 Fast SPI master mode

Communication with a fast SPI slave, such as an Atmel flash (see [ATMEL]), using
SPI or ”RapidS” is possible. This communication utilizes the special output clock
gating feature described in23.4.1.2.1. Also note that this communication mode is
semi-automatic, CPU intervention is required for eachburst. To make communication
efficient it is therefore desirable to use as long bursts as possible. See further the
example in section23.7.5on Atmel flash communication.

23.4.1.3 Wiresave mode

The wiresave mode has been implemented to enable high-speed communication in a
simple way, consuming as few I/O pins as possible, without using any special I/O cells
or signalling standards. It is a proprietary mode and will only be useful for connecting
to other devices specifically built for it.

Both receiver and transmitter can be configured to use wiresave mode. The transmitter
can only use one data pin, while the receiver can use up to three data pins, enabling
300 Mbit/s reception speed.

To enable wiresave mode, set the fieldsrw tr cfg.modeor rw rec cfg.modetowiresave.
Further set the fieldsrw tr cfg.samplesizeor rw rec cfg.samplesizeto 3 (ie 4 nibbles
== 16 bits), and fieldsrw tr cfg.shdir or rw rec cfg.shdir to lsbfirst.

To enable more than one receiver data stream, set the fieldsrw rec cfg.slave2en(for
two streams) and alsorw rec cfg.slave3en(for three streams). All three receiver data
streams and the transmitter can be used simultaneously.

If only one clock is used with bidirectional communication, the external unit needs
to have some type of timing adjustment logic for the data signal(s) travelling in the
opposite direction compared to the clock. No such timing adjustment features are
available in this SSI.

If the external unit is equipped with programmable timing adjustment logic, it might be
possible to communicate without transmitting any clock at all. The requirements are
that the SSI:s of both communicating chips are synchronous to each other (by using the
same reference clock), and that there are enough timing margins.

23.4.1.3.1 Mode of operation

Wiresave mode uses start bits, similar to asynchronous serial ports. The idle value of
the data line is ’1’. One cycle of value ’0’ indicates that a word is starting. The value
in the next cycle determines if the data word to come is an ordinary data word (0)
or a metadata word (1). After the metadata bit follows 16 data bits, and when these
have been transferred the data line either goes back to its idle value, or a new start
bit is transmitted (stop bits can be used if desired). I.e., without stop bits, 18 bits are
consumed to transfer a payload of 16 bits.

660 CHAPTER 23. SYNCHRONOUS SERIAL INTERFACE

If more than one data line is used, only data to receiver 0 has to have a defined idle
value and only this line transfers start and metadata bits. The other data inputs need
only be defined when transferring actual data, and data is transferred in the same clock
cycles as on data line 0 . When metadata is transferred, only receiver 0 is used and
the other data lines are ignored. The data from the receivers ends up in memory in the
order described in section23.6.1.

23.4.1.3.2 Metadata use

The metadata is handled differently from ordinary data inside the SSI, and there are the
following uses for it2:

flow control There is logic in the SSI to prevent buffer overflow, by sending and re-
ceiving xon/xoff metadata codes. See section23.4.3.2for details.

end-of-packet signalling At DMA eop, the transmitter will inspect the data descriptor
metadata. As long as the metadata is not ’txnull’, it will be transmitted as a
metadata word after the last ordinary data and anmd sentinterrupt will be issued.
Take care not to send metadata with undesired side effects, see section23.6.5.

A received metadata word marks the end of a packet, and the receiver DMA
handles the end-of-packet condition as described in5.4.1.2. Additionally, the
md recinterrupt will be issued, if enabled.

As can be seen, the net effect of transmitting and receiving non-special metadata
is that an end-of-packet condition will be forwarded over the communication
link.

receiver manual eop and stopWhen software uses the fieldsrw rec cfg.stopor rw rec cfg.forceeop
to (stop transfer and) force an eop to the DMA, the metadata that ends up in the
DMA descriptor is listed in table23.10in section23.6.5. This metadata is never
transferred over the serial line, it is just written to the receiver DMA descriptor.
This metadata will be written to the DMA descriptor in all modes at stop or at a
forced eop to the DMA, not just wiresave mode.

23.4.1.4 IEC60958 mode

The SSI contains one IEC60958 receiver and one transmitter, i.e. one IEC60958 data
stream can be transferred in each direction. The transmitter and receiver can be used
independently.

To enable IEC60958 mode, setrw tr cfg.use60958and/orrw rec cfg.use60958. Select
lowspeed mode, 32 bits per word, LSB first. If transmitter is used, set rate control
to isochronous, select external clocking, and apply an external clock to eitherclk or
ext clk, as selected byrw cfg.clk in sel. Configure the fieldrw tr cfg.iec60958ckdiv
to match the frequency of the external clock, according to the following table:

Fsamp ckdiv=0 ckdiv=1 ckdiv=2 ckdiv=3

2If the field rw tr cfg.usemd is unset, no metadata whatsoever will be transmitted over the serial line.

23.4. FUNCTIONAL DESCRIPTION 661

32 ksa/s 4.096 8.192 12.288 16.384

44.1 ksa/s 5.6448 11.2896 16.9344 22.5792

48 ksa/s 6.144 12.288 18.432 24.576

96 ksa/s 12.288 24.576 n/a n/a

Table 23.2:IEC60958 ext clock frequencies, MHz

The maximum external clock frequency in IEC60958 mode is 25 MHz.

For the receiver, configure the fieldrw rec cfg.iec60958ui len as described in section
23.4.1.4.2below. Then enable the SSI as usual. The transmitter will start transmitting
within a few clock cycles and the receiver will start writing data to its mode register or
to memory after receiving a correct preamble.

23.4.1.4.1 Data format

In IEC60958 mode the word length is always 32 bits, and the LSB is sent first. Figure
23.3presents the use of the bit fields in each word.

V

31

U

30

C

29

P

28

Audio sample word

27 8

Aux data

7 4

Preamble

3 0

Figure 23.3:Data format

Explanation:

V: Validity flag

U: User data

C: Channel status

P: Parity bit

The data has to be presented to the SSI transmitter and decoded from the SSI receiver
in this format. Below is a brief description of these bit fields together with some im-
plementation specific information. For more in-depth information, refer to the [IEC]
standard.

Preamble There are three different preambles available, called B, M and W (some-
times called Z, X and Y respectively). The preambles correspond to unique code
sequences on the transmission medium, which never occur during transmission
of ordinary data. To transmit these preambles, or to decode which one was re-
ceived, insert the following preamble values into the data stream or compare the
received preambles to these values:

Code (bits 3-0) Preamble

0b0000 = 0x0 ”B”

662 CHAPTER 23. SYNCHRONOUS SERIAL INTERFACE

0b0100 = 0x4 ”M”

0b1000 = 0x8 ”W”

Table 23.3:IEC60958 preambles

The remaining codes are not defined and will never be written to memory by the
receiver. Do not insert other codes in the preamble field of data to transmit.

Normally preamble ”M” denotes primary or ’left’ channel, and ”W” denotes
secondary or ’right’ channel, samples. ”M” and ”W” words are interleaved one
by one, except that every 192:nd ”M” preamble is changed to a ”B” preamble
instead, to mark the beginning of a new channel status block, see below.

Audio sample word The audio sample word normally contains an audio sample in
linear 2’s complement format. The LSB is sent first, at bit position 8. If less than
20 bits are available, the LSBs are padded with zeros.

Auxiliary data Can be used to transmit 24-bit samples, in that case the audio sample
word extends over these bits and the audio LSB is at bit position 4. Other uses
are defined in the standard.

Validity flag ’0’ marks that the data is valid and reliable. This bit is recommended to
be set to ’1’ if transmitting data not suitable for linear PCM decoding to audio.

User data The default value of this bit is ’0’. Other uses of this bit is described in the
standard.

Channel status The channel status is transmitted in 192-bit blocks. The first bit is
transferred in the word with preamble ”B”. This first bit also indicates ”con-
sumer” (0) or ”professional” (1) application. The second channel status bit in-
dicates linear PCM samples (0) or other data (1). As can be seen, the CPU is
responsible for distributing and gathering of these 192-bit blocks over the data
words. For more information on the channel status, see the [IEC] standard.

Parity bit Bits 4 to 31 of each word shall have even parity, i.e., they shall contain an
even number of ones and an even number of zeros. Calculation and checking of
parity is done automatically by the SSI, i.e, when transmitting, the value of the
parity bit in the data stream to the transmitter is don’t care, and when receiving
the SSI signals anr958errinterrupt if the received parity is wrong.

23.4.1.4.2 IEC60958 receiver data rate detection

The SSI, in conjunction with suitable software, is able to detect the data rate of an
incoming IEC60958 data stream. The mode register fieldrw rec cfg.iec60958ui len
shall contain a value that corresponds to the number of 100 MHz clock cycles per
IEC60958 ”unit interval”. The following table gives suitable values for the common
data rates:

Sampling rate value

32 kHz 31

44.1 kHz 23

23.4. FUNCTIONAL DESCRIPTION 663

48 kHz 21

96 kHz 11

Table 23.4:IEC60958 uilen values

If the sampling rate is known beforehand, just write the correct value to the mode
register field. If the incoming sample rate is unknown, it can be found by trial-and-
error: Start with a lowiec60958ui len value, and start the receiver. After a short
while, anr958errinterrupt will be issued if theiec60958ui len value is too low, then
try a higher value. Note, however, that a too high value may not produce anr958err
interrupt. With a too highiec60958ui lenvalue, data words may be missed and silently
discarded. The receiver can receive an IEC60958 data stream with any non-standard
sampling frequency from 32 kHz up to 96 kHz, if an appropriateiec60958ui lenvalue
is used.

23.4.2 Frame events and frame signals

Note: This chapter is relevant, at least in part, regardless of whether an external frame
signal is used or not.

Most commonly, a separate pin on the port is used for frame signalling. The frame
signal can be an input or an output.

clk

data

fr1

d0 d1 d2 d3 d4 d5 d6 d7

fr2

fr3

fr4

Figure 23.4:Typical frame signals

Figure23.4shows four typical frame signals. They can be characterized as follows:

· fr1: Negative edge-type frame signal, active one cycle before data.

· fr2: Positive edge-type frame, active at the same time as the first data bit.

· fr3: Negative level-type frame.

· fr4: Edge-type frame, both edges (the frame signal will go high again at the start
of the next data word).

664 CHAPTER 23. SYNCHRONOUS SERIAL INTERFACE

The clock edge generating the frame signal can be selected freely for the frame unit
relative to the receiver and transmitter. The signal neg-ck-fr-out in figure23.5below
shows the effect of choosing a different clock edge for the frame signal compared to
the data. Of course, the same clock signal must be used for both the unit generating
frame and the unit utilizing the frame event, even though polarity can differ.

23.4.2.1 Frame events and their sources

Internally in the SSI, ’frame events’ are used to control when a word starts. A frame
event is a one-cycle event notifying the exact start of a word. Frame events are produced
by: a) an internal frame timer (isochronous mode), b) a frame input signal, and c) the
transmitter in bulk mode.

When the receiver or transmitter inside the SSI receives a frame event, they start re-
ceiving or transmitting a word. They also pass on the resynchronized frame event,
for use e.g. by an output frame generator or clock gating unit. The mode register
fields rw tr cfg.frm src, rw tr cfg.ratectrl, and rw rec cfg.frm src select one of the
three sources of frame events for the transmitter and receiver:

internal frame timer The internal frame timer (isochronous mode) is set up using
the rw frm cfg.wordratefield, and generates frame events periodically with a
frequency selected by the mentioned mode register. Set the frame source of
receiver and/or transmitter tointernto use the internal frame timer.

external frame input signal In case of frame input, a frame signal fed to the SSI is de-
coded, and the decoding is controlled by the mode register fieldsrw frm cfg.type
and rw frm cfg.level. To select an external frame input signal, set the frame
source of receiver and/or transmitter toext.

transmitter bulk mode In transmitter bulk mode, frame events are generated by the
transmitter itself as soon as, and only when, data is available for transmission.
Bulk mode for the transmitter is selected by the register fieldrw tr cfg.ratectrl.
The receiver can also be set to receive at the same time as the transmitter trans-
mits in bulk mode. To enable this feature, setrw rec cfg.frm srcto tx bulk.

23.4.2.2 Frame output signal

When a frame signal is output, its shape is configured with the mode register fields
rw frm cfg.type, rw frm cfg.level(same as for frame input decoding) andrw frm cfg.earlywend.

The effect oftypeon the output can be seen in figure23.4, where fr1, fr2 and fr4 are
of type.edgeand fr3 is oftype.level. The effect of the fieldlevel can also be seen in
the same figure, fr2 hasposhi level, fr1 and fr3 haveneg lo level, and fr4 has level
configured asboth. See also25.41.

Further, when using atype.level-type frame signal, the fieldrw frm cfg.out on selects
the frame event source that activates the frame output, andrw frm cfg.out off selects
which signal that turns off the frame signal.

The timing of when the frame output signal appears relative to the data can also be
modified, as is described in the next section.

23.4. FUNCTIONAL DESCRIPTION 665

23.4.2.3 Frame cycle timing

Different protocols demand different timing for the frame signal relative to the data. In
order to accomplish this, the two mode register fieldsrw frm cfg.tr delayandrw frm cfg.recdelay
exist. They set the distance in bit clock cycles between frame signal activity and actual
data input/output. They are valid for all three frame event sources described above, but
the exact meaning of the values differs slightly in the three cases.

23.4.2.3.1 Isochronous mode with frame output signal

Figure23.5shows data output and data input sampling points, together with an edge-
type frame signal for varying values oftr delay/rec delay(0-3). The behavior is anal-
ogous for delay values up to 7.

data_out-0 d0 d1 d2 d3

data_out-1 d0 d1 d2

data_out-2 d0 d1

data_out-3 d0

d0 d1 d2 d3

d0 d1 d2

d0 d1

d0

data_in-0

data_in-1

data_in-2

data_in-3

neg-ck-fr-out

frame-out

clk

Figure 23.5:Effect of tr delay and recdelay on frame output

The signal neg-ck-fr-out shows the resulting position of the frame signal if different
edge clocking is used for the frame logic compared to the clocking for the transmit-
ter and receiver. The behavior is symmetric if negative edge clocking is used for the
transmitter, receiver and/or frame.

Gated output clock This case is quite similar to the above. Only note that the first

666 CHAPTER 23. SYNCHRONOUS SERIAL INTERFACE

clock pulse that is visible externally is the one associated with the first data bit
(for receiver or transmitter, depending onrw cfg.clkgatectrl).

External gated clock clocks the frame circuit The onlyrw frm cfg.tr delay/rec delay
value that is useful for frame output in this case is 0, other values results in that
more clock pulses are needed for each data word than there are data bits.

23.4.2.3.2 Frame input signal

Figure23.6shows similar examples in the case of frame input:

data_out-0 d0 d1 d2 d3

data_out-1 d0 d1 d2

data_out-2 d0 d1

data_out-3 d0

d0 d1 d2 d3

d0 d1 d2

d0 d1

d0

data_in-0

data_in-1

data_in-2

data_in-3

frame-in

clk *

Figure 23.6:Effect of tr delay and recdelay on frame input

The external frame signal input is sampled on the clock edge marked by an ’*’. If
both transmitter/receiver and frame circuits use negative edge clocking, the figure is
still valid except that the clk signal is inverted, i.e., the edge marked with ’*’ is then
a negative edge. When the clock polarity of the frame circuit is different from the
transmitter and/or receiver clock polarity, the following applies:

· The frame signal is sampled on the clock edge drawn as a negative edge just
before the edge marked by ’*’ in the figure.

· To achieve the data in and out timing in figure23.6, add 1 to thetr delay/
rec delay values. E.g. to get the ’dataout-1’ behavior, write the value 2 to
rw frm cfg.tr delay.

23.4. FUNCTIONAL DESCRIPTION 667

· A tr delay/rec delayvalue of 0 is not allowed.

The first data bit propagates to the output within 2-4 transmitter clock cycles after that
reset is released.

Gated output clock When using output clock gating together with an incoming frame
signal, atr delay/rec delayvalue of 0, or different clock phases for frame and the
unit controlling clock gating (transmitter or receiver), are not allowed. The first
clock edge visible outside the SSI is the one marked by ’*’.

An external gated clock clocks the frame circuit With some restrictions a frame in-
put signal can be used together with an external gated clock. To be recognized,
the frame signal must be valid one setup time before the edge of the clock.
When using normal data timing (see section23.6.3.1), rw frm cfg.tr delaymust
always be set to 1. When using early data, it must be set to 0. The field
rw frm cfg.recdelaymust always be set to 0.

23.4.2.3.3 Transmitter bulk mode and frame output

When the transmitter is running in bulk mode,rw frm cfg.tr delayspecifies the dis-
tance between frame and data in the same way as in isochronous mode. However if the
receiver uses the transmitter as a source of frame events, the fieldrw frm cfg.recdelay
is a little different. It now specifies the delay between transmitter start and receiver
start (as opposed to frame-to-receiver in other modes).

Additionally, the mode register fieldrw tr cfg.bulk wspacealso affects the SSI opera-
tion in bulk mode. The field specifies the minimum distance between two transmitted
words, in bit clock cycles. 0 gives no space between words. The space between words
must be at least as many cycles as the maximum of fieldsrw frm cfg.tr delay and
rw frm cfg.recdelayfor the frame output and/or the receiver to work as expected (that
is, if the frame output and receiver uses the transmitter as source of frame events).

As can be seen in figure23.7, the effect ofrec delay= 0 (datain-0 in the figure) is
different whentr delay is 0 and 1, relative to the frame signal (sincerec delaynow
specifies distance from transmitter start to receiver start). For each case oftr delay,
the sampling point withrec delay= 0 is shown for same clock phase (datain-0) and
different clock phase (neg-ck-datain-0) between transmitter and receiver.

Also note that a frame signal clocked on the opposite edge compared to the transmitter
now ends up half a cycle before a normal frame signal (as opposed to when isochronous
mode is used).

Clock gating For gated clock output, the first clock pulse that is visible externally is
the one associated with the first data bit (for receiver or transmitter, depending
on rw cfg.clkgatectrl). External, gated clocking is not supported in bulk mode.

668 CHAPTER 23. SYNCHRONOUS SERIAL INTERFACE

data_out-0 d0 d1 d2 d3

data_out-1 d0 d1 d2

d0 d1 d2 d3

d0 d1 d2

neg-ck-data_in-0

data_in-0

neg-ck-fr-out

frame-out

clk

d0 d1 d2 d3

d0 d1 d2

data_in-0

data_in-1

d0 d1 d2neg-ck-data_in-0

Figure 23.7:Effect of tr delay and recdelay in bulk mode

23.4.2.4 Special cases

23.4.2.4.1 Simultaneous master and slave

To a limited degree, the SSI can act as a master and a slave at the same time, using two
frame signals (e.g. one frame output for the transmitter and a separate frame input for
the receiver). However, some options regarding the frame signal type are common for
both frame signals in this case, limiting the flexibility.

To support the case with completely independent clock, data and frame signals for re-
ceiver and transmitter, the mode register fieldrw frm cfg.fr in rxclk exists. When this
field is unset, the frame clock is used to decode the incoming frame signal, but set-
ting the mentioned register field instead uses the receiver clock to decode the incoming
frame signal. In this way the frame clock can be set to something suitable for producing
an outgoing frame signal for the transmitter instead.

23.4.2.4.2 No frame signal

There are three cases in which no physical frame signal is necessary (but can be used
anyway, if desired):

gated clock When clock gating is employed, no frame signal is needed since the avail-

23.4. FUNCTIONAL DESCRIPTION 669

ability of a clock edge itself indicates the presence of data.

wiresave modeThis mode has been designed specifically to avoid frame signals. See
section23.4.1.3.

IEC60958 mode In this mode special preamble sequences are used to indicate word
start, so no dedicated frame signals are needed. See section23.4.1.4.

23.4.2.4.3 Frame signals in ’highspeed’ and ’wiresave’ modes

Frame signalling in these modes has not been thoroughly tested and is therefore not
supported beyond what has been specified in examples in this document.

23.4.3 Flow control

Flow control can be used to avoid buffer overruns. For the receiver, flow control is
most useful in DMA mode. When data is read/written via mode registers, simple flow
control is possible.

The use of flow control in conjunction with isochronous transmitter mode is not possi-
ble. The rest of this section applies to bulk mode.

23.4.3.1 Highspeed and lowspeed modes

In highspeed and lowspeed modes, flow control is enabled by setting eitherrw frm cfg.framepin use
or rw frm cfg.statuspin usetohold. If the corresponding of fieldsrw frm cfg.framepin dir
or rw frm cfg.statuspin dir is set toin, the hold signal will be an input and affect the
SSI transmitter. Otherwise it will be an output, indicating the status of the SSI receiver.
Flow control in both directions is possible by using both thestatus and theframe
signals.

The polarity of both input and output hold signals is controlled by the fieldrw cfg.hold pol.
Positive polarity means that a high level stops the transmitter and indicates an almost
full FIFO in the receiver.

hold input The hold input signal is synchronized using the transmitter clock before
being used by the SSI. Therefore the hold signal need not be synchronous to any
particular clock.

The transmitter finishes the current word before reacting to the hold signal. Due
to the synchronization mentioned, a new word may start up to two transmitter
clock cycles after the hold signal has been issued.

If the transmitter is using an incoming gated external clock, the synchronization
also causes one more word to be sent the next time the clock goes active, if the
hold signal is activated while the clock is not running. This happens regardless
of how much time passes since the hold signal is asserted.

hold output At which time the hold output signal goes active in DMA mode de-
pends on the amount of data in the DMA FIFO, and on the mode register field

670 CHAPTER 23. SYNCHRONOUS SERIAL INTERFACE

rw rec cfg.fifo thr. In mode register mode, the hold output is high whenever
there is a data word in the SSI that the CPU hasn’t read yet (except ifrw rec cfg.fifo thr
== inf, in which case no flow control is used). To have more relevant timing, the
hold output signal is internally re-synchronized to the frame clock before being
output. This also results in a delay of about two clock cycles of the frame clock
before the output changes state. For most protocols this delay is insignificant.

In mode register mode, one full 16-bit word more can be received without causing
overrun after the hold signal has gone active internally. If data is transferred back-
to-back, the last word that can be accepted might have started already when the hold
signal is visible externally. When calculating the threshold value to use in DMA mode,
and the corresponding maximum allowed response time for an external transmitter to
avoid overrun, consider the following:

· When using the slave receivers, data is written to the DMA FIFO in bursts of 2
or 3 bytes (for 2 or 3 receivers, word length<= 8 bits), or of 4 or 6 bytes (for 2
or 3 receivers, word length> 8 bits).

· When using a word length that is just above a multiple of 16 bits (e.g. 17, 18,
33 or 34 bits), the last part of the word will be written to the DMA FIFO shortly
after (1, 2, ... bit times) the previous part.

If both the above cases apply at the same time, up to 6 + 6 bytes will be written to the
FIFO with only 1-2 bit clock cycle times in between.

23.4.3.2 Flow control in wiresave mode

The hold pin approach described above can be used also in wiresave mode, but provided
that both the transmitter and the receiver is running, xon/xoff handshaking can be used
instead. This frees up pins for other purposes. For the transmitter to send xon/xoff
metadata,rw tr cfg.usemdmust be enabled. Regardless of this setting, the transmitter
responds to received xon/xoff metadata codes.

The xon/xoff handshaking involves two concurrent processes:

1. As soon as the two first bits of a metadata word having the values 0b11 (xoff)
are clocked in, transmission is disabled. No more than just below two serial
words may then be transmitted (of which the last word might come immediately
or some time later). Thereafter, only metadata is transmitted. When an incoming
xon metadata word is detected, ordinary transmission is re-enabled.

2. When the receiver DMA FIFO is getting full, an xoff word is transmitted no
later than one full serial word later. When there is more FIFO space again, an
xon word is inserted into the transmitted data stream.

The xon/xoff words are inserted and removed transparently to software. All the pro-
grammer has to do is to make sure that the metadata to send does not contain the xon
and xoff codes (all metadata with LSBs 0b11 are regarded as xoff). Higher level flow
control can be managed by manually stopping and resuming the receiver DMA, xoff
and xon will then be sent automatically.

23.4. FUNCTIONAL DESCRIPTION 671

external unit reaction time Since there are some delays associated with the xon/xoff
signalling, the receiver DMA FIFO must have some margin left when xoff is to
be signalled. This margin is configured usingrw rec cfg.fifo thr.

The recommended value forrw rec cfg.fifo thr is thr16. Then the system will
work with three parallel input data streams, provided that the external unit reacts
at least as fast as this SSI when xoff is received (as is described above), and
that the transmitter clock frequency is no more than 10% lower than the receiver
clock frequency.

To get around difficulties with external unit reaction time, it is possible to in-
crease the threshold to 32 bytes. However, since the DMA FIFO in ETRAX FS
is 64 bytes and is not emptied until it holds 33 bytes, this leads to the disadvan-
tage of potential transmission of lots of unnecessary xon/xoff commands.

23.4.4 Clocking

There are two fundamentally different clocking modes: internal and external clock. In
the former, a clock reference is generated from the system clock, and in the latter a
clock is input to the sync serial ports to clock data and frame in/out. The SSI is divided
into three clock regions (receiver, transmitter and frame), for which internal/external
clocking can be selected independently. Thus, the transmitter can use an internal clock
(which can be output) at the same time as the receiver uses a different, external, clock
applied to an input pin.

23.4.4.1 Internal clock

When using internal clocking, the clock frequency base is selected usingrw cfg.basefreq.
The base frequency is then fed into a 16-bit clock divider, providing bit clock frequen-
cies from 100 MHz down to around 450 Hz.

The base frequencies are:

· Off

· External serial/timer clock input,ext clk

· 29.493088 MHz

· 32.000 MHz

· 32.768362 MHz

· 100.000 MHz

Note that using theext clk pin as a base for the internal clock is not the same as normal
external clocking of the SSIs. When using theext clk pin as clock base, theext clk
input is first sampled by the internal 100 MHz clock and then divided.

Some remarks on clock generation and internal clock output:

672 CHAPTER 23. SYNCHRONOUS SERIAL INTERFACE

1. Setting the clock divider, fieldrw cfg.clk div to the value ’0’ generates a valid
internal clock with the frequency selected byrw cfg.basefreq, but if an off-chip
output clock is wanted whenrw cfg.clk div = 0, the following limitations apply:

· If base frequency is 100 MHz,rw cfg.out clk src has to be changed to
clk100instead ofintern clk.

· If rw cfg.basefreq is set toext, the frequency of the external clock must be
below 50 MHz.

· The low time of the uninverted output clock (high time of inverted output
clock) will always be 10 ns, resulting in a bad duty cycle. Does not apply
if rw cfg.out clk srcis set toclk100.

2. In cases not covered by case 1 above, the duty cycle of an off-chip output clock
will be as close to 50% as possible by using multiples ofbasefreqperiods (each
quantified to 10 ns accuracy) as high and low times. This means that the worst
duty cycle with a 100 MHz base is 33%, whenclk div = 2.

3. When using the output clock gating option, positive edges of the gated output
clock are delayed onebasefreqcycle, worsening the duty cycle a little.

The following options can be selected usingrw cfg.out clk src, when the internal clock
is output on theclk pin:

· An internally generated clock, as described above

· ”nojitter”, the internal clock, but output on the pos edge ofext clk

· The internal 100 MHz clock (This special case must be selected whenever a 100
MHz output clock is wanted, even if the internal clock is set to 100 MHz)

· Constant value (specified byrw cfg.out clk pol)

The nojitter option can provide an output clock with external reference, without the
jitter normally imposed by synchronizing the external clock to the internal 100 MHz
clock. This only works up to a maximum external clock frequency of 16.67 MHz
though.

The polarity of the output clock can be selected usingrw cfg.out clk pol. By setting
rw cfg.clk od mode, the clock output driver is switched to open drain mode.

Clock gating for an internally generated output clock is enabled by settingrw cfg.gateclk.
When gated, the output clock is only toggling when a data bit is being transferred. The
idle value of a gated clock will be 0 with normal polarity and 1 with inverted polar-
ity. When gating the output clock it must also be decided if the receiver block or the
transmitter block shall control when the clock is to be turned on. This is controlled by
rw cfg.clkgatectrl.

The most cases the transmitter controls clock gating, receiver control is only used in
the case of the SSI acting as an isochronous master-receiver. The unit controlling clock
gating must be clocked by the internal clock. Clock gating is only allowed in lowspeed
mode.

23.4. FUNCTIONAL DESCRIPTION 673

23.4.4.2 External clock

In external clock mode, a clock is input to an SSI pin and is used to directly clock data
and frame signals in to and out from the SSI. Polarity of the external clock can be set
independently for transmitter, receiver and frame.

The external clock can be input either from theclk pin or from theext clk pin. This
is specified byrw cfg.clk in sel. If the external clock is gated (only toggling when
data bits are transferred), therw cfg.clkgatein must be set. This only is allowed in
lowspeed mode.

23.4.5 Reset behavior

The SSI block is enabled byrw cfg.en. When not enabled, the entire SSI, includ-
ing frame logic and clock logic, is reset. Further, the receiver and transmitter can be
enabled separately byrw rec cfg.recen andrw tr cfg.tr en, respectively. When not
enabled, the transmitter and receiver are reset.

The contents of the mode registers is not affected by the reset activated by disabling
the enable fields, only by system reset.

More detailed information on how to start up the SSI can be found in section23.6.3.

23.4.6 Interrupts

The SSI has one interrupt vector output to the CPU, and a number of individually
maskable internal interrupt sources. The SSI has the standard set of interrupt mode
registers:

· rw intr mask

· rw ack intr

· r intr

· r maskedintr

For descriptions of these registers, see25.41.

As soon as a non-masked interrupt source is activated, the interrupt to the CPU is
signalled. The interrupt handler in software must then acknowledge the interrupt and
take any other requested action. Each interrupt source and details about acknowledge
etc. is listed below:

trdy (transmitter ready) The transmitter is ready to accept a new data word in mode
register driven mode. See section23.6.2.1for details on acknowledging this
interrupt. In DMA mode, this interrupt will not go active. Thetrdy interrupt
goes active at around the same time as the transmission of the previous word
starts.

674 CHAPTER 23. SYNCHRONOUS SERIAL INTERFACE

rdav (receiver data available) A new data word has arrived from the receiver. See
section23.6.2for details on acknowledging this interrupt in mode register mode.
Therdavinterrupt goes active slightly after that the last data bit has been clocked
in3.

In DMA mode, this interrupt will go active once for each data word written to
the DMA. If the DMA is full, the interrupt comes when there is space again. If
or when this interrupt is acknowledged has no consequence for data reception in
DMA mode.

tidle (transmitter idle) This interrupt occurs when the transmitter has stopped and the
last data has been fully transmitted. See section23.6.3on starting and stopping
transmission for details.4

rstop (receiver stopped) The receiver has been stopped. See section23.6.3on start-
ing and stopping transmissions for details.

urun (transmitter underrun error) Data was not supplied to the transmitter quickly
enough. See section23.6.4on error handling.5

orun (receiver overrun error) Data was not read from the mode register quickly enough,
or the DMA was full for too long, so data was lost. See also section23.6.4on
error handling.

md rec (metadata received)A metadata word was received. This can only happen
in wiresave mode and the interrupt can be acknowledged whenever wanted, it is
only a notification to software. See section23.4.1.3.2for more details.

md sent (metadata sent)A metadata word is being sent. This happens in wiresave
mode and other modes, whenever a DMA data descriptor with the outeop bit set
is being finished (or therw tr data.mdwas written high, in mode register driven
mode). Note that this interrupt comes before the metadata or last word of the
data buffer associated with the descriptor has left the SSI.

If a more precise indication is needed of when the last data or metadata has been
sent, therw tr cfg.eopstopfield must be set. See section23.6.3. Also see sec-
tion 23.4.1.3.2for more details on when the interrupt is generated in wiresave
mode. This interrupt can be acknowledged whenever wanted, it is only a notifi-
cation to software.

r958err (IEC60958 receiver error) An error occurred in the IEC60958 receiver. When
using other than IEC60958 modes, this interrupt must be masked away since its
value is then undefined. In IEC60958 mode it means either that an illegal data
sequence was input to the SSI, or that a parity error occurred. There is no means
to detect which of these cases that occurred. See section23.4.1.4on IEC60958.

3This does not necessarily mean that the entire SSI transaction is finished yet.
4 When the transmitter is using an external gated clock, this interrupt will occur after reception of the

last data-producing clock edge. The external unit might demand that the serial data line stays active until the
next (opposite) clock edge.

5In bulk mode using DMA, and with serial word lengths of 128 bits (16 bytes) or shorter, the transmitter
does not start until a full serial word is available from the DMA. Thereby underrun errors are prevented
from happening. If the serial word length is longer than 128 bits, transmission starts as soon as 16 bytes are
available and underrun errors can occur.

23.5. HARDWARE INTERFACE 675

23.5 Hardware Interface

23.5.1 External pins

Each SSI has the external pins listed in table23.5below.

Pin name Direction Description

data bidir Data output, or extra data in

din input Data input

frame bidir Frame or hold in or out, or extra data in

status bidir Frame or hold or extra data in or out

clk bidir Main clock, in or out

ext clk input Extra external clock input

Table 23.5:SSI external pins

These external pins are mapped onto physical pins as described in16. Note that the
ext clk pin is shared between both SSIs, asynchronous serial ports and timers.

All the external pins can be independently used as general inputs/outputs. The values
at the pins can always be read using the registerr rec data.

data This pin is normally used for data output. It is configured using the fieldrw tr cfg.datapin use.
If using non-wiresave modes and enabling the third slave receiver, the transmitter
cannot be used and this pin is instead used as the third input.

din This is the primary pin used for data input. Its only other use is as a general input
signal.

frame The primary use for this pin is as a frame input or output, but if desired the
statuspin can be used for this purpose instead. Theframe pin is controlled by
the fieldsrw frm cfg.framepin useandrw frm cfg.framepin dir. If not used
for frame signalling,frame can be used for hold signalling (flow control), in or
out. In wiresave mode, if using all three receivers, this signal is used as the third
input.

status This pin is primarily intended for frame or hold (flow control) signalling. It is
configured using the fieldsrw frm cfg.statuspin useandrw frm cfg.statuspin dir.
If two I2S transmitters are used, this pin is used as the second I2S output instead.
If using two or three receivers (in any mode), this pin is used as the second data
input.

clk Normally this pin is used as a clock signal, in or out. It is configured using the
fieldsrw cfg.out clk src, rw cfg.out clk pol, rw cfg.clk dir andrw cfg.clk in sel.
To use this pin as a general I/O, setrw cfg.out clk src to const0, control its di-
rection usingrw cfg.clk dir and use the fieldrw cfg.out clk pol to control its
output value.

ext clk This pin can only be used as an extra clock input, or as a general input. Set
rw cfg.clk in selto ext clk to select this pin as the clock input.

676 CHAPTER 23. SYNCHRONOUS SERIAL INTERFACE

23.5.2 Reset behavior

The SSI mode registers will be initialized by power-on reset to values that result in that
all SSI external pins are inputs.

The pin values will not be directly affected by the SSI enable fields, e.g. if some
signal(s) are configured to function as general outputs, their values will be unaffected
when the SSI is disabled. It is also possible to modify the value and/or direction of SSI
signals while the port is disabled.

23.5.3 Timing

The following figures are valid with external output loads of 50 pF.

Inputs

* clk

Outputs

t4

t5 t5

t1 t2

t3

D

Dn Dn + 1

* clk is the clock on the external pin (clk or ext_clk), shown non-inverted.
 If inverted, the same timing applies but related to the negative edge.

Figure 23.8:External timing

Nbr Name Description min max unit notes

t1 tsu Input setup to clock 12.0 - ns 1,3,4

t2 th Input hold time from clock -2.0 - ns 1,3

t3 tod Output delay from clock -4.0 4.0 ns 3,5

t4 tecp Clock period; highspeed, wiresave modes10.0 - ns

Clock period; lowspeeed mode 60.0 - ns

t5 tecw Pulse width of clock; 100 MHz output 4.0 - ns

Pulse width of clock; all other cases t nom-2.0 - ns 2

Table 23.6:Timing figures, internal clock output

Nbr Name Description min max unit notes

t1 tsu Input setup to clock 2 - ns 1,4

t2 th Input hold time from clock 2 - ns 1

t3 tod Output delay from clock 3.5 12.5 ns 5

t4 tecp Clock period; highspeed, wiresave modes9.1 - ns

Clock period; lowspeeed mode 60.0 - ns

23.6. SOFTWARE INTERFACE 677

t5 tecw Pulse width of clock 4.0 - ns -

Table 23.7:Timing figures, external clock input

Notes:

1. Timing is valid for input rise/fall times (clock and data) of max 2 ns.

2. t nom is the nominal high/low time, which can be calculated as described in
23.4.4.1.

3. When using a gated output clock, the clock arrives onerw cfg.basefreq period
later on the external pin. tsu, th and tod will then be changed by this amount.

4. If using an external frame input signal, and arw frm cfg.tr delayor rw frm cfg.recdelay
of 0, an additional setup time of 2 ns is required for the frame signal.

5. Can optionally be adjusted for thedata pin usingrw extra.doutdelay, see25.41
for information on how timing is affected.

23.6 Software Interface

The SSI is controlled through a set of registers, see25.41for details. To access the
registers, fields and register constants from a C program, a set of macros is defined in
[MACROS].

The I/O pins of the SSIs are multiplexed with other functions. Before the output pins
of the SSIs can be used, the pins must be configured, see16.

Below is some information on data storage, transfer to/from the SSI, starting and stop-
ping, error handling and metadata codes. Additionally, some examples can be found in
chapter23.7.

23.6.1 Data organization in memory

The SSI works with two data streams, one in each direction. The data formatting
depends on the selected word size, how many receivers or transmitters that are enabled,
and on the shift direction (MSB or LSB first). Below, the data formatting for the
transmitter is described. The formatting for the receiver is identical, just substitute
rw tr cfg with rw rec cfg.

In DMA mode, when the fieldrw tr cfg.samplesizeis set to a serial word size of 8 bits
or less, one byte is read from DMA for each serial word sent. When the serial word
size is up to and including 16 bits, one 16-bit memory word per serial word is read
instead.

In mode register mode, with a serial word size up to and including 16 bits, only the
rw tr cfg.samplesizeleast significant bits of the mode register are used.

678 CHAPTER 23. SYNCHRONOUS SERIAL INTERFACE

When the serial word size is bigger than 16 bits, two or more 16-bit memory words
or mode register data words are used for each serial word sent. The number of 16-bit
words needed is simply the serial word length divided by 16, rounded up.

Any padding is always applied in the MSB end of each serial word. E.g., if the serial
word length is 36 bits, three 16-bit memory words will be used for each serial word,
bits 0 to 35 will be data and bits 36 to 47 will be padding.

If the data is transferred LSB first, the least significant 16-bit memory word shall be
sent to the SSI first (i.e., be stored at the lowest memory address if using DMA, or be
written first to the mode register in mode register mode). Conversely, if transferring
MSB first, the most significant 16-bit word shall be sent to the SSI first. Any padding
is in the most significant bits of the first 16-bit word (lowest memory address) in this
case.

When more than one transmitter is used, data for the different transmitters is interleaved
byte-by-byte (wordsize<=8 bits) or 16-bit-word-by-16-bit-word (otherwise). Data for
transmitter 1 is first, followed by data for transmitter 0. The order is reversed for the
receiver, here receiver 0 data is first, followed by receiver 1, then receiver 2 (if used).

23.6.1.1 Examples

Consider the case of serial word length = 18 bits, MSB first, three receivers and two
transmitters. Reception would then render the following data in memory (DMA mode)
or the following sequence of words read from the mode register (mode register mode)
as shown in table23.8.

DMA mem offset Mode reg read Contents

0x00 1st, low byte receiver 0 word 0 bits 17-166

0x01 1st, high byte receiver 0 word 0 padding

0x02 2nd, low byte receiver 1 word 0 bits 17-166

0x03 2nd, high byte receiver 1 word 0 padding

0x04 3rd, low byte receiver 2 word 0 bits 17-166

0x05 3rd, high byte receiver 2 word 0 padding

0x06 4th, low byte receiver 0 word 0 bits 7-0

0x07 4th, high byte receiver 0 word 0 bits 15-8

0x08 5th, low byte receiver 1 word 0 bits 7-0

0x09 5th, high byte receiver 1 word 0 bits 15-8

0x0a 6th, low byte receiver 2 word 0 bits 7-0

0x0b 6th, high byte receiver 2 word 0 bits 15-8

0x0c 7th, low byte receiver 0 word 1 bits 17-166

0x0d 7th, high byte receiver 0 word 1 padding

Table 23.8:Receiver data organization example

The transmitter would need the following data shown in table23.9.

DMA mem offset Mode reg wr Contents

0x00 1st, low byte transmitter 1 word 0 bits 17-166

6Bits 17-16 of this word are stored in bits 1-0 of the byte. Bits 7-2 are padding.

23.6. SOFTWARE INTERFACE 679

0x01 1st, high byte transmitter 1 word 0 padding

0x02 2nd, low byte transmitter 0 word 0 bits 17-166

0x03 2nd, high byte transmitter 0 word 0 padding

0x04 3rd, low byte transmitter 1 word 0 bits 7-0

0x05 3rd, high byte transmitter 1 word 0 bits 15-8

0x06 4th, low byte transmitter 0 word 0 bits 7-0

0x07 4th, high byte transmitter 0 word 0 bits 15-8

Table 23.9:Transmitter data organization example

The outeop field in a DMA data descriptor must not be set unless the data of the
descriptor ends at a serial word boundary.

23.6.2 Transferring data

This section describes how data is communicated to/from the SSI using DMA or mode
register communication. Which to use is selected with the fieldsrw tr cfg.usedmaand
rw rec cfg.usedma.

23.6.2.1 Mode register driven mode

When the SSI is controlled directly by the CPU, not using DMA, data to send is written
to the registerrw tr data. The transmitter is ready to accept data whenr intr.trdy has
gone high. A write torw tr datawill be detected by the SSI and the data will be sent,
but first it is necessary to writerw ack intr.trdy high, before writing the data, to clear
ther intr.trdy field for the next transfer.

Note that the transmitter expects the first data word to exist in therw tr datamode reg-
ister at the moment when the transmitter is enabled, even though nor intr.trdy interrupt
is issued at this time.

Received data is read from the registerr rec data. Data is available whenr intr.rdavis
high. When the data has been read, writerw ack intr.rdavhigh to acknowledge this.

If sample size is less than or equal to 16 bits, one write or read is required for each
serial word transfer. When the sample size is bigger than 16 bits, more than one read
or write is required for each received or transmitted word. A new interrupt has to be
awaited before each additional read or write.

23.6.2.1.1 Allowed interrupt latency

At least one 16-bit word of data is buffered inside the SSI for each transmitter and
receiver (if serial word size is<= 16 bits, one serial word is buffered). Therefore the
worst-case maximum allowed latency from that thetrdy or rdavinterrupt is issued until
data must have been written or read is around 16 cycles of the serial clock (or one serial
word length, for shorter serial word lengths). The maximum allowed latency might of
course be longer depending on the configuration, e.g. if the word rate is lower, or if

680 CHAPTER 23. SYNCHRONOUS SERIAL INTERFACE

using a bulk mode transmitter with serial word length<= 16 bits (giving no constraint
on latency).

When using more than one receiver, data words will appear in pairs or triplets (2 or 3
receivers). The words in each pair or triplet will appear very quickly after each other
(after two 100 MHz clock cycles). Therefore, some interrupt routine overhead can be
saved by making therdav interrupt routine check if the interrupt has been retriggered
directly after acknowledging the previous interrupt.

Similarly, the transmitter will accept two words quickly if two transmitters are used.
Therefore the same overhead saving technique can be used with thetrdy interrupt.

23.6.2.2 DMA mode

To start DMA data transfer, first set up the DMA, including data width of 8 or 16 bits,
and enable it before the SSI is enabled.7

When the transmitter DMA hits an outeop, and the fieldrw tr cfg.eopstop is set,
transmission will stop after sending the descriptor’s associated data. Then thetidle
interrupt will be issued. Further, see section23.6.3.2below on stopping.

23.6.3 Starting and stopping

23.6.3.1 Enable procedure

The following is a description of how to enable the SSI in a correct way during different
clocking conditions. After going through these procedures, the SSI communication
will be running.

23.6.3.1.1 Continuous clock or internal clock

When using continuous clocks and/or internal clock, the enable sequence is as follows:

1. Configure the SSI mode registers, keepingrw cfg.encleared.

2. Enable DMA or write first transmit data to mode register.

3. Wait until at least three cycles of the selected bit clock type has passed.

4. Set therw cfg.enfield.

Communication will then start as soon as a frame event occurs.8

7 The SSI transmitter expects the first data to be ready at its input when enabled, therefore it should
be checked that the DMA has started filling its FIFO before enabling the SSI. This can be done using the
rw stat.buffield of the connected DMA channel.

8 It takes 2-3 bit clock cycles for reset to propagate inside the SSI. Therefore an external frame input will
not be monitored just after reset.

23.6. SOFTWARE INTERFACE 681

23.6.3.1.2 Gated external clock

When using a gated external clock, there are two different reset sequences. Which one
to use depends on if ’early’ or ’normal’ data is wanted from the transmitter:

clk

data d0 d1 d2

Figure 23.9:Early data

clk

data d0 d1

Figure 23.10:Normal data

In figure23.9, the transmitter uses negative clock edges. In figure23.10, it uses positive
edges. The opposite use of clock edges is possible in both cases but is less useful

To get early data, reset as follows:

1. Configure the SSI mode registers, keepingrw cfg.encleared, and set therw cfg.prepare
field.

2. Enable DMA or write first transmit data to mode register.

3. Select internal clock.

4. Wait at least (rw cfg.clk div+1)*30 ns

5. Set therw cfg.enfield.

6. Wait at least (rw cfg.clk div+2)*30 ns.

7. Select external clock.

8. clearrw cfg.prepare

9. Wait at least 30 ns before starting the external clock.

Now the first transmit data bit will be available on the SSI data output, and the first
active clock edge detected will clock out the second data bit.

To get normal data, reset as follows:

1. Configure the SSI mode registers, keepingrw cfg.encleared.

2. Enable DMA or write first transmit data to mode register.

682 CHAPTER 23. SYNCHRONOUS SERIAL INTERFACE

3. Select internal clock.

4. Wait at least (rw cfg.clk div+2)*30 ns

5. Select external clock.

6. Set therw cfg.enfield.

7. Wait at least 30 ns before starting the external clock.

Now the SSI is ready to receive the first active clock edge. After this edge it will present
the first data bit on the SSI data output.

Early or normal data modes are available also with the internal gated clock, but in that
case it is a function of the transmitter clock polarity only, the reset sequence is not
affected. Also, the early data is in that case generated by the ”invisible” negative edge
just before the first visible clock cycle according to figure23.9above.

23.6.3.2 Stopping the SSI

There are several options available for stopping the SSI. The most brutal way is to just
clear therw cfg.en, which will stop transmission immediately. Data might then be lost
and the serial protocol may be violated.

There are other ways when a controlled stop is wanted. Both the transmitter and the
receiver have some mode register fields for this:

· rw tr cfg.eopstop

· rw tr cfg.stop

· rw rec cfg.eopstop

· rw rec cfg.stop

· rw rec cfg.forceeop

All these fields can be set or cleared at any time.

transmitter, eop stop When therw tr cfg.eopstopfield is set, transmission will stop
after the last data or metadata associated with a descriptor with outeop set has
been transmitted (except if the metadata of the descriptor is ’txnull’, in which
case the current outeop will be ignored and the transmission will continue. See
section23.4.1.3.2). When the data has been fully transmitted, thetidle interrupt
is issued (see also section23.4.6). At this point there is no data residing inside
the transmitter, and the transmitter will not read any more data from DMA. The
DMA may have continued reading data though, and stored it in its FIFO.

When thetidle interrupt is acknowledged, transmission will continue. Therw tr cfg.eopstop
might be kept set, in which case the transmitter will stop after the next outeop
too. If no more stops are wanted, the field shall be cleared before the interrupt is
acknowledged.

23.6. SOFTWARE INTERFACE 683

Important note: At the same time as thetidle interrupt is acknowledged after
an eopstop (usingrw ack intr.tidle), therw ack intr.urunfield must also be set,
even if theuruninterrupt hasn’t been triggered. Otherwise a falseuruninterrupt
might be issued directly aftertidle acknowledge.

Therw tr cfg.eopstopfield has no effect in mode-register-driven mode and shall
then be kept cleared.

transmitter, stop When therw tr cfg.stopfield is set, transmission will stop as soon
as there is no more data inside the transmitter, and any word of which some
part has been fetched from DMA or mode register has been completely sent.
This means that more data might be required from DMA or mode register after
writing therw tr cfg.stopfield, before the transmitter will stop. When stopped,
thetidle interrupt is issued (see also section23.4.6). At this time there is no data
residing inside the transmitter, and the transmitter will not read any more data
from DMA. The DMA may have continued reading data though, and stored it in
its FIFO.

The recommended way of continuing after stop is to clear therw tr cfg.tr en(or
rw cfg.en) field, then clear therw tr cfg.stopfield, and then restart as described
in section23.6.3.1.

receiver, eopstop When therw rec cfg.eopstopfield is set, reception will stop after
either of the following conditions:

· Metadata is received in wiresave mode, or

· Therw rec cfg.forceeopfield is set (see below).

When reception has stopped and any data received before the stop point has been
transferred to DMA or mode register, therstop interrupt is issued. When this
interrupt is acknowledged, reception will continue. While stopped, any incoming
data will be discarded.

receiver, stop When therw rec cfg.stopfield is set, reception will stop as soon as
possible without losing data before the stop point. For details see the section
on this field in25.41. When reception has been stopped, therstop interrupt
is issued. The recommended way to deal withrstopgenerated by writing the
rw rec cfg.stopfield is to clear therw rec cfg.recen field (or the rw cfg.en
field), and then acknowledge the interrupt. The receiver must not be enabled
again until therstopinterrupt has been acknowledged.

receiver, force eop When therw rec cfg.forceeopfield is set, a metadata code will be
inserted into the receiver (see the table in section23.6.5). This results in that after
that any pending data has been written to DMA or mode register, an eop will be
signalled to DMA along with the metadata code, or that the metadata code will
be written to the read data mode register (along with ther rec data.mdfield) as
soon as any pending data has been read. See also25.41, therw rec cfg.forceeop
field.9

9If using therw rec cfg.forceeopwhile the fieldrw rec cfg.eopstopis set, the receiver must be disabled
when therstopinterrupt is received, before it is acknowledged, to prevent multiple eop cycles to DMA.

684 CHAPTER 23. SYNCHRONOUS SERIAL INTERFACE

23.6.4 Error conditions and recovery

The SSI can signal three different error conditions, described below:

1. IEC60958 error: An error occurred during IEC60958 reception. See sections
23.4.6on ther958errinterrupt and section23.4.1.4on IEC60958 (and especially
23.4.1.4.2on rate detection).

2. transmitter underrun: The CPU or the DMA could not supply data quickly
enough for the transmitter, so data wasn’t available in time for transmission.
For obvious reasons this can happen in isochronous modes (whether internal
or external frame is used). Further it can also happen in bulk mode if the se-
rial word length is greater than 16 bits and CPU-controlled (non-DMA) mode
is used, since the SSI can then not know beforehand if the CPU will be able to
write more than the first part of the word in time (in DMA-controlled bulk mode
transmission will not start until the DMA holds one complete serial word).

When an underrun condition arises theuruninterrupt is signalled and at the same
time, or shortly thereafter, garbage data is being transmitted.

At this point, two alternative behaviors are available, controlled by therw tr cfg.urunstop
field. If urun stop.nowas selected, transmission of real data will continue as
soon as possible when new data is available. Ifurun stop.yeswas selected, no
more data will be read from DMA or mode register until theurun interrupt is
acknowledged. It is recommended that the transmitter is disabled (=reset) before
acknowledging this interrupt when therw tr cfg.urunstopfield is active.

If isochronous modes are used, frame signals will still be generated, clock gating
will be activated etc, regardless of therw tr cfg.urunstopsetting. Its only effect
is to defer the transfer of more data from DMA or mode register.

3. receiver overrun: Similarly, if the CPU or DMA doesn’t remove data quickly
enough from the receiver, overrun occurs. This error can occur in any mode,
except if flow control is used and is obeyed by the external unit (see section
23.4.3).

When an overrun condition arises, theoruninterrupt is signalled at the same time
as received data is lost. The data word that is lost was the one last received, any
data buffered inside the SSI is from the time before theoruninterrupt.

Also for overrun there are two alternative behaviors, controlled by therw rec cfg.orunstop
field. If orun stop.nowas selected, reception continues as soon as the DMA or
CPU removes data from the SSI again. Fororun stop.yes, reception will not
continue until theoruninterrupt is acknowledged (although data buffered inside
the SSI from before the time whenorunwas signalled can be read by the CPU
or will be written to DMA when non-busy regardless oforuninterrupt acknowl-
edge). It is recommended that the receiver is disabled (=reset) after that the last
data has been taken care of and before theoruninterrupt is acknowledged when
therw rec cfg.orunstopfield is set.

If isochronous modes are used, frame signals will still be generated, clock gating
will be activated etc, regardless of therw rec cfg.orunstop setting. Its only
effect is to defer transfer of received data to DMA or mode register.

23.6. SOFTWARE INTERFACE 685

23.6.5 Wiresave mode metadata codes

In wiresave mode, ”metadata” can be inserted into the stream of ordinary data to mark
special events, or points of interest, in the data stream.

The following table lists all possible metadata codes. The xon/xoff codes are only
meant to be used by the automatic xon/xoff logic in the SSI, and should not be used
as ordinary transmitter metadata. The manualeop codes should preferably not be sent
either, as this might confuse the receiver since it can then not tell for sure if the man-
ual eop codes come from real manualeop events or from metadata sent by the trans-
mitter. The other codes may be used depending on the application.

value sent md sent stored md rec name

all with bit0=1
& bit1=1

yes no no no xoff

0x0005 yes no no no xon

0x6001 yes yes yes no manualeop10

0xa001 yes yes yes no manualeop 10

0xe001 yes yes yes no manualeop 10

0x0009 yes yes no yes irq

0x0001 no no yes yes tx null

0x000d yes yes yes no rx null

all with bit0=0 yes yes yes yes normal metadata

Table 23.10:Metadata codes and their effect

The ’sent’ column is ’yes’ if the metadata code can be sent by the transmitter.

The ’md sent’ column is ’yes’ if sending that code produces anmd sentinterrupt from
the transmitter.

The ’stored’ column is ’yes’ for metadata which the receiver stores in the DMA de-
scriptor (storing metadata also includes DMA eop signalling, writing out DMA FIFO
contents to memory etc).

The ’md rec’ column is ’yes’ for codes which causes anmd rec interrupt from the
receiver.

All metadata codes with bit 0 = 0 are free to use for general purposes. The unused codes
with bit 0 set are reserved for future use and should not be transmitted unless specifi-
cally required by an external device. The txnull metadata is silently discarded by the
transmitter and can be used if no metadata sending is wanted even if the ’outeop’ bit is
set in a descriptor. Even ifrw tr cfg.eopstopis set, transmission will not stop in case
the metadata was txnull. The rx null metadata is stored, but no interrupt is signalled
from the receiver.

10 See25.41, field rw rec cfg.stop.

686 CHAPTER 23. SYNCHRONOUS SERIAL INTERFACE

23.7 Configuration examples

23.7.1 I2S

The [I2S] datasheet describes I2S communication in general. Further information (such
as clock rate etc.) is to be found in the datasheet of the actual device to be connected.

In this example configuration procedure, the SSI is configured as a master with one
output and one input channel, 12.5 MHz bitrate, 16 bits per sample, DMA mode and
internal clock output:

1. Setrw cfg.clk div to 7 and setrw cfg.basefreq.f100.

2. Disable all clock gating.

3. Set the clock pin to be an output withrw cfg.clk dir.out.

4. Set output clock polarity torw cfg.out clk pol.pos, output clock source torw cfg.out clk src.internclk.

5. rw tr cfg.clk src, rw rec cfg.clk srcandrw frm cfg.clk srcto intern

6. Turn off open-drain mode for theclk pin.

7. Setrw tr cfg.clk pol to neg, rw rec cfg.clk pol to posandrw frm cfg.clk pol to
neg

8. Use either theframe or thestatuspin as a frame signal output. Set the other one
to general IO mode.

9. Setrw frm cfg.out on.interntb andrw frm cfg.out off.rec

10. Setrw frm cfg.type.edgeandrw frm cfg.level.both.

11. Setrw frm cfg.tr delayandrw frm cfg.recdelayto 2.

12. Setrw frm cfg.wordrateto 15.

13. Set thedata pin to be a normal output by settingrw tr cfg.datapin useto dout.

14. Turn off open-drain mode for thedata pin.

15. Setrw tr cfg.dual i2stono, and setrw rec cfg.slave3enandrw rec cfg.slave3en
to no.

16. Setrw tr cfg.usemd to no.

17. Setrw tr cfg.ratectrl to iso,

18. rw tr cfg.frm srcandrw rec cfg.frm srcto intern

19. Setrw tr cfg.modeandrw rec cfg.modeto lospeed.

20. Setrw tr cfg.usedmaandrw rec cfg.usedmato yes.

21. Setrw tr cfg.shdir andrw rec cfg.shdir to msbfirst.

22. Setrw tr cfg.samplesizeandrw rec cfg.samplesizeto 15 (16 bits per sample).

Then start communication the usual way, as described in section23.6.3.

23.7. CONFIGURATION EXAMPLES 687

23.7.2 SPI

The following is an example setup procedure for an isochronous SPI master, with both
CPHA and CPOL equalling zero:

1. Enable output clock gating byrw cfg.gateclk.yes, rw cfg.clkgatein.noandrw cfg.clkgatectrl.tr.

2. Set output clock polarity torw cfg.out clk pol.pos, output clock source torw cfg.out clk src.internclk.

3. rw tr cfg.clk src, rw rec cfg.clk srcandrw frm cfg.clk srcto intern

4. rw tr cfg.clk pol to neg, rw rec cfg.clk pol to pos and rw frm cfg.clk pol to
neg,

5. Use either theframe or thestatuspin as a frame signal output. Set the other one
to general IO mode.

6. Setrw frm cfg.out on.interntb andrw frm cfg.out off.rec,

7. rw frm cfg.type.levelandrw frm cfg.level.neglo.

8. Setrw frm cfg.tr delayandrw frm cfg.recdelayto 1.11

9. Setrw tr cfg.samplesizeandrw rec cfg.samplesizeto 7 (8 bits per word).

10. Setrw frm cfg.wordrateto your desired word rate, 7 for back-to-back transmis-
sion.

11. Setrw tr cfg.ratectrl to iso,

12. rw tr cfg.frm srcandrw rec cfg.frm srcto intern,

13. rw tr cfg.modeandrw rec cfg.modeto lospeed,

14. rw tr cfg.shdir andrw rec cfg.shdir to msbfirst.

Then start communication the usual way, as described in section23.6.3.

23.7.3 MAX1202

It is possible to use many different timing sequences when communicating with the
MAX1202, according to its data sheet. The SSI has been verified using ”external clock
mode, 15 clocks/conversion timing”, according to figure 11a in [MAX1202]. If this
timing were to be used straight away, it has the awkward side effect of splitting each
data sample across two 16-bit memory words (bits 11 to 5 in one word and bits 4 to 0
in the next, together with bits 11 to 5 of the next sample, etc.).

If the communication is to run continuously once it has been started, the splitting of
data samples can be avoided by manually generating the first few clock cycles of the
first communicated word, using the CPU and the general I/O features of the SSI, before
starting the normal SSI communication. Thereby the SSI is fooled into believing that
each word starts in the middle of the real word, resulting in that all 12 bits of each
sample is stored in the same 16-bit memory location. The following procedure is a
description of how to do this.

11rw frm cfg.tr delayandrw frm cfg.recdelayvalues of 1 render frame in the same cycle as data (0 gives
data before frame), see section23.4.2.3.1.

688 CHAPTER 23. SYNCHRONOUS SERIAL INTERFACE

23.7.3.1 Initial configuration

1. Don’t use clock gating

2. Setrw frm cfg.tr delayto 2 andrw frm cfg.recdelayto 1.

3. Set rw frm cfg.wordrate, rw tr cfg.samplesizeandrw rec cfg.samplesizeall
to the value 14 (i.e., 15 bits/word, back-to-back transmission).

4. Setrw tr cfg.ratectrl to iso,

5. rw tr cfg.frm srcandrw rec cfg.frm srcto intern,

6. rw tr cfg.modeandrw rec cfg.modeto lospeed,

7. rw tr cfg.clk src, rw rec cfg.clk srcandrw frm cfg.clk srcto intern

8. rw tr cfg.clk pol toneg, rw rec cfg.clk pol toposandrw frm cfg.clk pol topos,

9. rw tr cfg.shdir andrw rec cfg.shdir to msbfirst.

10. Set output clock polarity to positive, output clock source to constant 0.

11. Set theframe pin to be a general output with value 1.

12. Set thedata pin to be a general output with value 0.

Now the MAX1202 can be connected/enabled.

23.7.3.2 Starting communication

1. Set theframe pin low.

2. Wait tCSS

3. Set theclk pin high

4. Wait half a period

5. Set theclk pin low again

6. Wait half a period

7. Setrw cfg.out clk srcto intern clk.

8. Enable the SSI, as described elsewhere in this document.

The communication will now continue by itself. There will be three pulses on theclk
pin before data starts being clocked in to and out from the SSI, this leads to that the
conversion result data ends up with bit 0 at bit 0 in memory.

Following this procedure, ”control byte 0” in figure 11a in [MAX1202] will be all
zeros, including the start bit. Therefore, the first conversion result will probably be
invalid. The data to be output from the SSI must be configured to contain proper start
bits and control bytes for the MAX1202 to function.

Also, it might be possible to start the SSI as usual, without manual clock cycle gener-
ation, and still get well-aligned data by just putting the start bit at the correct position,
see [MAX1202].

23.7. CONFIGURATION EXAMPLES 689

23.7.4 I2C

The following is a description of how to use the SSI for I2C communication.

23.7.4.1 Electrical connection

When using I2C communication, externally connect thedata pin to thedin pin, see
figure23.11. Also connect pull-up resistors on theclk and thedata pins (for suitable
values, see [I2C]).12

I2C
device

SDA

SCL

SSI

din

clk

data

R R

+3.3V

Figure 23.11:Connection to an I2C device

23.7.4.2 Data formatting

In order for I2C mode to work, data must be transmitted and received at the same time.
Since the data output and input are connected, a copy of the transmitted data is also
received simultaneously.

The serial word length used with I2C is 9 bits (8 bits data plus one ack bit). This means
that the SSI consumes and produces 16 bits of memory data for each serial word in
DMA mode, of which the 9 least significant bits are used. The LSB, bit 0, is the ack
bit and bits 8 to 1 are the data.

When data is to be received, the SSI must not drive thedata pin. Therefore, 1:s have
to be stored in every transmitter data bit that is transmitted at the same time as data is
to be received. For example, the ack bits that are to be received from the slave have
to be set in the transmitter’s data. Since the master always controls when data shall be
transmitted or received, this is no problem.

23.7.4.3 Initial configuration

Set the register fieldsrw tr cfg.od modeand rw cfg.clk od mode, the latter only if
pull-ups are used on both thedata and theclk pins.

Some more settings:

12If it is known that the external I2C device never drives the clock line, the pull-up onclk can be omitted
and a normal (non-open-drain) output can be used instead. This also means less susceptibility to noise.

690 CHAPTER 23. SYNCHRONOUS SERIAL INTERFACE

· Setrw tr cfg.samplesizeandrw rec cfg.samplesizeto 8 (=9 bit data),

· Use internal clocking for both receiver and transmitter,

· Setrw frm cfg.tr delay, rw frm cfg.recdelayandrw tr cfg.bulk wspaceto 0,

· Setrw tr cfg.ratectrl to bulk, rw tr cfg.shdir andrw rec cfg.shdir to msbfirst,

· Setrw rec cfg.frm srcto tx bulk.

· Setrw cfg.gateclk to yes, andrw cfg.clkgatectrl to tr,

· Setrw extra.doutdelayto 30 (which will work for both 100 kbit/s and 400 kbit/s
communication).

· Set therw tr cfg.tr enandrw rec cfg.recenfields (but keeprw cfg.endisabled).

23.7.4.4 Communication

Before communication is started, also do the following:

· Setrw cfg.out clk src to const0andrw cfg.out clk pol to neg, thereby forcing
the clock signal to a logical 1.

· Setrw tr cfg.datapin useto gio1, thereby forcing the data signal to a logical 1.

(It might be desirable to do the above two bullets along with the open drain selection,
before the pinmux is configured for connecting the SSI to the ETRAX FS pins, to en-
sure that there are no glitches on the external pins from power-up until communication
is started.)

Now communication can begin. Produce a start condition by:

1. Ensure that at least tBUF (see [I2C]) has passed since last communication session.

2. Setrw tr cfg.datapin useto gio0.

3. Wait tHD;STA

4. Set the clock signal low, by writingposto rw cfg.out clk pol.

Now enable the transmitter and receiver:

5. Write the first data word to the transmitter (or enable DMA)

6. Setrw cfg.out clk src to intern clk. Clock is gated so no clock will be produced
until the SSI is enabled.

7. Set therw cfg.enfield.

23.7. CONFIGURATION EXAMPLES 691

Now communication will start. The SSI must be stopped again before the next repeated-
start or stop condition. In DMA mode, it is most convenient to set EOP of the last
descriptor and set therw tr cfg.eopstopfield and make sure the descriptor metadata is
something else than ’txnull’ (see23.4.1.3.2), then atidle interrupt will be issued when
finished.

In mode-register-driven communication, set therw tr cfg.stopfield after that the last
data has been written to therw tr data.datafield, which will also trigger thetidle inter-
rupt when finished.

8. Wait until thetidle interrupt appears

9. Since we now know that the receiver also got all its data, set therw rec cfg.stop
field. Now EOP is written to the in-DMA or mode register. Wait for therstop
interrupt (which should come quickly). In DMA mode, it might also be desirable
to wait for a DMA in eop interrupt.

10. Setrw tr cfg.datapin useto gio1 (for a repeated start condition) orgio0 (for a
stop condition).

11. Wait tSU;DAT. This step can be skipped if the previous bullet didn’t change the
state of the data signal.

12. Clearrw cfg.en, setrw cfg.out clk src to const0, andrw cfg.out clk pol to neg,
all in one write operation, to disable the SSI and to set the clock signal high.

13. Acknowledge therstopinterrupt

14. Wait tSU;STO or tSU;STA

15. Setrw tr cfg.datapin useto gio0 (for a repeated start condition) orgio1 (for a
stop condition).

16. If stop, we’re finished now. Otherwise, produce a repeated start condition by
going back to bullet 3 above.

An alternative configuration can be used if waiting for the above described delay times
is a problem. The idea is to use an inverted output clock, stop the transmissionbefore
the last byte is transferred, switch to 10 bit serial word length (8 bits data, 1 ack bit, and
the repeated start (=1) or stop (=0) condition), and then transfer the last word. When
the transmission is finished, the data line is switched to 1 (stop) or 0 (repeated start)
immediately. Then the only time the software has to wait is for tHD;STA at start or
repeated-start conditions, but on the other hand the SSI has to be stopped and started
once more per repeated-start or stop condition. This alternative configuration has not
been tested.

23.7.5 Atmel flash memory (fast SPI)

This example shows how to connect and configure the SPI as a fast SPI master, to
communicate with an Atmel flash memory (see [ATMEL]).

Both ”SPI Mode 0 Compatible” and ”SPI Mode 3 Compatible” as described by Atmel
in the timing diagrams on page 17 of [ATMEL] are probably possible, but only mode

692 CHAPTER 23. SYNCHRONOUS SERIAL INTERFACE

0 has been verified. Data will be input from and output to the slave during the entire
communication cycle, even though the device only produces valid output data and cares
about its input data during specific intervals.

23.7.5.1 Hardware connection

Connect theframe pin to the ”csn” input of the SPI slave, theclk pin to the ”sck”
input, thedata pin to ”si” of the slave anddin to ”so” of the slave, see figure23.12
below:

Fast SPI
slave

si

so

SSI

data

din

cs_n

sck

frame

clk

Figure 23.12:Connection to an SPI slave

At low clock frequencies, when the cycle time is much longer than the propagation
delays involved, in ETRAX FS and in the external device, things are straightforward.

At high frequencies, timing must be analyzed carefully. For the receiver, the following
sum of propagation delays has to be calculated:

1. SSI internal clock -> clock on the circuit board

2. circuit board trace delay of the clock signal

3. clock on circuit board -> data out from slave

4. circuit board trace delay of the data signal

5. data on circuit board -> input data inside the SSI

(considering all operating conditions, best to worst case). Knowing the best and worst
case delays and the clock cycle time, it is easy to realize if the data is stable at the time
of positive or negative clock edges inside the SSI (selected withrw rec cfg.clk pol),
and/or if the sampling point needs to be moved a whole clock cycle (usingrw frm cfg.recdelay).
In some cases it might be necessary to externally delay data in and/or out a few nanosec-
onds to fulfill all timing requirements.

The Atmel flash cannot run at 100 MHz, but if a similar device is connected that can,
an external delay circuit is most probably needed. When running at 100 MHz, data can
only be output from the SSI on positive clock edges. Therefore a delay of nominally 5
ns is needed betweendata and ”si” in this case, while programming the SSI to output
its data half a period earlier than usual.

23.7. CONFIGURATION EXAMPLES 693

23.7.5.2 Initial configuration

1. Set therw cfg.gateclk to no, that field is only used for the normal clock gating
in lowspeed mode.

2. Setrw cfg.out clk pol to pos.

3. Setrw cfg.out clk src to intern clk if frequency is 50 MHz or below, toclk100
if running at 100 MHz.

4. The data width is arbitrary, as long as the total number of bits in a ”burst” is an
even multiple of it, of course.

5. Set therw frm cfg.wordrateto the value corresponding to the number of bits per
word (e.g. 16 bits/word => set it to 15). Then there will be no space between
the transmitted words.

6. Set transmitter, receiver and frame clock sources to internal clock, transmitter
and frame clock polarity to negative edge.

7. Normally setrw rec cfg.clk pol to positive edge clocking, since the slave outputs
data on the negative edge. For higher clock frequencies, see the discussion in
23.7.5.1above.

8. Setrw frm cfg.tr delayto 1, since the first data out from the SSI shall appear at
the same time as the frame signal (see the ”SI” and ”CSn” signals in ”waveform
1” on page 17 in [ATMEL], and section23.4.2.3.1above).

9. At low frequencies, setrw frm cfg.recdelay to 2. The value 2 is because of
Atmel SPI mode 0 (see [Atmel]), where data output (SO) appears one cycle after
the transmitted data. For same-cycle input/output SPI devices (and Atmel SPI
mode 3 with other clock settings, not shown), use recdelay = 1. For higher
frequencies, see the discussion in23.7.5.1above.

10. Set transmitter and receiver shift direction to MSB first.

11. Setrw tr cfg.frm srcandrw rec cfg.frm srcto intern.

12. Setrw tr cfg.ratectrl to iso.

13. Set therw tr cfg.eopstopfield and make sure the descriptor metadata is some-
thing else than ’txnull’ (see23.4.1.3.2).

14. Configure theframe pin as a general output, with value 1.

15. Set the fieldsrw extra.clkonenandrw extra.clkoff en, to enable the special out-
put clock gating features.

16. Set rw extra.clkoff cyclesto the number of bits, minus one, to transfer in one
”burst”.

17. Set therw cfg.preparefield.

694 CHAPTER 23. SYNCHRONOUS SERIAL INTERFACE

23.7.5.3 Communication

1. Configure the SSI mode registers, keepingrw cfg.encleared andrw cfg.prepare
set. Communication will not start untilrw cfg.prepareis cleared, and the special
clock gating feature will keep the clock atclk off until then.

2. Enable DMA or write first transmit data to mode register.

3. Wait at least (rw cfg.clk div+1)*30 ns

4. Set therw cfg.enfield, keepingrw cfg.prepareset.

5. Wait at least (rw cfg.clk div+2)*30 ns.

6. Set theframe pin low and wait the required frame-to-clock time (250 ns) (this
delay may overlap bullet 5, ie frame may be lowered any time after bullet 4).

7. Clear therw cfg.preparefield. Now transmission will start and the output clock
will be enabled. When the number of clock cycles set byrw extra.clkoff cycles
has passed, the clock will be turned off. If EOP has been set at the correct
position in the DMA, thetrdy interrupt will be issued when all data has left the
SSI.

8. Then wait the desired clock-to-frame time (250 ns) and set frame high.

9. Clear therw cfg.enfield and setrw cfg.prepare. After waiting the minimum
inter-word gap, the next communication session can be started by repeating the
steps from step 2 in this section.

Chapter 24

Electrical and Mechanical
Information

24.1 DC Electrical specifications

24.1.1 Absolute maximum ratings

Symbol Parameter Min Max Unit

VDD15 Core DC supply voltage. -0.5 1.8 V

VDD33 I/O DC supply voltage. -0.5 4.8 V

VDD33−15 I/O DC supply voltage referenced to core
DC supply voltage.

-0.5 4.8 V

V in DC voltage applied on inputs. -0.5 6.5 V

Vout DC voltage applied on off-state outputs
and I/O, all pins exceptsdclk, u0vp and
u0vm.

-0.5 6.5 V

Vout DC voltage applied on off-state outputs
and I/O,sdclk, u0vp andu0vm pins.

-0.5 4.8 V

IIO Input/output current. -20 20 mA

Tstg Storage temperature. -65 150 ◦C

TA Operating temperature. -40 85 ◦C

PD Power dissipation. - 2 W

Table 24.1:Absolute maximum ratings

24.1.2 ESD protection and latch-up

Test Description Standard Test value Unit

HBM Human Body Model ESD test JESD22-A114-B 2000 V

MM Machine Model ESD test JESD22-A115-A 200 V

CDM Charged Device Model ESD test JESD22-C101-A 300 V

Latch-up Latch-up test JESD78 200 mA

695

696 CHAPTER 24. ELECTRICAL AND MECHANICAL INFORMATION

24.1.3 Recommended operating conditions

Symbol Parameter Min Typical Max Unit

VDD15 Core DC supply voltage. 1.4 1.5 1.6 V

VDD33 I/O DC supply voltage. 3.0 3.3 3.6 V

V in DC voltage applied on inputs. -0.3 - 5.5 V

Vout DC voltage applied on off-state
outputs and I/O, all pins except
sdclk, u0vp andu0vm.

-0.3 - 5.5 V

Vout DC voltage applied on off-state
outputs and I/O,sdclk, u0vp and
u0vm pins.

-0.3 - VDD33 + 0.3 V

TA Operating temperature (Ambient
temperature, no air flow).

-40 25 85 ◦C

IOH High level output current. - - -4 mA

IOL Low level output current. - - 4 mA

Table 24.3:Recommended operating conditions

24.1.4 DC Electrical characteristics

Symbol Parameter Min Typical Max Unit

VIH High level input voltage, all inputs and
I/O exceptsdclk, u0vp andu0vm.

2.0 - 5.5 V

VIH High level input voltage,sdclk pin. 2.0 - VDD33 + 0.3 V

VSEH Single ended high level input voltage,
u0vp andu0vm pins.

2.0 - VDD33 + 0.3 V

VIL Low level input voltage. -0.3 - 0.8 V

VSEL Single ended low level input voltage,
u0vp andu0vm pins.

-0.3 - 0.8 V

VDI Differential input voltage,u0vp and
u0vm pins.

0.2 - - V

VCM Common mode input voltage,u0vp
andu0vm pins (includes VDI range).

0.8 - 2.5 V

VOH High level output voltage,
IOH = -4 mA,
all outputs exceptu0vp andu0vm pins.

2.4 - VDD33 V

VOH High level output voltage,
IOH = -1 µA,
all outputs exceptu0vp andu0vm pins.

VDD33 -
0.05

- VDD33 V

VOH High level output voltage,
RL = 15 kOhm to VSS,
u0vp andu0vm pins.

2.8 - VDD33 V

VOL Low level output voltage,
IOL = 4 mA,
all outputs exceptu0vp andu0vm pins.

0 - 0.4 V

VOL Low level output voltage,
IOL = 1 µA,
all outputs exceptu0vp andu0vm pins.

0 - 0.05 V

VOL Low level output voltage,
RL = 1.5 kOhm to VDD33,
u0vp andu0vm pins.

0 - 0.3 V

24.2. AC ELECTRICAL SPECIFICATIONS 697

I in Input leakage current, all inputs except
trst , tck, tms andtdi .

-10 - 10 µ A

I in Input current,trst tck , tms andtdi . -71 - 10 µ A

I ioz I/O leakage current. -10 - 10 µ A

Cio Capacitance on any input, I/O or output
pin exceptu0vp or u0vm.

- 5 6 pF

Cio Capacitance onu0vp or u0vm. - - 20 pF

IDD15 Core DC Supply current - 200 950 mA

IDD33 I/O DC Supply current - 50 - mA

Table 24.4:DC Electrical characteristics

24.1.4.1 Notes on supply current specifications

The supply current for ETRAX FS is widely dependent on the specific application.
Typical values specified for IDD15 and IDD33 are measured with all functional units
enabled, a Linux kernel running, communication on both Ethernet ports, and a USB 1.1
application running in the I/O processor. The maximum value for IDD15 is measured
with an application specifically designed to draw maximum current.

24.1.5 PLL loop filter

The PLL requires a loop filter capacitor between theplllpf pin and Vss. Circuit board
traces for the loop filter should be kept as short as possible.

Symbol Parameter Min Typical Max Unit

Cl p f External loop filter capacitor value 1.425 1.5 1.575 nF

Table 24.5:PLL loop filter value

24.1.6 Power up sequence

During power up, VDD33 should be applied before or at the same time as VDD15. When
powering down, VDD15 should be removed before or at the same time as VDD33. The
voltage difference between VDD33 and VDD15 should in no case exceed the values spec-
ified by the VDD33−15 parameter given in24.1.1.

24.2 AC Electrical specifications

For AC electrical specification information for the ETRAX FS, please see the respec-
tive chapter for each ETRAX FS interface.

24.2.1 Conditions

Timing information for the ETRAX FS is valid under the operating conditions given in
the table below.

698 CHAPTER 24. ELECTRICAL AND MECHANICAL INFORMATION

Condition Value

TA 0◦C to 85◦C

VDD15 1.5 V +/- 0.1 V

VDD33 3.3 V +/- 0.3 V

Capacitive load 50 pF unless explicitly
stated otherwise

Table 24.6:Operating conditions for timing information

24.3 MTBF

MTBF figures are available upon request. Please contact Axis Communications for
further information.

24.4. PINOUT 699

24.4 Pinout

An overview of the ETRAX FS pinout is shown in the figure below. A detailed pinout
description is found in chapter16.

pd17 pe1 pe5 vdd33 pe11 pe14 pe16 vdd33 vdd33 plllpf vss clk vdd33 e0rxclk e0rxd1 e0txclk vdd33 e0phyclk e0mdio e0mdc

pd16 pe0 pe2 pe6 pe8 pe12 pe15 tck u0vp vss trst test e0rxer e0rxd3 e0rxd0 e0txd3 e0txen phyrst_n s0rts_n s0txd

pd11 pd15 tdo pe3 pe7 pe9 pe13 pe17 u0vm vss vdd15 tdi e0crs e0rxd2 e0col e0txd2 e0txd0 vss s0rxd bs5

vdd33 pd14 pd13 vss pe4 vdd15 pe10 vss tms vdd15 vdd15 rst_n vss e0rxdv vdd15 e0txd1 vss s0cts_n bs4 vdd33

pd8 pd9 pd10 pd12 bs6 bs3 bs2 d31

pd4 pd5 pd7 vdd15 vdd15 bs1 d30 d28

pd1 pd2 pd3 pd6 bs0 d29 d27 d26

pc16 pc17 pd0 vss vss d25 d24 vdd33

vdd33 pc13 pc14 pc15 d23 d22 d21 d20

pc10 pc12 pc11 vdd15 d19 d18 d17 d16

pc9 pc8 pc7 pc6 vdd15 d14 d13 d15

pc5 pc4 pc3 pc2 d10 d11 d12 vdd33

vdd33 pc1 pc0 vss vss d7 d8 d9

pb17 pb16 pb14 pb11 d1 d4 d5 d6

pb15 pb13 pb10 vdd15 vdd15 d0 d2 d3

pb12 pb9 pb8 pb5 rd_n sdcke csd1_n csd0_n

vdd33 pb7 pb4 vss pa3 vdd15 brin vss csp4_n vdd15 a3 a7 vss a16 vdd15 a22 vss wr3_n wr2_n vdd33

pb6 pb3 vss pa4 pa1 hsh2 bg wait_n csp1_n csr0_n a2 a6 a9 a13 a17 a19 a23 vss wr1_n sdclk

pb2 pb1 pa6 pa5 pa0 hsh1 brout irq_n csp0_n csr1_n a1 a5 a8 a11 a14 a18 a20 a24 a25 vss

pb0 pa7 pa2 vdd33 hsh3 hsh0 nmi_n css_n vdd33 cse1_n cse0_n a4 vdd33 a10 a12 a15 vdd33 a21 wr0_n vss

Top view of the
ETRAX FS pinout

Plastic Ball Grid Array Package

20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Y

W

V

U

T

R

P

N

M

L

K

J

H

G

F

E

D

C

B

A

Figure 24.1:The ETRAX FS pinout

700 CHAPTER 24. ELECTRICAL AND MECHANICAL INFORMATION

24.5 Mechanical specifications

24.5.1 Physical dimensions

The package of the ETRAX FS is a 256 lead Plastic Ball Grid Array (PBGA).

ETRAX FS 256 PBGA
Ball Grid Array Package - Mechanical drawing

Dimension mm

A

Min

Nom

Max

A1

Min

Nom

Max

0.50

A2

Min

Nom

Max

A3

Min

Nom

Max

Max

b

Min

Nom

Max

0.60

D

Min

Nom

Max

D2

Min

Nom

Max

E

Min

Nom

Max

E2

Min

Nom

Max

e Nom

1.17

0.56

27.00

24.00

27.00

24.00

2.52

0.70

0.90

0.15

1.27

D

E

e b

A2

A3

A1

A

Pin 1
corner

Pin 1
corner

Bottom view

W
Y

U
V

R
T

N
P

L
M

J
K

G
H

E
F

C
D

A
B

2
1

4
3

6
5

8
7

10
9

12
11

14
13

16
15

18
17

20
19

D2

E2

2.33

2.12

0.60

1.12

1.22

0.50

0.60

0.76

26.90

27.10

23.95

24.35

26.90

27.10

23.95

24.35

f

f Nom 0.50

Note: Drawing is not to scale.

Figure 24.2:The ETRAX FS Plastic Ball Grid Array

24.5. MECHANICAL SPECIFICATIONS 701

24.5.2 Marking

Figure 24.3:ETRAX FS marking information

The following list describes the marking on the ETRAX FS:

1. The name of the chip.

2. The Axis five digit part number PPPPP:

· 24745 for a Pb-free package.

· 21050 for a conventional package.

3. The third line contains three kinds of information:

· A: Assembly site code.

· YYWW: Work week code.

· XXXXXXX: Fabrication number, up to seven digits.

4. The country where the ETRAX FS chip is produced.

24.5.3 RoHS conformance

The Pb-free version of ETRAX FS, part number 24745 , conforms to the European
Union DIRECTIVE/2002/95/EC on the restriction of the use of certain hazardous sub-
stances in electrical and electronic equipment (RoHS directive). A declaration of used
materials is available upon request. Please Contact Axis Communications for further
information.

702 CHAPTER 24. ELECTRICAL AND MECHANICAL INFORMATION

24.6 Soldering

24.6.1 Recommended soldering profile for Pb-free package

This specification applies to part number 24745.

300

200

100

C

sec

A B D F

E (Peak temperature 260 C)

C

Figure 24.4:Soldering profile for Pb-free package

Item Description Min Max Unit

A Heat-up - 3 ◦C/s

B Pre-heat 160
60

190
120

◦C
s

C Heat-up - 3 ◦C/s

D Maintain 255
7

260
13

◦C
s

E Re-flow peak 255 260 ◦C

F Cooling down - 6 ◦C/s

Table 24.7:IR re-flow profile for Pb-free package

24.7. DELIVERY AND STORAGE 703

24.6.2 Recommended soldering profile for conventional package

This specification applies to part number 21050.

300

200

100

C

sec

A B D F

E (Peak temperature 220 +5/-0 C)

C

Figure 24.5:Soldering profile for conventional package

Item Description Min Max Unit

A Heat-up - 3 ◦C/s

B Pre-heat 140
60

160
120

◦C
s

C Heat-up - 3 ◦C/s

D Maintain 183
60

-
150

◦C
s

E Re-flow peak 220
7

225
13

◦C
s

F Cooling down - 6 ◦C/s

Table 24.8:IR re-flow profile for conventional package

24.7 Delivery and storage

24.7.1 Delivery package

ETRAX FS is delivered in JEDEC CO-029 trays. Each tray carries 40 chips. A tray
stack contains 10 filled trays, with an 11th empty tray on top. The tray stack contains
400 units. Each tray stack is placed in a sealed moisture barrier bag, together with one
humidity indicator card and two desiccant bags. The moisture barrier bag is packed in
a box. Bar code labels to identify the contents are placed on the moisture barrier bag
and on the outside of the box.

Other packaging procedures than described above may apply for delivery quantities
below 400 units.

704 CHAPTER 24. ELECTRICAL AND MECHANICAL INFORMATION

24.7.2 Storage time

Maximum storage time in an unopened moisture barrier bag is 1 year.

24.7.3 Factory floor life and rebake procedure

The ETRAX FS is a Level 3 moisture sensitive device according to JEDEC standards
J-STD-020A and J-STD-033B. After opening of the moisture barrier bag, factory floor
life is limited to 168 h at 30◦C/60% RH. If factory floor life time is exceeded, the
units must be rebaked at 125◦C for a minimum of 17 hours before soldering. The units
can be rebaked without removing them from the trays. Rebake should be performed a
maximum of 3 times.

Chapter 25

Internal Registers

25.1 Introduction

This chapter contains detailed information about the internal registers and support reg-
isters in the ETRAX FS. Each module is presented in a separate sub chapter. The
register descriptions are presented as appropriate sets, within which the content of each
separate register is specified to bit level.

The description of each module is introduced by a table listing the base addresses of
all instances of the module, after which all the registers of the module are listed.

For each register is stated name, offset address within a module instance, default value,
read/write capabilities and a description. For vector registers the addresses and, if
available, default values are listed. All registers are 32 bit in size, of which all may
or may not be used. The bit allocation of each register is then presented in a table as
follows:

Bit(s) Name Description Value

Bit no(s) Name of field Summary of the function of the field and
associated signals.

Significance/value of each bit
field.

The value column can list the state names and values of the field or not state anything
in which case the value may be 0 to 2ˆ(width of field)-1 unless otherwise stated in the
description.

Chapter25.45contains a list of all register addresses in ETRAX FS, stating address,
scope, instance and register name.

25.2 Notation

All hexadecimal values, including addresses, are preceded by 0x. All other values are
given in decimal notation.

705

706 CHAPTER 25. INTERNAL REGISTERS

25.3 ata

Instance Base Address
ata 0xb0032000

25.3.1 rw ctrl2

Address 0x0

Default 0x00000000

Type Read/Write

Description ATA control register 2.

Bit(s) Name Description Value
31-30:2 sel Select ATA bus 0-3.

29 cs1 Chip select 1 on ATA bus.
active: Activatecs1n
inactive: Deactivatecs1n

active=1
inactive=0

28 cs0 Chip select 0 on ATA bus.
active: Activatecs0n
inactive: Deactivatecs0n

active=1
inactive=0

27-25:3 addr ATA bus device address.

24 rw Read/write select.
rd: Read
wr: Write

rd=1
wr=0

23 trf mode Data source/destination mode.
dma: Data flows to/from the DMA
reg: Register fields are used for data transfer

dma=1
reg=0

22-21:2 hsh Select ATA handshaking mode.
udma: Use UltraDMA mode handshaking
dma: Use DMA mode handshaking
pio: Use PIO mode handshaking

udma=2
dma=1
pio=0

20 multi Choose between single or multiword transfer.
yes: Keep transferring until the counter reaches zero
no: Halt after every word transfer

yes=1
no=0

19 dmasize Select size of DMA transfers.
byte: Select 8-bit transfers
word: Select 16-bit transfers

byte=1
word=0

15-0:16 data Data sent to the device if in register transfer mode.

25.3. ATA 707

25.3.2 rs stat data/r stat data

Address 0x4/0x8

Default
Type Read with side effects/Read

Description ATA transfer status register.

Bit(s) Name Description Value
17 busy Indicates if the ATA interface is busy.

yes: Busy
no: Not busy

yes=1
no=0

16 dav Set when it is possible to read new data in register mode.
yes: Data available
no: No data available

yes=1
no=0

15-0:16 data Data read from ATA device while in register transfer mode.

708 CHAPTER 25. INTERNAL REGISTERS

25.3.3 rw ctrl0

Address 0xc

Default 0x00000000

Type Read/Write

Description ATA control register 0. This register controls interface enable and reset, and PIO and
DMA mode timing. All times are (x + 1)*10 ns.

Bit(s) Name Description Value
31 en Enable the ATA controller. When disabled, the interface

will be kept in a reset state.
yes: Enabled
no: Disabled

yes=1
no=0

30 rst Controls the reset signal on the ATA bus.
active: Reset active
inactive: Reset inactive

active=1
inactive=0

29-24:6 dmastrb Strobe time in DMA mode.

23-18:6 dmahold Hold time for DMA mode.

17-12:6 pio setup Setup time for PIO mode.

11-6:6 pio strb Strobe time for PIO mode.

5-0:6 pio hold Hold time for PIO mode.

25.3. ATA 709

25.3.4 rw ctrl1

Address 0x10

Default
Type Read/Write

Description ATA control register 1. This register controls interface timing in UDMA mode. All
times are (x + 1)*10 ns.

Bit(s) Name Description Value
7-4:4 udmatdvs Data valid setup time for UDMA (tDVS).

3-0:4 udmatcyc Cycle time for UDMA (tCYC - tDVS).

710 CHAPTER 25. INTERNAL REGISTERS

25.3.5 rw trf cnt

Address 0x14

Default
Type Read/Write

Description ATA transfer count register.

Bit(s) Name Description Value
16-0:17 cnt Number of entities (words or bytes) to transfer. When configured

for UltraDMA, the counter value must include the word containing
CRC and shall therefore be set to number of payload data entities
+ 1.

25.3. ATA 711

25.3.6 r stat misc

Address 0x18

Default
Type Read

Description ATA miscellaneous status register.

Bit(s) Name Description Value
15-0:16 crc Calculated CRC from the last UltraDMA transfer.

712 CHAPTER 25. INTERNAL REGISTERS

25.3.7 rw intr mask

Address 0x1c

Default 0x00000000

Type Read/Write

Description Interrupt mask. Interrupts from the ATA interface. Specifies which interrupts are en-
abled in this subsystem. Only enabled interrupts will propagate to the central interrupt
handler. In C code the relationship betweenrw intr mask, r intr andr maskedintr can
be expressed as:
r maskedintr = r intr & rw intr mask

Bit(s) Name Description Value
3 bus3 Enable/disable bus3 interrupt. Interrupt from ATA bus 3.

yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

2 bus2 Enable/disable bus2 interrupt. Interrupt from ATA bus 2.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

1 bus1 Enable/disable bus1 interrupt. Interrupt from ATA bus 1.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

0 bus0 Enable/disable bus0 interrupt. Interrupt from ATA bus 0.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

25.3. ATA 713

25.3.8 rw ack intr

Address 0x20

Default
Type Read/Write

Description Acknowledge interrupts. Interrupts from the ATA interface.

Bit(s) Name Description Value
3 bus3 Acknowledge bus3 interrupt.

yes: Acknowledge interrupt
no: No operation

yes=1
no=0

2 bus2 Acknowledge bus2 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

1 bus1 Acknowledge bus1 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

0 bus0 Acknowledge bus0 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

714 CHAPTER 25. INTERNAL REGISTERS

25.3.9 r intr

Address 0x24

Default
Type Read

Description Interrupts before the mask. Interrupts from the ATA interface. Makes it possible to de-
termine if an interrupt is active even though it is not enabled in the mask (rw intr mask).
In C code the relationship betweenrw intr mask, r intr andr maskedintr can be ex-
pressed as:
r maskedintr = r intr & rw intr mask

Bit(s) Name Description Value
3 bus3 Interrupt bus3 active.

yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

2 bus2 Interrupt bus2 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1 bus1 Interrupt bus1 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

0 bus0 Interrupt bus0 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

25.3. ATA 715

25.3.10 r masked intr

Address 0x28

Default
Type Read

Description Interrupts after the mask. Interrupts from the ATA interface. Tells which interrupts are
active and enabled (inrw intr mask). In C code the relationship betweenrw intr mask,
r intr andr maskedintr can be expressed as:
r maskedintr = r intr & rw intr mask

Bit(s) Name Description Value
3 bus3 Interrupt bus3 active and enabled.

yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

2 bus2 Interrupt bus2 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1 bus1 Interrupt bus1 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

0 bus0 Interrupt bus0 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

716 CHAPTER 25. INTERNAL REGISTERS

25.4 bif core

Instance Base Address
bif core 0xb0014000

25.4.1 rw grp1 cfg

Address 0x0

Default 0x000006cf

Type Read/Write

Description Configuration register for chip selects in group 1 (cse0n andcse1n).

Bit(s) Name Description Value
21 mode Write enable mode.

cwe: Common write enable
bwe: Bytewise write enable

cwe=1
bwe=0

20 erc en Early read complete mode. In early read complete mode,
therd n signal goes high one clock cycle (10 ns) before the
end of the bus cycle. Data is still sampled at the end of the
bus cycle.
yes: Early read complete mode
no: Normal mode

yes=1
no=0

19 wr extend Write delay mode. In normal mode the write signal goes
high 5 ns before the end of the bus cycle. In extended mode
it goes high at the end of the bus cycle.
yes: Extended mode
no: Normal mode

yes=1
no=0

18 bw Bus width.
bw16: 16 bits wide data bus
bw32: 32 bits wide data bus

bw16=1
bw32=0

17-16:2 ewb Early wait states burst. The wait states are added to the early
wait states of the first bus cycle in a burst.

15-14:2 dw Data setup wait states. The wait states are added in write
cycles after the early wait states but before the write goes
active. The data bus contains valid output data during the
data setup wait states.

13-12:2 aw Address recovery wait states. Adds wait states to hold the
address bus after chip select goes high.

11-9:3 zw Turn-off wait states. The wait states are added after the end
of a bus burst, and may overlap with the early wait states of
the next bus burst.

8-6:3 ew Early wait states. The wait states are added before the read
or write goes active.

25.4. BIF CORE 717

5-0:6 lw Late wait states. The wait states are added while the read or
write is active.

718 CHAPTER 25. INTERNAL REGISTERS

25.4.2 rw grp2 cfg

Address 0x4

Default 0x000006cf

Type Read/Write

Description Configuration register for chip selects in group 2 (csr0 n andcsr1 n).

Bit(s) Name Description Value
21 mode Write enable mode.

cwe: Common write enable
bwe: Bytewise write enable

cwe=1
bwe=0

20 erc en Early read complete mode. In early read complete mode,
therd n signal goes high one clock cycle (10 ns) before the
end of the bus cycle. Data is still sampled at the end of the
bus cycle.
yes: Early read complete mode
no: Normal mode

yes=1
no=0

19 wr extend Write delay mode. In normal mode the write signal goes
high 5 ns before the end of the bus cycle. In extended mode
it goes high at the end of the bus cycle.
yes: Extended mode
no: Normal mode

yes=1
no=0

18 bw Bus width.
bw16: 16 bits wide data bus
bw32: 32 bits wide data bus

bw16=1
bw32=0

17-16:2 ewb Early wait states burst. The wait states are added to the early
wait states of the first bus cycle in a burst.

15-14:2 dw Data setup wait states. The wait states are added in write
cycles after the early wait states but before the write goes
active. The data bus contains valid output data during the
data setup wait states.

13-12:2 aw Address recovery wait states. Adds wait states to hold the
address bus after chip select goes high.

11-9:3 zw Turn-off wait states. The wait states are added after the end
of a bus burst, and may overlap with the early wait states of
the next bus burst.

8-6:3 ew Early wait states. The wait states are added before the read
or write goes active.

5-0:6 lw Late wait states. The wait states are added while the read or
write is active.

25.4. BIF CORE 719

25.4.3 rw grp3 cfg

Address 0x8

Default 0x000006cf

Type Read/Write

Description Configuration register for chip selects in group 3 (csp0n - csp3n).

Bit(s) Name Description Value
31-30:2 gatedcsp3 Selects if thecsp3n signal is gated with the internal read

or write signal. If none the chip select works as normal.
none: Not gated
wr: Gated with write signal
rd: Gated with read signal

none=0
wr=1
rd=2

29-28:2 gatedcsp2 Selects if thecsp2n signal is gated with the internal read
or write signal. If none the chip select works as normal.
none: Not gated
wr: Gated with write signal
rd: Gated with read signal

none=0
wr=1
rd=2

27-26:2 gatedcsp1 Selects if thecsp1n signal is gated with the internal read
or write signal. If none the chip select works as normal.
none: Not gated
wr: Gated with write signal
rd: Gated with read signal

none=0
wr=1
rd=2

25-24:2 gatedcsp0 Selects if thecsp0n signal is gated with the internal read
or write signal. If none the chip select works as normal.
none: Not gated
wr: Gated with write signal
rd: Gated with read signal

none=0
wr=1
rd=2

21 mode Write enable mode.
cwe: Common write enable
bwe: Bytewise write enable

cwe=1
bwe=0

20 erc en Early read complete mode. In early read complete mode,
the rd n signal goes high one clock cycle (10 ns) before
the end of the bus cycle. Data is still sampled at the end of
the bus cycle.
yes: Early read complete mode
no: Normal mode

yes=1
no=0

19 wr extend Write delay mode. In normal mode the write signal goes
high 5 ns before the end of the bus cycle. In extended mode
it goes high at the end of the bus cycle.
yes: Extended mode
no: Normal mode

yes=1
no=0

18 bw Bus width.
bw16: 16 bits wide data bus
bw32: 32 bits wide data bus

bw16=1
bw32=0

720 CHAPTER 25. INTERNAL REGISTERS

17-16:2 ewb Early wait states burst. The wait states are added to the
early wait states of the first bus cycle in a burst.

15-14:2 dw Data setup wait states. The wait states are added in write
cycles after the early wait states but before the write goes
active. The data bus contains valid output data during the
data setup wait states.

13-12:2 aw Address recovery wait states. Adds wait states to hold the
address bus after chip select goes high.

11-9:3 zw Turn-off wait states. The wait states are added after the end
of a bus burst, and may overlap with the early wait states
of the next bus burst.

8-6:3 ew Early wait states. The wait states are added before the read
or write goes active.

5-0:6 lw Late wait states. The wait states are added while the read
or write is active.

25.4. BIF CORE 721

25.4.4 rw grp4 cfg

Address 0xc

Default 0x000006cf

Type Read/Write

Description Configuration register for chip selects in group 4 (csp4n - csp6n andcssn).

Bit(s) Name Description Value
31-30:2 gatedcsp6 Selects if thecsp6n signal is gated with the internal read

or write signal. If none the chip select works as normal.
none: Not gated
wr: Gated with write signal
rd: Gated with read signal

none=0
wr=1
rd=2

29-28:2 gatedcsp5 Selects if thecsp5n signal is gated with the internal read
or write signal. If none the chip select works as normal.
none: Not gated
wr: Gated with write signal
rd: Gated with read signal

none=0
wr=1
rd=2

27-26:2 gatedcsp4 Selects if thecsp4n signal is gated with the internal read
or write signal. If none the chip select works as normal.
none: Not gated
wr: Gated with write signal
rd: Gated with read signal

none=0
wr=1
rd=2

21 mode Write enable mode.
cwe: Common write enable
bwe: Bytewise write enable

cwe=1
bwe=0

20 erc en Early read complete mode. In early read complete mode,
the rd n signal goes high one clock cycle (10 ns) before
the end of the bus cycle. Data is still sampled at the end of
the bus cycle.
yes: Early read complete mode
no: Normal mode

yes=1
no=0

19 wr extend Write delay mode. In normal mode the write signal goes
high 5 ns before the end of the bus cycle. In extended mode
it goes high at the end of the bus cycle.
yes: Extended mode
no: Normal mode

yes=1
no=0

18 bw Bus width.
bw16: 16 bits wide data bus
bw32: 32 bits wide data bus

bw16=1
bw32=0

17-16:2 ewb Early wait states burst. The wait states are added to the
early wait states of the first bus cycle in a burst.

15-14:2 dw Data setup wait states. The wait states are added in write
cycles after the early wait states but before the write goes
active. The data bus contains valid output data during the
data setup wait states.

722 CHAPTER 25. INTERNAL REGISTERS

13-12:2 aw Address recovery wait states. Adds wait states to hold the
address bus after chip select goes high.

11-9:3 zw Turn-off wait states. The wait states are added after the end
of a bus burst, and may overlap with the early wait states
of the next bus burst.

8-6:3 ew Early wait states. The wait states are added before the read
or write goes active.

5-0:6 lw Late wait states. The wait states are added while the read
or write is active.

25.4. BIF CORE 723

25.4.5 rw sdram cfg grp0

Address 0x10

Default
Type Read/Write

Description Configuration register for group 0 of SDRAM banks.

Bit(s) Name Description Value
19-15:5 grp sel Configures how to select between the two groups of SDRAM

banks.
grp0: Always select group 0
grp1: Always select group 1
bit10: Use address bit 10 to select between groups
bit11: Use address bit 11 to select between groups
bit12: Use address bit 12 to select between groups
bit13: Use address bit 13 to select between groups
bit14: Use address bit 14 to select between groups
bit15: Use address bit 15 to select between groups
bit16: Use address bit 16 to select between groups
bit17: Use address bit 17 to select between groups
bit18: Use address bit 18 to select between groups
bit19: Use address bit 19 to select between groups
bit20: Use address bit 20 to select between groups
bit21: Use address bit 21 to select between groups
bit22: Use address bit 22 to select between groups
bit23: Use address bit 23 to select between groups
bit24: Use address bit 24 to select between groups
bit25: Use address bit 25 to select between groups
bit26: Use address bit 26 to select between groups
bit27: Use address bit 27 to select between groups
bit28: Use address bit 28 to select between groups
bit29: Use address bit 29 to select between groups

grp0=0
grp1=1
bit10=10
bit11=11
bit12=12
bit13=13
bit14=14
bit15=15
bit16=16
bit17=17
bit18=18
bit19=19
bit20=20
bit21=21
bit22=22
bit23=23
bit24=24
bit25=25
bit26=26
bit27=27
bit28=28
bit29=29

14 sh16 Selects between normal and address shifted 16-bit mode.
yes: Shifted 16-bit mode
no: Normal mode

yes=1
no=0

13 wmm Wide module mode. In wide module mode, all 8dqm out-
puts are used in each group. The use ofdqm7 - dqm4 or
dqm3 - dqm0 is selected by the highest address bit in the se-
lected column address range (cafield). Thecafield should in
this case be set to one bit higher than the highest column ad-
dress bit to the SDRAM. This mode is used with 64-bit wide
SDRAM modules that do not have separate chip selects for
the upper and lower half of the data bus.
yes: Wide module mode
no: Normal mode

yes=1
no=0

724 CHAPTER 25. INTERNAL REGISTERS

12-10:3 sh Row address shift. Forbw == bw16 andsh16== no: 0 ==
internal address 24-9 is shifted down to pina16 - a1. 7 ==
internal address 29-16 is shifted down to pina14 - a1. For
bw == bw32 or sh16== yes: 0 == internal address 23-9 is
shifted down to pina16 - a2. 7 == internal address 29-16 is
shifted down to pina15- a2.

9 bw Bus width.
bw16: 16 bits wide data bus
bw32: 32 bits wide data bus

bw16=1
bw32=0

8 type SDRAM type select.
bank4: Four banks
bank2: Two banks

bank4=1
bank2=0

7-5:3 ca Column address range. This selects how many bits that are
used for the column address. 0 == Up to and including ad-
dress bit 8, 7 == up to and including bit 15.

4-0:5 banksel Selects which address bit that will be used to select between
bank 0 and 1. For four-bank SDRAMs the specified address
bit and the next higher order address bit will be used to select
between banks 0 - 3.
bit9: Use address bit 9
bit10: Use address bit 10
bit11: Use address bit 11
bit12: Use address bit 12
bit13: Use address bit 13
bit14: Use address bit 14
bit15: Use address bit 15
bit16: Use address bit 16
bit17: Use address bit 17
bit18: Use address bit 18
bit19: Use address bit 19
bit20: Use address bit 20
bit21: Use address bit 21
bit22: Use address bit 22
bit23: Use address bit 23
bit24: Use address bit 24
bit25: Use address bit 25
bit26: Use address bit 26
bit27: Use address bit 27
bit28: Use address bit 28
bit29: Use address bit 29

bit9=9
bit10=10
bit11=11
bit12=12
bit13=13
bit14=14
bit15=15
bit16=16
bit17=17
bit18=18
bit19=19
bit20=20
bit21=21
bit22=22
bit23=23
bit24=24
bit25=25
bit26=26
bit27=27
bit28=28
bit29=29

25.4. BIF CORE 725

25.4.6 rw sdram cfg grp1

Address 0x14

Default
Type Read/Write

Description Configuration register for group 1 of SDRAM banks.

Bit(s) Name Description Value
14 sh16 Selects between normal and address shifted 16-bit mode.

yes: Shifted 16-bit mode
no: Normal mode

yes=1
no=0

13 wmm Wide module mode. In wide module mode, all 8dqm out-
puts are used in each group. The use ofdqm7 - dqm4 or
dqm3 - dqm0 is selected by the highest address bit in the se-
lected column address range (cafield). Thecafield should in
this case be set to one bit higher than the highest column ad-
dress bit to the SDRAM. This mode is used with 64-bit wide
SDRAM modules that do not have separate chip selects for
the upper and lower half of the data bus.
yes: Wide module mode
no: Normal mode

yes=1
no=0

12-10:3 sh Row address shift. Forbw == bw16 andsh16== no: 0 ==
internal address 24-9 is shifted down to pina16 - a1. 7 ==
internal address 29-16 is shifted down to pina14 - a1. For
bw == bw32 or sh16== yes: 0 == internal address 23-9 is
shifted down to pina16 - a2. 7 == internal address 29-16 is
shifted down to pina15- a2.

9 bw Bus width.
bw16: 16 bits wide data bus
bw32: 32 bits wide data bus

bw16=1
bw32=0

8 type SDRAM type select.
bank4: Four banks
bank2: Two banks

bank4=1
bank2=0

7-5:3 ca Column address range. This selects how many bits that are
used for the column address. 0 == Up to and including ad-
dress bit 8, 7 == up to and including bit 15.

726 CHAPTER 25. INTERNAL REGISTERS

4-0:5 banksel Selects which address bit that will be used to select between
bank 0 and 1. For four-bank SDRAMs the specified address
bit and the next higher order address bit will be used to select
between banks 0 - 3.
bit9: Use address bit 9
bit10: Use address bit 10
bit11: Use address bit 11
bit12: Use address bit 12
bit13: Use address bit 13
bit14: Use address bit 14
bit15: Use address bit 15
bit16: Use address bit 16
bit17: Use address bit 17
bit18: Use address bit 18
bit19: Use address bit 19
bit20: Use address bit 20
bit21: Use address bit 21
bit22: Use address bit 22
bit23: Use address bit 23
bit24: Use address bit 24
bit25: Use address bit 25
bit26: Use address bit 26
bit27: Use address bit 27
bit28: Use address bit 28
bit29: Use address bit 29

bit9=9
bit10=10
bit11=11
bit12=12
bit13=13
bit14=14
bit15=15
bit16=16
bit17=17
bit18=18
bit19=19
bit20=20
bit21=21
bit22=22
bit23=23
bit24=24
bit25=25
bit26=26
bit27=27
bit28=28
bit29=29

25.4. BIF CORE 727

25.4.7 rw sdram timing

Address 0x18

Default
Type Read/Write

Description Timing parameters for the SDRAM interface. The first write to this register after reset
starts the SDRAM interface.

Bit(s) Name Description Value
18 sdclk Disable SDRAM clock. When disabled, thesdclk output is

constantly low.
yes: Disable SDRAM clock
no: Normal mode

yes=1
no=0

17 sdcke Disable SDRAM clock enable signal. When disabled, thesd-
ckeoutput is constantly low.
yes: Disable SDRAM cke
no: Normal mode

yes=1
no=0

16 cpd Chip PLL disabled mode. Ensures that enough refreshes are
issued when the PLL is bypassed.
yes: Chip PLL disabled mode
no: Normal

yes=1
no=0

15-14:2 ref The SDRAM refresh interval.
e7800ns: Every 7800 ns
e15us: Every 15µs
off: Disable

e7800ns=2
e15us=1
off=0

13 pde SDRAM self refresh exit delay. The number of delay cycles
arepde+ 1.

12-11:2 dpl Data write to precharge delay. The number of delay cycles are
dpl.

10-9:2 rc Row cycle time. The number of refresh cycles arerc + 6.

8-6:3 rp RAS precharge delay. The number of delay cycles arerp + 1.

5-3:3 rcd RAS to CAS delay. The number of delay cycles arercd+ 1.

2-0:3 cl CAS latency. The number of latency cycles arecl.

728 CHAPTER 25. INTERNAL REGISTERS

25.4.8 rw sdram cmd

Address 0x1c

Default
Type Read/Write

Description SDRAM commands during initialization.

Bit(s) Name Description Value
17-3:15 mrs data Data output during SDRAM mode register set cycle.

2-0:3 cmd Initiate an SDRAM command cycle. The available com-
mands are nop, auto refresh (ref), precharge all (pre) and
mode register set (mrs).
slf: Enter/exit self refresh mode
mrs: Mode register set
pre: Precharge all
ref: Auto refresh
nop: Deselect

slf=4
mrs=3
pre=2
ref=1
nop=0

25.4. BIF CORE 729

25.4.9 rs sdram ref stat/r sdram ref stat

Address 0x20/0x24

Default 0x00000001

Type Read with side effects/Read

Description SDRAM refresh status register. Read with side effect will set theok field toyes.

Bit(s) Name Description Value
0 ok Indicates if SDRAM refresh cycles have been issued at the desired

rate or not. If the bus is unavailable to the SDRAM controller for
a consecutive time of more than eight refresh intervals, the average
DRAM refresh rate may become degraded.
yes: Normal refresh rate
no: Refresh rate may have become degraded

yes=1
no=0

730 CHAPTER 25. INTERNAL REGISTERS

25.5 bif dma

Instance Base Address
bif dma 0xb0016000

25.5.1 rw ch0 ctrl

Address 0x0

Default 0x00000000

Type Read/Write

Description External DMA control register.

Bit(s) Name Description Value
19 wr all If this field is set toyes, the external DMA write cycles

will be performed as 32-bit cycles regardless of the actual
data width. Only the number of bytes corresponding to
the actual data width will contain valid data.
no: Bus cycle width equal to actual data width
yes: 32-bit bus cycle width

no=0
yes=1

18 rateen Rate control enable. If enabled, the channel bandwidth is
limited by the clock frequency of the rate clock input.
no: Rate clock disabled
yes: Rate clock enabled

no=0
yes=1

17-16:2 busmode Enable master mode or slave mode operation.
off: Channel disabled
master: Master mode enabled
slave: Slave mode enabled

off=0
master=1
slave=2

15-14:2 tc in mode Select mode for the terminal count input.
off: No tc in
force: All transfers terminate after one burst
norm: Active high tcin from pin
inv: Active low tc in from pin

off=0
force=1
norm=2
inv=3

13-11:3 tc in pin Selects which pinhsh0- hsh7to use as tcin for this chan-
nel.

10-9:2 dreqmode Select mode for the dreq input.
off: No dreq
force: Constant dreq
norm: Active high dreq from pin
inv: Active low dreq from pin

off=0
force=1
norm=2
inv=3

8-6:3 dreqpin Selects which pinhsh0- hsh7to use as dreq for this chan-
nel.

25.5. BIF DMA 731

5 cnt Selects if the transfer counter shall cause any effects or
not.
no: Transfer counter ignored
yes: Transfer counter takes effect

no=0
yes=1

4 endpad Selects what will happen with the data in the remaining
cycles of a burst, if the transfer counter expires in the mid-
dle of the burst.
no: Continue to send data until end of burst
yes: Pad the remaining cycles with 0

no=0
yes=1

3 cont Enable/disable continuous transfer mode.
no: Disabled
yes: Enabled

no=0
yes=1

2 burst len Burst length in number of bus cycles.
burst1: 1 bus cycle per burst
burst8: 8 bus cycles per burst

burst1=0
burst8=1

1-0:2 bw Bus width for the DMA transfers.
bw8: 8-bit bus width
bw16: 16-bit bus width
bw32: 32-bit bus width

bw8=0
bw16=1
bw32=2

732 CHAPTER 25. INTERNAL REGISTERS

25.5.2 rw ch0 addr

Address 0x4

Default
Type Read/Write

Description External DMA address register.

Bit(s) Name Description Value
31-0:32 addr Address used for the external DMA accesses. Bit 31, 30, 1 and 0

are ignored by the external DMA unit.

25.5. BIF DMA 733

25.5.3 rw ch0 start

Address 0x8

Default 0x00000000

Type Read/Write

Description External DMA start/stop register.

Bit(s) Name Description Value
0 run Start and stop the external DMA. When read, this field shows if the

channel is stopped or running. It may indicate a stopped condition
during the last burst of the DMA transfer. Use therun field of the
r ch0 statregister instead to check if the current DMA transfer is
completed.
no: Channel is stopped
yes: Channel is started

no=0
yes=1

734 CHAPTER 25. INTERNAL REGISTERS

25.5.4 rw ch0 cnt

Address 0xc

Default
Type Read/Write

Description Transfer counter start value.

Bit(s) Name Description Value
15-0:16 start cnt Transfer counter start value. A start value of 0 gives 65536

transfers.

25.5. BIF DMA 735

25.5.5 r ch0 stat

Address 0x10

Default
Type Read

Description Status for the external DMA channel.

Bit(s) Name Description Value
31 run This bit shows if the channel is stopped or running. It will indicate

a running status until the last burst of the transfer is completed.
no: Channel is stopped
yes: Channel is running

no=0
yes=1

15-0:16 cnt Current value of the transfer counter.

736 CHAPTER 25. INTERNAL REGISTERS

25.5.6 rw ch1 ctrl

Address 0x20

Default 0x00000000

Type Read/Write

Description External DMA control register.

Bit(s) Name Description Value
18 rateen Rate control enable. If enabled, the channel bandwidth

is limited by the clock frequency of the rate clock input.
no: Rate clock disabled
yes: Rate clock enabled

no=0
yes=1

17-16:2 busmode Enable master mode or slave mode operation.
off: Channel disabled
master: Master mode enabled
slave: Slave mode enabled

off=0
master=1
slave=2

15-14:2 tc in mode Select mode for the terminal count input.
off: No tc in
force: All transfers terminate after one burst
norm: Active high tcin from pin
inv: Active low tc in from pin

off=0
force=1
norm=2
inv=3

13-11:3 tc in pin Selects which pinhsh0 - hsh7 to use as tcin for this
channel.

10-9:2 dreqmode Select mode for the dreq input.
off: No dreq
force: Constant dreq
norm: Active high dreq from pin
inv: Active low dreq from pin

off=0
force=1
norm=2
inv=3

8-6:3 dreqpin Selects which pinhsh0 - hsh7 to use as dreq for this
channel.

5 cnt Selects if the transfer counter shall cause any effects or
not.
no: Transfer counter ignored
yes: Transfer counter takes effect

no=0
yes=1

4 enddiscard Selects what will happen with the data in the remaining
cycles of a burst, if the transfer counter expires in the
middle of the burst.
no: Receive the remaining data
yes: Discard the remaining data

no=0
yes=1

3 cont Enable/disable continuous transfer mode.
no: Disabled
yes: Enabled

no=0
yes=1

2 burst len Burst length in number of bus cycles.
burst1: 1 bus cycle per burst
burst8: 8 bus cycles per burst

burst1=0
burst8=1

25.5. BIF DMA 737

1-0:2 bw Bus width for the DMA transfers.
bw8: 8-bit bus width
bw16: 16-bit bus width
bw32: 32-bit bus width

bw8=0
bw16=1
bw32=2

738 CHAPTER 25. INTERNAL REGISTERS

25.5.7 rw ch1 addr

Address 0x24

Default
Type Read/Write

Description External DMA address register.

Bit(s) Name Description Value
31-0:32 addr Address used for the external DMA accesses. Bit 31, 30, 1 and 0

are ignored by the external DMA unit.

25.5. BIF DMA 739

25.5.8 rw ch1 start

Address 0x28

Default 0x00000000

Type Read/Write

Description External DMA start/stop register.

Bit(s) Name Description Value
0 run Start and stop the external DMA. When read, this field shows if the

channel is stopped or running. It may indicate a stopped condition
during the last burst of the DMA transfer. Use therun field of the
r ch1 statregister instead to check if the current DMA transfer is
completed.
no: Channel is stopped
yes: Channel is started

no=0
yes=1

740 CHAPTER 25. INTERNAL REGISTERS

25.5.9 rw ch1 cnt

Address 0x2c

Default
Type Read/Write

Description Transfer counter start value.

Bit(s) Name Description Value
15-0:16 start cnt Transfer counter start value. A start value of 0 gives 65536

transfers.

25.5. BIF DMA 741

25.5.10 r ch1 stat

Address 0x30

Default
Type Read

Description Status for the external DMA channel.

Bit(s) Name Description Value
31 run This bit shows if the channel is stopped or running. It will indicate

a running status until the last burst of the transfer is completed.
no: Channel is stopped
yes: Channel is running

no=0
yes=1

15-0:16 cnt Current value of the transfer counter.

742 CHAPTER 25. INTERNAL REGISTERS

25.5.11 rw ch2 ctrl

Address 0x40

Default 0x00000000

Type Read/Write

Description External DMA control register.

Bit(s) Name Description Value
19 wr all If this field is set toyes, the external DMA write cycles

will be performed as 32-bit cycles regardless of the actual
data width. Only the number of bytes corresponding to
the actual data width will contain valid data.
no: Bus cycle width equal to actual data width
yes: 32-bit bus cycle width

no=0
yes=1

18 rateen Rate control enable. If enabled, the channel bandwidth is
limited by the clock frequency of the rate clock input.
no: Rate clock disabled
yes: Rate clock enabled

no=0
yes=1

17-16:2 busmode Enable master mode or slave mode operation.
off: Channel disabled
master: Master mode enabled
slave: Slave mode enabled

off=0
master=1
slave=2

15-14:2 tc in mode Select mode for the terminal count input.
off: No tc in
force: All transfers terminate after one burst
norm: Active high tcin from pin
inv: Active low tc in from pin

off=0
force=1
norm=2
inv=3

13-11:3 tc in pin Selects which pinhsh0- hsh7to use as tcin for this chan-
nel.

10-9:2 dreqmode Select mode for the dreq input.
off: No dreq
force: Constant dreq
norm: Active high dreq from pin
inv: Active low dreq from pin

off=0
force=1
norm=2
inv=3

8-6:3 dreqpin Selects which pinhsh0- hsh7to use as dreq for this chan-
nel.

5 cnt Selects if the transfer counter shall cause any effects or
not.
no: Transfer counter ignored
yes: Transfer counter takes effect

no=0
yes=1

4 endpad Selects what will happen with the data in the remaining
cycles of a burst, if the transfer counter expires in the mid-
dle of the burst.
no: Continue to send data until end of burst
yes: Pad the remaining cycles with 0

no=0
yes=1

25.5. BIF DMA 743

3 cont Enable/disable continuous transfer mode.
no: Disabled
yes: Enabled

no=0
yes=1

2 burst len Burst length in number of bus cycles.
burst1: 1 bus cycle per burst
burst8: 8 bus cycles per burst

burst1=0
burst8=1

1-0:2 bw Bus width for the DMA transfers.
bw8: 8-bit bus width
bw16: 16-bit bus width
bw32: 32-bit bus width

bw8=0
bw16=1
bw32=2

744 CHAPTER 25. INTERNAL REGISTERS

25.5.12 rw ch2 addr

Address 0x44

Default
Type Read/Write

Description External DMA address register.

Bit(s) Name Description Value
31-0:32 addr Address used for the external DMA accesses. Bit 31, 30, 1 and 0

are ignored by the external DMA unit.

25.5. BIF DMA 745

25.5.13 rw ch2 start

Address 0x48

Default 0x00000000

Type Read/Write

Description External DMA start/stop register.

Bit(s) Name Description Value
0 run Start and stop the external DMA. When read, this field shows if the

channel is stopped or running. It may indicate a stopped condition
during the last burst of the DMA transfer. Use therun field of the
r ch2 statregister instead to check if the current DMA transfer is
completed.
no: Channel is stopped
yes: Channel is started

no=0
yes=1

746 CHAPTER 25. INTERNAL REGISTERS

25.5.14 rw ch2 cnt

Address 0x4c

Default
Type Read/Write

Description Transfer counter start value.

Bit(s) Name Description Value
15-0:16 start cnt Transfer counter start value. A start value of 0 gives 65536

transfers.

25.5. BIF DMA 747

25.5.15 r ch2 stat

Address 0x50

Default
Type Read

Description Status for the external DMA channel.

Bit(s) Name Description Value
31 run This bit shows if the channel is stopped or running. It will indicate

a running status until the last burst of the transfer is completed.
no: Channel is stopped
yes: Channel is running

no=0
yes=1

15-0:16 cnt Current value of the transfer counter.

748 CHAPTER 25. INTERNAL REGISTERS

25.5.16 rw ch3 ctrl

Address 0x60

Default 0x00000000

Type Read/Write

Description External DMA control register.

Bit(s) Name Description Value
18 rateen Rate control enable. If enabled, the channel bandwidth

is limited by the clock frequency of the rate clock input.
no: Rate clock disabled
yes: Rate clock enabled

no=0
yes=1

17-16:2 busmode Enable master mode or slave mode operation.
off: Channel disabled
master: Master mode enabled
slave: Slave mode enabled

off=0
master=1
slave=2

15-14:2 tc in mode Select mode for the terminal count input.
off: No tc in
force: All transfers terminate after one burst
norm: Active high tcin from pin
inv: Active low tc in from pin

off=0
force=1
norm=2
inv=3

13-11:3 tc in pin Selects which pinhsh0 - hsh7 to use as tcin for this
channel.

10-9:2 dreqmode Select mode for the dreq input.
off: No dreq
force: Constant dreq
norm: Active high dreq from pin
inv: Active low dreq from pin

off=0
force=1
norm=2
inv=3

8-6:3 dreqpin Selects which pinhsh0 - hsh7 to use as dreq for this
channel.

5 cnt Selects if the transfer counter shall cause any effects or
not.
no: Transfer counter ignored
yes: Transfer counter takes effect

no=0
yes=1

4 enddiscard Selects what will happen with the data in the remaining
cycles of a burst, if the transfer counter expires in the
middle of the burst.
no: Receive the remaining data
yes: Discard the remaining data

no=0
yes=1

3 cont Enable/disable continuous transfer mode.
no: Disabled
yes: Enabled

no=0
yes=1

2 burst len Burst length in number of bus cycles.
burst1: 1 bus cycle per burst
burst8: 8 bus cycles per burst

burst1=0
burst8=1

25.5. BIF DMA 749

1-0:2 bw Bus width for the DMA transfers.
bw8: 8-bit bus width
bw16: 16-bit bus width
bw32: 32-bit bus width

bw8=0
bw16=1
bw32=2

750 CHAPTER 25. INTERNAL REGISTERS

25.5.17 rw ch3 addr

Address 0x64

Default
Type Read/Write

Description External DMA address register.

Bit(s) Name Description Value
31-0:32 addr Address used for the external DMA accesses. Bit 31, 30, 1 and 0

are ignored by the external DMA unit.

25.5. BIF DMA 751

25.5.18 rw ch3 start

Address 0x68

Default 0x00000000

Type Read/Write

Description External DMA start/stop register.

Bit(s) Name Description Value
0 run Start and stop the external DMA. When read, this field shows if the

channel is stopped or running. It may indicate a stopped condition
during the last burst of the DMA transfer. Use therun field of the
r ch3 statregister instead to check if the current DMA transfer is
completed.
no: Channel is stopped
yes: Channel is started

no=0
yes=1

752 CHAPTER 25. INTERNAL REGISTERS

25.5.19 rw ch3 cnt

Address 0x6c

Default
Type Read/Write

Description Transfer counter start value.

Bit(s) Name Description Value
15-0:16 start cnt Transfer counter start value. A start value of 0 gives 65536

transfers.

25.5. BIF DMA 753

25.5.20 r ch3 stat

Address 0x70

Default
Type Read

Description Status for the external DMA channel.

Bit(s) Name Description Value
31 run This bit shows if the channel is stopped or running. It will indicate

a running status until the last burst of the transfer is completed.
no: Channel is stopped
yes: Channel is running

no=0
yes=1

15-0:16 cnt Current value of the transfer counter.

754 CHAPTER 25. INTERNAL REGISTERS

25.5.21 rw intr mask

Address 0x80

Default 0x00000000

Type Read/Write

Description Interrupt mask. Interrupts from external DMA channels. Specifies which interrupts are
enabled in this subsystem. Only enabled interrupts will propagate to the central inter-
rupt handler. In C code the relationship betweenrw intr mask, r intr andr maskedintr
can be expressed as:
r maskedintr = r intr & rw intr mask

Bit(s) Name Description Value
3 ext dma3 Enable/disable extdma3 interrupt. Interrupt from external

DMA channel 3.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

2 ext dma2 Enable/disable extdma2 interrupt. Interrupt from external
DMA channel 2.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

1 ext dma1 Enable/disable extdma1 interrupt. Interrupt from external
DMA channel 1.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

0 ext dma0 Enable/disable extdma0 interrupt. Interrupt from external
DMA channel 0.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

25.5. BIF DMA 755

25.5.22 rw ack intr

Address 0x84

Default
Type Read/Write

Description Acknowledge interrupts. Interrupts from external DMA channels.

Bit(s) Name Description Value
3 ext dma3 Acknowledge extdma3 interrupt.

yes: Acknowledge interrupt
no: No operation

yes=1
no=0

2 ext dma2 Acknowledge extdma2 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

1 ext dma1 Acknowledge extdma1 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

0 ext dma0 Acknowledge extdma0 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

756 CHAPTER 25. INTERNAL REGISTERS

25.5.23 r intr

Address 0x88

Default
Type Read

Description Interrupts before the mask. Interrupts from external DMA channels. Makes it pos-
sible to determine if an interrupt is active even though it is not enabled in the
mask (rw intr mask). In C code the relationship betweenrw intr mask, r intr and
r maskedintr can be expressed as:
r maskedintr = r intr & rw intr mask

Bit(s) Name Description Value
3 ext dma3 Interrupt extdma3 active.

yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

2 ext dma2 Interrupt extdma2 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1 ext dma1 Interrupt extdma1 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

0 ext dma0 Interrupt extdma0 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

25.5. BIF DMA 757

25.5.24 r masked intr

Address 0x8c

Default
Type Read

Description Interrupts after the mask. Interrupts from external DMA channels. Tells which in-
terrupts are active and enabled (inrw intr mask). In C code the relationship between
rw intr mask, r intr andr maskedintr can be expressed as:
r maskedintr = r intr & rw intr mask

Bit(s) Name Description Value
3 ext dma3 Interrupt extdma3 active and enabled.

yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

2 ext dma2 Interrupt extdma2 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1 ext dma1 Interrupt extdma1 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

0 ext dma0 Interrupt extdma0 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

758 CHAPTER 25. INTERNAL REGISTERS

25.5.25 rw pin0 cfg

Address 0xa0

Default 0x00000000

Type Read/Write

Description Configuration register for external DMA/slave mode handshake pinhsh0output.

Bit(s) Name Description Value
9-7:3 slavemode Pin usage when in slave mode.

off: The output is off, and the pin can be used as input
asmaster: The pin maintains its master mode func-
tion
lo: Driven low
hi: Driven high
tc: Used as tcout, active high
tc inv: Used as tcout, active low
sreq: Used as slave request, active high
sreqinv: Used as slave request, active low

off=0
asmaster=1
lo=2
hi=3
tc=4
tc inv=5
sreq=6
sreqinv=7

6-5:2 slavech Slave mode channel connected to the pin.

4-2:3 mastermode Pin usage when in master mode.
off: The output is off, and the pin can be used as input
asslave: The pin maintains its slave mode function
lo: Driven low
hi: Driven high
tc: Used as tcout, active high
tc inv: Used as tcout, active low
dack: Used as DMA acknowledge, active high
dack inv: Used as DMA acknowledge, active low

off=0
asslave=1
lo=2
hi=3
tc=4
tc inv=5
dack=6
dack inv=7

1-0:2 masterch External DMA channel connected to the pin in mas-
ter mode.

25.5. BIF DMA 759

25.5.26 rw pin1 cfg

Address 0xa4

Default 0x00000000

Type Read/Write

Description Configuration register for external DMA/slave mode handshake pinhsh1output.

Bit(s) Name Description Value
9-7:3 slavemode Pin usage when in slave mode.

off: The output is off, and the pin can be used as input
asmaster: The pin maintains its master mode func-
tion
lo: Driven low
hi: Driven high
tc: Used as tcout, active high
tc inv: Used as tcout, active low
sreq: Used as slave request, active high
sreqinv: Used as slave request, active low

off=0
asmaster=1
lo=2
hi=3
tc=4
tc inv=5
sreq=6
sreqinv=7

6-5:2 slavech Slave mode channel connected to the pin.

4-2:3 mastermode Pin usage when in master mode.
off: The output is off, and the pin can be used as input
asslave: The pin maintains its slave mode function
lo: Driven low
hi: Driven high
tc: Used as tcout, active high
tc inv: Used as tcout, active low
dack: Used as DMA acknowledge, active high
dack inv: Used as DMA acknowledge, active low

off=0
asslave=1
lo=2
hi=3
tc=4
tc inv=5
dack=6
dack inv=7

1-0:2 masterch External DMA channel connected to the pin in mas-
ter mode.

760 CHAPTER 25. INTERNAL REGISTERS

25.5.27 rw pin2 cfg

Address 0xa8

Default 0x00000000

Type Read/Write

Description Configuration register for external DMA/slave mode handshake pinhsh2output.

Bit(s) Name Description Value
9-7:3 slavemode Pin usage when in slave mode.

off: The output is off, and the pin can be used as input
asmaster: The pin maintains its master mode func-
tion
lo: Driven low
hi: Driven high
tc: Used as tcout, active high
tc inv: Used as tcout, active low
sreq: Used as slave request, active high
sreqinv: Used as slave request, active low

off=0
asmaster=1
lo=2
hi=3
tc=4
tc inv=5
sreq=6
sreqinv=7

6-5:2 slavech Slave mode channel connected to the pin.

4-2:3 mastermode Pin usage when in master mode.
off: The output is off, and the pin can be used as input
asslave: The pin maintains its slave mode function
lo: Driven low
hi: Driven high
tc: Used as tcout, active high
tc inv: Used as tcout, active low
dack: Used as DMA acknowledge, active high
dack inv: Used as DMA acknowledge, active low

off=0
asslave=1
lo=2
hi=3
tc=4
tc inv=5
dack=6
dack inv=7

1-0:2 masterch External DMA channel connected to the pin in mas-
ter mode.

25.5. BIF DMA 761

25.5.28 rw pin3 cfg

Address 0xac

Default 0x00000000

Type Read/Write

Description Configuration register for external DMA/slave mode handshake pinhsh3output.

Bit(s) Name Description Value
9-7:3 slavemode Pin usage when in slave mode.

off: The output is off, and the pin can be used as input
asmaster: The pin maintains its master mode func-
tion
lo: Driven low
hi: Driven high
tc: Used as tcout, active high
tc inv: Used as tcout, active low
sreq: Used as slave request, active high
sreqinv: Used as slave request, active low

off=0
asmaster=1
lo=2
hi=3
tc=4
tc inv=5
sreq=6
sreqinv=7

6-5:2 slavech Slave mode channel connected to the pin.

4-2:3 mastermode Pin usage when in master mode.
off: The output is off, and the pin can be used as input
asslave: The pin maintains its slave mode function
lo: Driven low
hi: Driven high
tc: Used as tcout, active high
tc inv: Used as tcout, active low
dack: Used as DMA acknowledge, active high
dack inv: Used as DMA acknowledge, active low

off=0
asslave=1
lo=2
hi=3
tc=4
tc inv=5
dack=6
dack inv=7

1-0:2 masterch External DMA channel connected to the pin in mas-
ter mode.

762 CHAPTER 25. INTERNAL REGISTERS

25.5.29 rw pin4 cfg

Address 0xb0

Default 0x00000000

Type Read/Write

Description Configuration register for external DMA/slave mode handshake pinhsh4output.

Bit(s) Name Description Value
9-7:3 slavemode Pin usage when in slave mode.

off: The output is off, and the pin can be used as input
asmaster: The pin maintains its master mode func-
tion
lo: Driven low
hi: Driven high
tc: Used as tcout, active high
tc inv: Used as tcout, active low
sreq: Used as slave request, active high
sreqinv: Used as slave request, active low

off=0
asmaster=1
lo=2
hi=3
tc=4
tc inv=5
sreq=6
sreqinv=7

6-5:2 slavech Slave mode channel connected to the pin.

4-2:3 mastermode Pin usage when in master mode.
off: The output is off, and the pin can be used as input
asslave: The pin maintains its slave mode function
lo: Driven low
hi: Driven high
tc: Used as tcout, active high
tc inv: Used as tcout, active low
dack: Used as DMA acknowledge, active high
dack inv: Used as DMA acknowledge, active low

off=0
asslave=1
lo=2
hi=3
tc=4
tc inv=5
dack=6
dack inv=7

1-0:2 masterch External DMA channel connected to the pin in mas-
ter mode.

25.5. BIF DMA 763

25.5.30 rw pin5 cfg

Address 0xb4

Default 0x00000000

Type Read/Write

Description Configuration register for external DMA/slave mode handshake pinhsh5output.

Bit(s) Name Description Value
9-7:3 slavemode Pin usage when in slave mode.

off: The output is off, and the pin can be used as input
asmaster: The pin maintains its master mode func-
tion
lo: Driven low
hi: Driven high
tc: Used as tcout, active high
tc inv: Used as tcout, active low
sreq: Used as slave request, active high
sreqinv: Used as slave request, active low

off=0
asmaster=1
lo=2
hi=3
tc=4
tc inv=5
sreq=6
sreqinv=7

6-5:2 slavech Slave mode channel connected to the pin.

4-2:3 mastermode Pin usage when in master mode.
off: The output is off, and the pin can be used as input
asslave: The pin maintains its slave mode function
lo: Driven low
hi: Driven high
tc: Used as tcout, active high
tc inv: Used as tcout, active low
dack: Used as DMA acknowledge, active high
dack inv: Used as DMA acknowledge, active low

off=0
asslave=1
lo=2
hi=3
tc=4
tc inv=5
dack=6
dack inv=7

1-0:2 masterch External DMA channel connected to the pin in mas-
ter mode.

764 CHAPTER 25. INTERNAL REGISTERS

25.5.31 rw pin6 cfg

Address 0xb8

Default 0x00000000

Type Read/Write

Description Configuration register for external DMA/slave mode handshake pinhsh6output.

Bit(s) Name Description Value
9-7:3 slavemode Pin usage when in slave mode.

off: The output is off, and the pin can be used as input
asmaster: The pin maintains its master mode func-
tion
lo: Driven low
hi: Driven high
tc: Used as tcout, active high
tc inv: Used as tcout, active low
sreq: Used as slave request, active high
sreqinv: Used as slave request, active low

off=0
asmaster=1
lo=2
hi=3
tc=4
tc inv=5
sreq=6
sreqinv=7

6-5:2 slavech Slave mode channel connected to the pin.

4-2:3 mastermode Pin usage when in master mode.
off: The output is off, and the pin can be used as input
asslave: The pin maintains its slave mode function
lo: Driven low
hi: Driven high
tc: Used as tcout, active high
tc inv: Used as tcout, active low
dack: Used as DMA acknowledge, active high
dack inv: Used as DMA acknowledge, active low

off=0
asslave=1
lo=2
hi=3
tc=4
tc inv=5
dack=6
dack inv=7

1-0:2 masterch External DMA channel connected to the pin in mas-
ter mode.

25.5. BIF DMA 765

25.5.32 rw pin7 cfg

Address 0xbc

Default 0x00000000

Type Read/Write

Description Configuration register for external DMA/slave mode handshake pinhsh7output.

Bit(s) Name Description Value
9-7:3 slavemode Pin usage when in slave mode.

off: The output is off, and the pin can be used as input
asmaster: The pin maintains its master mode func-
tion
lo: Driven low
hi: Driven high
tc: Used as tcout, active high
tc inv: Used as tcout, active low
sreq: Used as slave request, active high
sreqinv: Used as slave request, active low

off=0
asmaster=1
lo=2
hi=3
tc=4
tc inv=5
sreq=6
sreqinv=7

6-5:2 slavech Slave mode channel connected to the pin.

4-2:3 mastermode Pin usage when in master mode.
off: The output is off, and the pin can be used as input
asslave: The pin maintains its slave mode function
lo: Driven low
hi: Driven high
tc: Used as tcout, active high
tc inv: Used as tcout, active low
dack: Used as DMA acknowledge, active high
dack inv: Used as DMA acknowledge, active low

off=0
asslave=1
lo=2
hi=3
tc=4
tc inv=5
dack=6
dack inv=7

1-0:2 masterch External DMA channel connected to the pin in mas-
ter mode.

766 CHAPTER 25. INTERNAL REGISTERS

25.5.33 r pin stat

Address 0xc0

Default
Type Read

Description Input values on the external DMA/slave mode handshake pins.

Bit(s) Name Description Value
7 pin7 Value on pinhsh7
6 pin6 Value on pinhsh6
5 pin5 Value on pinhsh5
4 pin4 Value on pinhsh4
3 pin3 Value on pinhsh3
2 pin2 Value on pinhsh2
1 pin1 Value on pinhsh1
0 pin0 Value on pinhsh0

25.6. BIF SLAVE 767

25.6 bif slave

Instance Base Address
bif slave 0xb0018000

25.6.1 rw slave cfg

Address 0x0

Default 0x00000000

Type Read/Write

Description General slave mode configuration register.

Bit(s) Name Description Value
6 dis Disable the slave mode interface.

no: Interface enabled
yes: Interface disabled

no=0
yes=1

5 loopback In loopback mode, the master can access its own external
slave mode registers. This mode is mainly intended for
production test.
no: Loopback disabled
yes: Loopback enabled

no=0
yes=1

4 boot rdy This field is set by the boot code to indicate that there
is a boot record ready in the internal RAM of the slave.
Used bymasterandslaveboot methods.
no: Boot record not ready
yes: Boot record ready

no=0
yes=1

3 useslaveid Select if the slave ID address will be used or ignored.
no: Slave ID address is ignored
yes: Slave ID address is used

no=0
yes=1

2-0:3 slaveid Slave ID address. Ifuseslaveid is set toyes, the slave
ID address is compared against address bits 8 - 6 to qual-
ify an access to the external slave mode registers.

768 CHAPTER 25. INTERNAL REGISTERS

25.6.2 r slave mode

Address 0x4

Default
Type Read

Description This register shows the access mode for each slave channel.

Bit(s) Name Description Value
3 ch3 mode Access mode for slave channel 3.

addr: Address register
dma: DMA channel

addr=0
dma=1

2 ch2 mode Access mode for slave channel 2.
addr: Address register
dma: DMA channel

addr=0
dma=1

1 ch1 mode Access mode for slave channel 1.
addr: Address register
dma: DMA channel

addr=0
dma=1

0 ch0 mode Access mode for slave channel 0.
addr: Address register
dma: DMA channel

addr=0
dma=1

25.6. BIF SLAVE 769

25.6.3 rw ch0 cfg

Address 0x10

Default 0x00000000

Type Read/Write

Description Configuration register for slave mode channel 0.

Bit(s) Name Description Value
5-4:2 datacs Enable the use of a separate chip select input

(csp0n) for the sequential data register. Note that
even if this is enabled, the sequential data register
can still be reached via thecssn chip select.
no: No separate chip select
active lo: csp0n pin used, active low
activehi: csp0n pin used, active high

no=0
active lo=2
activehi=3

3 accessctrl Selects if the access mode for the channel is con-
trolled by the current bus master via the external
slave mode registers, or by theaccessmodefield.
master: Access mode controlled by bus master
modereg: Access mode controlled by mode register

master=0
modereg=1

2 accessmode Selects the access mode for the channel. When read,
it only reads back the register value. The real access
mode for the channel is read from thech0 modefield
of ther slavemoderegister.
addr: Address register
dma: DMA channel

addr=0
dma=1

1-0:2 rd hold Sets the data hold time after a read from the external
slave mode registers. 10 ns will be needed for the
fastest burst mode. 0 ns can be chosen if the applica-
tion requires faster data turn off time. The data hold
time can also be set by the bus master via the external
slave mode cfg registerrw ch0 ctrl.
master: Data hold time set by bus master
t10ns: 10 ns data hold time
t0ns: 0 ns data hold time

master=0
t10ns=2
t0ns=3

770 CHAPTER 25. INTERNAL REGISTERS

25.6.4 rw ch1 cfg

Address 0x14

Default 0x00000000

Type Read/Write

Description Configuration register for slave mode channel 1.

Bit(s) Name Description Value
5-4:2 datacs Enable the use of a separate chip select input

(csp1n) for the sequential data register. Note that
even if this is enabled, the sequential data register
can still be reached via thecssn chip select.
no: No separate chip select
active lo: csp1n pin used, active low
activehi: csp1n pin used, active high

no=0
active lo=2
activehi=3

3 accessctrl Selects if the access mode for the channel is con-
trolled by the current bus master via the external
slave mode registers, or by theaccessmodefield.
master: Access mode controlled by bus master
modereg: Access mode controlled by mode register

master=0
modereg=1

2 accessmode Selects the access mode for the channel. When read,
it only reads back the register value. The real access
mode for the channel is read from thech1 modefield
of ther slavemoderegister.
addr: Address register
dma: DMA channel

addr=0
dma=1

1-0:2 rd hold Sets the data hold time after a read from the external
slave mode registers. 10 ns will be needed for the
fastest burst mode. 0 ns can be chosen if the applica-
tion requires faster data turn off time. The data hold
time can also be set by the bus master via the external
slave mode cfg registerrw ch1 ctrl.
master: Data hold time set by bus master
t10ns: 10 ns data hold time
t0ns: 0 ns data hold time

master=0
t10ns=2
t0ns=3

25.6. BIF SLAVE 771

25.6.5 rw ch2 cfg

Address 0x18

Default 0x00000000

Type Read/Write

Description Configuration register for slave mode channel 2.

Bit(s) Name Description Value
5-4:2 datacs Enable the use of a separate chip select input

(csp2n) for the sequential data register. Note that
even if this is enabled, the sequential data register
can still be reached via thecssn chip select.
no: No separate chip select
active lo: csp2n pin used, active low
activehi: csp2n pin used, active high

no=0
active lo=2
activehi=3

3 accessctrl Selects if the access mode for the channel is con-
trolled by the current bus master via the external
slave mode registers, or by theaccessmodefield.
master: Access mode controlled by bus master
modereg: Access mode controlled by mode register

master=0
modereg=1

2 accessmode Selects the access mode for the channel. When read,
it only reads back the register value. The real access
mode for the channel is read from thech2 modefield
of ther slavemoderegister.
addr: Address register
dma: DMA channel

addr=0
dma=1

1-0:2 rd hold Sets the data hold time after a read from the external
slave mode registers. 10 ns will be needed for the
fastest burst mode. 0 ns can be chosen if the applica-
tion requires faster data turn off time. The data hold
time can also be set by the bus master via the external
slave mode cfg registerrw ch2 ctrl.
master: Data hold time set by bus master
t10ns: 10 ns data hold time
t0ns: 0 ns data hold time

master=0
t10ns=2
t0ns=3

772 CHAPTER 25. INTERNAL REGISTERS

25.6.6 rw ch3 cfg

Address 0x1c

Default 0x00000000

Type Read/Write

Description Configuration register for slave mode channel 3.

Bit(s) Name Description Value
5-4:2 datacs Enable the use of a separate chip select input

(csp3n) for the sequential data register. Note that
even if this is enabled, the sequential data register
can still be reached via thecssn chip select.
no: No separate chip select
active lo: csp3n pin used, active low
activehi: csp3n pin used, active high

no=0
active lo=2
activehi=3

3 accessctrl Selects if the access mode for the channel is con-
trolled by the current bus master via the external
slave mode registers, or by theaccessmodefield.
master: Access mode controlled by bus master
modereg: Access mode controlled by mode register

master=0
modereg=1

2 accessmode Selects the access mode for the channel. When read,
it only reads back the register value. The real access
mode for the channel is read from thech3 modefield
of ther slavemoderegister.
addr: Address register
dma: DMA channel

addr=0
dma=1

1-0:2 rd hold Sets the data hold time after a read from the external
slave mode registers. 10 ns will be needed for the
fastest burst mode. 0 ns can be chosen if the applica-
tion requires faster data turn off time. The data hold
time can also be set by the bus master via the external
slave mode cfg registerrw ch3 ctrl.
master: Data hold time set by bus master
t10ns: 10 ns data hold time
t0ns: 0 ns data hold time

master=0
t10ns=2
t0ns=3

25.6. BIF SLAVE 773

25.6.7 rw arb cfg

Address 0x20

Default 0x00000000

Type Read/Write

Description Configuration register for external bus arbitration.

Bit(s) Name Description Value
12 dramctrl Selects single master DRAM control or shared

DRAM control.
shared: DRAM control shared between bus masters
local: DRAM control not shared

shared=0
local=1

11-10:2 settletime Selects the settle time for the bus arbitration.
t50ns: 50 ns settle time
t40ns: 40 ns settle time
t30ns: 30 ns settle time
t20ns: 20 ns settle time

t50ns=0
t40ns=1
t30ns=2
t20ns=3

9 acquire Bus acquirement policy. Selects if the bus interface
always will try to acquire the bus, of if it will only try
it when it requires access to the external bus.
on access: Only when access to the external bus is
required
always: Always try to acquire the external bus

on access=0
always=1

8-7:2 release Bus release policy. Selects when the bus may be re-
leased to another bus master.
no: The bus is never released
at idle: Release when the bus interface becomes idle
burstend: Release at the end of each bus burst

no=0
at idle=2
burstend=3

6-4:3 bg mode Operating mode for thebg pin.
norm: Normal operation (active high)
inv: Inverted operation (active low)
lo: Constantly driven low
hi: Constantly driven high
z: Constantly high-z

norm=0
inv=1
lo=2
hi=3
z=4

3-1:3 brout mode Operating mode for thebrout pin.
norm: Normal operation (active high)
inv: Inverted operation (active low)
lo: Constantly driven low
hi: Constantly driven high
z: Constantly high-z

norm=0
inv=1
lo=2
hi=3
z=4

0 brin mode Operating mode for thebrin pin.
norm: Normal operation (active high)
inv: Inverted operation (active low)

norm=0
inv=1

774 CHAPTER 25. INTERNAL REGISTERS

25.6.8 r arb stat

Address 0x24

Default
Type Read

Description Bus arbitration status register.

Bit(s) Name Description Value
4 bg Shows the value on thebg pin.

3 brout Shows the value on thebrout pin.

2 brin shows the value on thebrin pin.

1 mode Shows the current operation mode.
master: Master mode
slave: Slave mode

master=0
slave=1

0 init mode Shows the initial operation mode after system reset.
master: Master mode
slave: Slave mode

master=0
slave=1

25.6. BIF SLAVE 775

25.6.9 rw intr mask

Address 0x40

Default 0x00000000

Type Read/Write

Description Interrupt mask. Interrupts from the external bus arbitration. Specifies which inter-
rupts are enabled in this subsystem. Only enabled interrupts will propagate to the
central interrupt handler. In C code the relationship betweenrw intr mask, r intr and
r maskedintr can be expressed as:
r maskedintr = r intr & rw intr mask

Bit(s) Name Description Value
1 busacquire Enable/disable busacquire interrupt. Interrupt when the

bus has been acquired.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

0 bus release Enable/disable busrelease interrupt. Interrupt when the
bus has been released.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

776 CHAPTER 25. INTERNAL REGISTERS

25.6.10 rw ack intr

Address 0x44

Default
Type Read/Write

Description Acknowledge interrupts. Interrupts from the external bus arbitration.

Bit(s) Name Description Value
1 busacquire Acknowledge busacquire interrupt.

yes: Acknowledge interrupt
no: No operation

yes=1
no=0

0 bus release Acknowledge busrelease interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

25.6. BIF SLAVE 777

25.6.11 r intr

Address 0x48

Default
Type Read

Description Interrupts before the mask. Interrupts from the external bus arbitration. Makes it
possible to determine if an interrupt is active even though it is not enabled in the
mask (rw intr mask). In C code the relationship betweenrw intr mask, r intr and
r maskedintr can be expressed as:
r maskedintr = r intr & rw intr mask

Bit(s) Name Description Value
1 busacquire Interrupt busacquire active.

yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

0 bus release Interrupt busrelease active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

778 CHAPTER 25. INTERNAL REGISTERS

25.6.12 r masked intr

Address 0x4c

Default
Type Read

Description Interrupts after the mask. Interrupts from the external bus arbitration. Tells which
interrupts are active and enabled (inrw intr mask). In C code the relationship between
rw intr mask, r intr andr maskedintr can be expressed as:
r maskedintr = r intr & rw intr mask

Bit(s) Name Description Value
1 busacquire Interrupt busacquire active and enabled.

yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

0 bus release Interrupt busrelease active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

25.7. BIF SLAVE EXT 779

25.7 bif slave ext

Instance Base Address
bif slaveext 0xac000000

25.7.1 r ch0 seq data

Address 0x0

Default
Type Read

Description This register is used for sequential data access through the slave mode interface. An
access to this register will increment the address register of the channel by 4 if the
channel is configured for address increment. A read to the register will initiate a new
internal read within the slave.
Note: This register may only be read when thedavfield in ther ch0 statregister is set
to yes.

Bit(s) Name Description Value
31-0:32 data Sequential data.

780 CHAPTER 25. INTERNAL REGISTERS

25.7.2 r ch0 data

Address 0x4

Default
Type Read

Description This register is used for single data access through the slave mode interface. An access
to this register will not affect the address register of the channel, and will not generate
a new read internally in the slave.

Bit(s) Name Description Value
31-0:32 data Data.

25.7. BIF SLAVE EXT 781

25.7.3 rw ch0 addr

Address 0x8

Default
Type Read/Write

Description This register sets the address that will be used for the internal data access in the slave.
The address increments with 4 for each access to ther ch0 seqdataregister if the chan-
nel is configured for address increment. (If address increment is selected, the address
increments even if the channel is in DMA mode). A write to the register initiates an
internal read to the address within the slave. Bit 31 is used to select snooped (bit 31 ==
0) or non-snooped (bit 31 == 1) accesses. Bit 1 and 0 in the register are not used by the
internal access.
Note: This register may only be written when thedavfield in ther ch0 statregister is
set toyes. When the channel is set to DMA mode, the register may be written at any
time after the first timedavis set, or immediately if thedavfield was set toyesbefore
entering the DMA mode.

Bit(s) Name Description Value
31-0:32 addr Address.

782 CHAPTER 25. INTERNAL REGISTERS

25.7.4 r ch0 stat

Address 0xc

Default 0x00000001

Type Read

Description Channel status.

Bit(s) Name Description Value
31-4:28 Reserved Reserved.

3 boot This field reflects the value of theboot rdy field in the in-
ternal mode registerrw slavecfg. This field is duplicated
in the status registers for all four channels.

2 accessmode Shows if the channel is using DMA or the channel address
register. The value inrw ch0 ctrl can be overridden by an
internal mode register. This field shows the actual access
mode.
addr: Address register
dma: DMA channel

addr=0
dma=1

1 addr incr Shows whether address increment is used or not.
no: No address increment
yes: Use address increment

no=0
yes=1

0 dav Data busy/ready signal. This field indicates if the data in
the data registers for the channel is valid. The address
register of the channel may only be written when the field
is set toyes. When the channel is in DMA mode, the
address register may be written at any time after the first
time the field is set toyes, or immediately if the field was
set toyesbefore entering the DMA mode. The sequential
data register of the channel may only be read when the
field is set toyes. The field is set toyes at reset even
though there is no valid data at that time.
no: Busy
yes: Data available

no=0
yes=1

25.7. BIF SLAVE EXT 783

25.7.5 rw ch0 ctrl

Address 0xc

Default 0x00000000

Type Read/Write

Description

Bit(s) Name Description Value
31-3:29 Reserved Reserved.

2 accessmode Selects if the channel is using DMA or the channel ad-
dress register. The value can be overridden by an internal
mode register.
addr: Address register
dma: DMA channel

addr=0
dma=1

1 addr incr Selects whether to use address increment or not.
no: No address increment
yes: Use address increment

no=0
yes=1

0 rd hold Sets the minimum data hold time after a read to the ex-
ternal slave mode registers. 10 ns will be needed for the
fastest burst mode. 0 ns can be chosen if the application
requires faster data turn off time.
t10ns: 10 ns data hold time
t0ns: 0 ns data hold time

t10ns=0
t0ns=1

784 CHAPTER 25. INTERNAL REGISTERS

25.7.6 rw ch1 seq data

Address 0x10

Default
Type Read/Write

Description This register is used for sequential data access through the slave mode interface. An
access to this register will increment the address register of the channel by 4 if the
channel is configured for address increment.
Note: This register may only be written when thedatardy field in ther ch1 statregister
is set toyes.

Bit(s) Name Description Value
31-0:32 data Sequential data.

25.7. BIF SLAVE EXT 785

25.7.7 rw ch1 data

Address 0x14

Default
Type Read/Write

Description This register is used for single data access through the slave mode interface. An access
to this register will not affect the address register of the channel.
Note: This register may only be written when thedatardy field in ther ch1 statregister
is set toyes.

Bit(s) Name Description Value
31-0:32 data Data.

786 CHAPTER 25. INTERNAL REGISTERS

25.7.8 rw ch1 addr

Address 0x18

Default
Type Read/Write

Description This register sets the address that will be used for the internal data access in the slave.
The address increments with 4 for each access to therw ch1 seqdataregister if the
channel is configured for address increment. (If address increment is selected, the ad-
dress increments even if the channel is in DMA mode). Bit 31 is used to select snooped
(bit 31 == 0) or non-snooped (bit 31 == 1) accesses. Bit 1 and 0 in the register are not
used by the internal access.
Note: This register may only be written when thedatardy field in ther ch1 statregister
is set toyes. When the channel is in DMA mode, the register may be written at any
time after the first timedatardy is set, or immediately if thedatardy field was set to
yesbefore entering the DMA mode.

Bit(s) Name Description Value
31-0:32 addr Address.

25.7. BIF SLAVE EXT 787

25.7.9 rw ch1 ctrl

Address 0x1c

Default 0x00000000

Type Read/Write

Description

Bit(s) Name Description Value
31-3:29 Reserved Reserved.

2 accessmode Selects if the channel is using DMA or the channel ad-
dress register. The value can be overridden by an internal
mode register.
addr: Address register
dma: DMA channel

addr=0
dma=1

1 addr incr Selects whether to use address increment or not.
no: No address increment
yes: Use address increment

no=0
yes=1

0 rd hold Sets the minimum data hold time after a read to the ex-
ternal slave mode registers. 10 ns will be needed for the
fastest burst mode. 0 ns can be chosen if the application
requires faster data turn off time.
t10ns: 10 ns data hold time
t0ns: 0 ns data hold time

t10ns=0
t0ns=1

788 CHAPTER 25. INTERNAL REGISTERS

25.7.10 r ch1 stat

Address 0x1c

Default 0x00000001

Type Read

Description Channel status.

Bit(s) Name Description Value
31-4:28 Reserved Reserved.

3 boot This field reflects the value of theboot rdy field in the in-
ternal mode registerrw slavecfg. This field is duplicated
in the status registers for all four channels.

2 accessmode Shows if the channel is using DMA or the channel address
register. The value inrw ch1 ctrl can be overridden by an
internal mode register. This field shows the actual access
mode.
addr: Address register
dma: DMA channel

addr=0
dma=1

1 addr incr Shows whether address increment is used or not.
no: No address increment
yes: Use address increment

no=0
yes=1

0 datardy Data busy/ready signal. The data registers and the address
register of the channel may only be written when this field
is set toyes. When the channel is in DMA mode, the
address register may be written at any time after the first
time the field is set toyes, or immediately if the field was
set toyesbefore entering the DMA mode.
no: Busy
yes: Data ready

no=0
yes=1

25.7. BIF SLAVE EXT 789

25.7.11 r ch2 seq data

Address 0x20

Default
Type Read

Description This register is used for sequential data access through the slave mode interface. An
access to this register will increment the address register of the channel by 4 if the
channel is configured for address increment. A read to the register will initiate a new
internal read within the slave.
Note: This register may only be read when thedavfield in ther ch2 statregister is set
to yes.

Bit(s) Name Description Value
31-0:32 data Sequential data.

790 CHAPTER 25. INTERNAL REGISTERS

25.7.12 r ch2 data

Address 0x24

Default
Type Read

Description This register is used for single data access through the slave mode interface. An access
to this register will not affect the address register of the channel, and will not generate
a new read internally in the slave.

Bit(s) Name Description Value
31-0:32 data Data.

25.7. BIF SLAVE EXT 791

25.7.13 rw ch2 addr

Address 0x28

Default
Type Read/Write

Description This register sets the address that will be used for the internal data access in the slave.
The address increments with 4 for each access to ther ch2 seqdataregister if the chan-
nel is configured for address increment. (If address increment is selected, the address
increments even if the channel is in DMA mode). A write to the register initiates an
internal read to the address within the slave. Bit 31 is used to select snooped (bit 31 ==
0) or non-snooped (bit 31 == 1) accesses. Bit 1 and 0 in the register are not used by the
internal access.
Note: This register may only be written when thedavfield in ther ch2 statregister is
set toyes. When the channel is set to DMA mode, the register may be written at any
time after the first timedavis set, or immediately if thedavfield was set toyesbefore
entering the DMA mode.

Bit(s) Name Description Value
31-0:32 addr Address.

792 CHAPTER 25. INTERNAL REGISTERS

25.7.14 r ch2 stat

Address 0x2c

Default 0x00000001

Type Read

Description Channel status.

Bit(s) Name Description Value
31-4:28 Reserved Reserved.

3 boot This field reflects the value of theboot rdy field in the in-
ternal mode registerrw slavecfg. This field is duplicated
in the status registers for all four channels.

2 accessmode Shows if the channel is using DMA or the channel address
register. The value inrw ch2 ctrl can be overridden by an
internal mode register. This field shows the actual access
mode.
addr: Address register
dma: DMA channel

addr=0
dma=1

1 addr incr Shows whether address increment is used or not.
no: No address increment
yes: Use address increment

no=0
yes=1

0 dav Data busy/ready signal. This field indicates if the data in
the data registers for the channel is valid. The address
register of the channel may only be written when the field
is set toyes. When the channel is in DMA mode, the
address register may be written at any time after the first
time the field is set toyes, or immediately if the field was
set toyesbefore entering the DMA mode. The sequential
data register of the channel may only be read when the
field is set toyes. The field is set toyes at reset even
though there is no valid data at that time.
no: Busy
yes: Data available

no=0
yes=1

25.7. BIF SLAVE EXT 793

25.7.15 rw ch2 ctrl

Address 0x2c

Default 0x00000000

Type Read/Write

Description

Bit(s) Name Description Value
31-3:29 Reserved Reserved.

2 accessmode Selects if the channel is using DMA or the channel ad-
dress register. The value can be overridden by an internal
mode register.
addr: Address register
dma: DMA channel

addr=0
dma=1

1 addr incr Selects whether to use address increment or not.
no: No address increment
yes: Use address increment

no=0
yes=1

0 rd hold Sets the minimum data hold time after a read to the ex-
ternal slave mode registers. 10 ns will be needed for the
fastest burst mode. 0 ns can be chosen if the application
requires faster data turn off time.
t10ns: 10 ns data hold time
t0ns: 0 ns data hold time

t10ns=0
t0ns=1

794 CHAPTER 25. INTERNAL REGISTERS

25.7.16 rw ch3 seq data

Address 0x30

Default
Type Read/Write

Description This register is used for sequential data access through the slave mode interface. An
access to this register will increment the address register of the channel by 4 if the
channel is configured for address increment.
Note: This register may only be written when thedatardy field in ther ch3 statregister
is set toyes.

Bit(s) Name Description Value
31-0:32 data Sequential data.

25.7. BIF SLAVE EXT 795

25.7.17 rw ch3 data

Address 0x34

Default
Type Read/Write

Description This register is used for single data access through the slave mode interface. An access
to this register will not affect the address register of the channel.
Note: This register may only be written when thedatardy field in ther ch3 statregister
is set toyes.

Bit(s) Name Description Value
31-0:32 data Data.

796 CHAPTER 25. INTERNAL REGISTERS

25.7.18 rw ch3 addr

Address 0x38

Default
Type Read/Write

Description This register sets the address that will be used for the internal data access in the slave.
The address increments with 4 for each access to therw ch3 seqdataregister if the
channel is configured for address increment. (If address increment is selected, the ad-
dress increments even if the channel is in DMA mode). Bit 31 is used to select snooped
(bit 31 == 0) or non-snooped (bit 31 == 1) accesses. Bit 1 and 0 in the register are not
used by the internal access.
Note: This register may only be written when thedatardy field in ther ch3 statregister
is set toyes. When the channel is in DMA mode, the register may be written at any
time after the first timedatardy is set, or immediately if thedatardy field was set to
yesbefore entering the DMA mode.

Bit(s) Name Description Value
31-0:32 addr Address.

25.7. BIF SLAVE EXT 797

25.7.19 r ch3 stat

Address 0x3c

Default 0x00000001

Type Read

Description Channel status.

Bit(s) Name Description Value
31-4:28 Reserved Reserved.

3 boot This field reflects the value of theboot rdy field in the in-
ternal mode registerrw slavecfg. This field is duplicated
in the status registers for all four channels.

2 accessmode Shows if the channel is using DMA or the channel address
register. The value inrw ch3 ctrl can be overridden by an
internal mode register. This field shows the actual access
mode.
addr: Address register
dma: DMA channel

addr=0
dma=1

1 addr incr Shows whether address increment is used or not.
no: No address increment
yes: Use address increment

no=0
yes=1

0 datardy Data busy/ready signal. The data registers and the address
register of the channel may only be written when this field
is set toyes. When the channel is in DMA mode, the
address register may be written at any time after the first
time the field is set toyes, or immediately if the field was
set toyesbefore entering the DMA mode.
no: Busy
yes: Data ready

no=0
yes=1

798 CHAPTER 25. INTERNAL REGISTERS

25.7.20 rw ch3 ctrl

Address 0x3c

Default 0x00000000

Type Read/Write

Description

Bit(s) Name Description Value
31-3:29 Reserved Reserved.

2 accessmode Selects if the channel is using DMA or the channel ad-
dress register. The value can be overridden by an internal
mode register.
addr: Address register
dma: DMA channel

addr=0
dma=1

1 addr incr Selects whether to use address increment or not.
no: No address increment
yes: Use address increment

no=0
yes=1

0 rd hold Sets the minimum data hold time after a read to the ex-
ternal slave mode registers. 10 ns will be needed for the
fastest burst mode. 0 ns can be chosen if the application
requires faster data turn off time.
t10ns: 10 ns data hold time
t0ns: 0 ns data hold time

t10ns=0
t0ns=1

25.8. CONFIG 799

25.8 config

Instance Base Address
config 0xb003c000

25.8.1 r bootsel

Address 0x0

Default
Type Read

Description Chip boot select register. This register contains the value sampled on pinsbs6 - bs0
whenrst n is released.

Bit(s) Name Description Value
6 flashbw Bus width for EPROM/Flash PROM select 0 and 1.

bw16: 16 bit bus width
bw32: 32 bit bus width

bw16=0
bw32=1

5 pll PLL mode.
no: PLL off (bypass mode)
yes: PLL on

no=0
yes=1

4 user User defined boot mode.

3 full duplex Half/full duplex select for network boot.
no: Half duplex
yes: Full duplex

no=0
yes=1

2-0:3 boot mode Boot mode.
nor: NOR flash boot
net rx: Network RX boot
net tx rx: Network TX/RX boot
nand: NAND flash boot
ser: Serial flash boot
master: Master booted by slave
slave: Slave booted by master
none: No boot

nor=0
net rx=1
net tx rx=2
nand=3
ser=4
master=5
slave=6
none=7

800 CHAPTER 25. INTERNAL REGISTERS

25.8.2 rw clk ctrl

Address 0x4

Default 0x00000002

Type Read/Write

Description Global clock control register. This register is used to turn on/off different on-chip clock
regions. By default only the CPU and essential system functionality to access the in-
ternal boot ROM are enabled after reset. Depending on which boot mode that is used,
different blocks will be turned on by the boot code.

Bit(s) Name Description Value
9 fix io Fixed function I/O block 100 MHz clock region control.

This bit controls the synchronous serial ports 0 and 1,
asynchronous serial ports 0 to 3, ATA port and Ethernet
port 1.
no: Turn off clock region
yes: Turn on clock region

no=0
yes=1

8 bif External bus interface 100 MHz clock region control.
no: Turn off clock region
yes: Turn on clock region

no=0
yes=1

7 dma89strcop DMA channel 8, channel 9 and crypto accelerator
100MHz clock regions control.
no: Turn off clock region
yes: Turn on clock region

no=0
yes=1

6 dma67 DMA channels 6 and 7 100 MHz clock region control.
no: Turn off clock region
yes: Turn on clock region

no=0
yes=1

5 dma45 DMA channels 4 and 5 100 MHz clock region control.
no: Turn off clock region
yes: Turn on clock region

no=0
yes=1

4 dma23 DMA channels 2 and 3 100 MHz clock region control.
no: Turn off clock region
yes: Turn on clock region

no=0
yes=1

3 dma01eth0 DMA channel 0, channel 1 and Ethernet port 0 100 MHz
clock region control.
no: Turn off clock region
yes: Turn on clock region

no=0
yes=1

2 iop I/O processor 200 MHz clock region control.
no: Turn off clock region
yes: Turn on clock region

no=0
yes=1

1 cpu CPU 200 MHz clock region control. When turned off the
CPU clock region including MMUs, caches and debug
support is turned off.
no: Turn off clock region
yes: Turn on clock region

no=0
yes=1

25.8. CONFIG 801

0 pll PLL operation control. This field controls if the PLL is
enabled or if it is turned off and bypassed. When the PLL
is turned off the internal 400 MHz clock is reduced to 12
MHz. This will result in that all 200 MHz clock regions
will be clocked at 6 MHz and all 100 MHz regions at 3
MHz.
no: PLL turned off
yes: PLL turned on

no=0
yes=1

802 CHAPTER 25. INTERNAL REGISTERS

25.8.3 rw pad ctrl

Address 0x8

Default 0x00000000

Type Read/Write

Description Global pad control.

Bit(s) Name Description Value
1 phyrstn Controls thephyrst n external reset output.

0 usbsusp USB transceiver suspend control.
no: Set transceiver in normal mode
yes: Set transceiver in suspend mode

no=0
yes=1

25.9. CRIS 803

25.9 cris

Bank
0

25.9.1 rw gc cfg

Support register s0

Default 0x00000000

Type Read/Write

Description General configuration register.

Bit(s) Name Description Value
6 gp Makes gcr0 through gcr3 writable only from Guru mode.Once set,

this bit may only be cleared from Guru mode.
no: gc r0 through gcr3 writable from Guru and Kernel mode
yes: gcr0 through gcr3 only writable from Guru mode

no=0
yes=1

5 gk Makes the break 15 instruction cause a Guru mode exception instead
of a normal break 15 exception (vector 0x1f). Once set, this bit may
only be cleared from Guru mode.
no: Break 15 exception
yes: Guru mode exception

no=0
yes=1

4 gb Makes hardware breakpoints and single step exceptions cause a
Guru mode exception instead of a breakpoint/single step exception
(vector 0xC/0x3). Once set, this bit may only be cleared from Guru
mode.
no: Breakpoint/single step exceptions
yes: Guru mode exceptions

no=0
yes=1

3 dm Enable data MMU.
no: Disable
yes: Enable

no=0
yes=1

2 im Enable instruction MMU.
no: Disable
yes: Enable

no=0
yes=1

1 dc Enable data cache. The cache is normally enabled by the boot ROM.
no: Disable
yes: Enable

no=0
yes=1

0 ic Enable instruction cache. The cache is normally enabled by the boot
ROM.
no: Disable
yes: Enable

no=0
yes=1

804 CHAPTER 25. INTERNAL REGISTERS

25.9.2 rw gc ccs

Support register s1

Default
Type Read/Write

Description Guru mode saved CCS.

25.9. CRIS 805

25.9.3 rw gc srs

Support register s2

Default
Type Read/Write

Description Guru mode saved SRS.

Bit(s) Name Description Value
7-0:8 srs Guru mode saved SRS.

806 CHAPTER 25. INTERNAL REGISTERS

25.9.4 rw gc nrp

Support register s3

Default
Type Read/Write

Description Guru mode saved NRP.

25.9. CRIS 807

25.9.5 rw gc exs

Support register s4

Default
Type Read/Write

Description Guru mode Exception Status.

808 CHAPTER 25. INTERNAL REGISTERS

25.9.6 rw gc eda

Support register s5

Default
Type Read/Write

Description Guru mode Exception Data Address.

25.9. CRIS 809

25.9.7 rw gc r0

Support register s8

Default
Type Read/Write

Description Guru mode scratchpad register 0.

810 CHAPTER 25. INTERNAL REGISTERS

25.9.8 rw gc r1

Support register s9

Default
Type Read/Write

Description Guru mode scratchpad register 1.

25.9. CRIS 811

25.9.9 rw gc r2

Support register s10

Default
Type Read/Write

Description Guru mode scratchpad register 2.

812 CHAPTER 25. INTERNAL REGISTERS

25.9.10 rw gc r3

Support register s11

Default
Type Read/Write

Description Guru mode scratchpad register 3.

25.10. CRIS BP 813

25.10 cris bp

Bank
3

25.10.1 rw bp ctrl

Support register s0

Default 0x00000000

Type Read/Write

Description Breakpoint control register.

Bit(s) Name Description Value
25 d5 wpwr Enable/disable data watchpoint 5 for write accesses.

yes: Enable
no: Disable

yes=1
no=0

24 d5 wprd Enable/disable data watchpoint 5 for read accesses.
yes: Enable
no: Disable

yes=1
no=0

23 d5 bpwr Enable/disable data breakpoint 5 for write accesses.
yes: Enable
no: Disable

yes=1
no=0

22 d5 bprd Enable/disable data breakpoint 5 for read accesses.
yes: Enable
no: Disable

yes=1
no=0

21 d4 wpwr Enable/disable data watchpoint 4 for write accesses.
yes: Enable
no: Disable

yes=1
no=0

20 d4 wprd Enable/disable data watchpoint 4 for read accesses.
yes: Enable
no: Disable

yes=1
no=0

19 d4 bpwr Enable/disable data breakpoint 4 for write accesses.
yes: Enable
no: Disable

yes=1
no=0

18 d4 bprd Enable/disable data breakpoint 4 for read accesses.
yes: Enable
no: Disable

yes=1
no=0

17 d3 wpwr Enable/disable data watchpoint 3 for write accesses.
yes: Enable
no: Disable

yes=1
no=0

16 d3 wprd Enable/disable data watchpoint 3 for read accesses.
yes: Enable
no: Disable

yes=1
no=0

814 CHAPTER 25. INTERNAL REGISTERS

15 d3 bpwr Enable/disable data breakpoint 3 for write accesses.
yes: Enable
no: Disable

yes=1
no=0

14 d3 bprd Enable/disable data breakpoint 3 for read accesses.
yes: Enable
no: Disable

yes=1
no=0

13 d2 wpwr Enable/disable data watchpoint 2 for write accesses.
yes: Enable
no: Disable

yes=1
no=0

12 d2 wprd Enable/disable data watchpoint 2 for read accesses.
yes: Enable
no: Disable

yes=1
no=0

11 d2 bpwr Enable/disable data breakpoint 2 for write accesses.
yes: Enable
no: Disable

yes=1
no=0

10 d2 bprd Enable/disable data breakpoint 2 for read accesses.
yes: Enable
no: Disable

yes=1
no=0

9 d1 wpwr Enable/disable data watchpoint 1 for write accesses.
yes: Enable
no: Disable

yes=1
no=0

8 d1 wprd Enable/disable data watchpoint 1 for read accesses.
yes: Enable
no: Disable

yes=1
no=0

7 d1 bpwr Enable/disable data breakpoint 1 for write accesses.
yes: Enable
no: Disable

yes=1
no=0

6 d1 bprd Enable/disable data breakpoint 1 for read accesses.
yes: Enable
no: Disable

yes=1
no=0

5 d0 wpwr Enable/disable data watchpoint 0 for write accesses.
yes: Enable
no: Disable

yes=1
no=0

4 d0 wprd Enable/disable data watchpoint 0 for read accesses.
yes: Enable
no: Disable

yes=1
no=0

3 d0 bpwr Enable/disable data breakpoint 0 for write accesses.
yes: Enable
no: Disable

yes=1
no=0

2 d0 bprd Enable/disable data breakpoint 0 for read accesses.
yes: Enable
no: Disable

yes=1
no=0

1 i0 wp Enable/disable instruction watchpoint 0.
yes: Enable
no: Disable

yes=1
no=0

25.10. CRIS BP 815

0 i0 bp Enable/disable instruction breakpoint 0.
yes: Enable
no: Disable

yes=1
no=0

816 CHAPTER 25. INTERNAL REGISTERS

25.10.2 rw bp i0 start

Support register s1

Default
Type Read/Write

Description Instruction break/watch-point 0 start address.

25.10. CRIS BP 817

25.10.3 rw bp i0 end

Support register s2

Default
Type Read/Write

Description Instruction break/watch-point 0 end address.

818 CHAPTER 25. INTERNAL REGISTERS

25.10.4 rw bp d0 start

Support register s3

Default
Type Read/Write

Description Data break/watch-point 0 start address.

25.10. CRIS BP 819

25.10.5 rw bp d0 end

Support register s4

Default
Type Read/Write

Description Data break/watch-point 0 end address.

820 CHAPTER 25. INTERNAL REGISTERS

25.10.6 rw bp d1 start

Support register s5

Default
Type Read/Write

Description Data break/watch-point 1 start address.

25.10. CRIS BP 821

25.10.7 rw bp d1 end

Support register s6

Default
Type Read/Write

Description Data break/watch-point 1 end address.

822 CHAPTER 25. INTERNAL REGISTERS

25.10.8 rw bp d2 start

Support register s7

Default
Type Read/Write

Description Data break/watch-point 2 start address.

25.10. CRIS BP 823

25.10.9 rw bp d2 end

Support register s8

Default
Type Read/Write

Description Data break/watch-point 2 end address.

824 CHAPTER 25. INTERNAL REGISTERS

25.10.10 rw bp d3 start

Support register s9

Default
Type Read/Write

Description Data break/watch-point 3 start address.

25.10. CRIS BP 825

25.10.11 rw bp d3 end

Support register s10

Default
Type Read/Write

Description Data break/watch-point 3 end address.

826 CHAPTER 25. INTERNAL REGISTERS

25.10.12 rw bp d4 start

Support register s11

Default
Type Read/Write

Description Data break/watch-point 4 start address.

25.10. CRIS BP 827

25.10.13 rw bp d4 end

Support register s12

Default
Type Read/Write

Description Data break/watch-point 4 end address.

828 CHAPTER 25. INTERNAL REGISTERS

25.10.14 rw bp d5 start

Support register s13

Default
Type Read/Write

Description Data break/watch-point 5 start address.

25.10. CRIS BP 829

25.10.15 rw bp d5 end

Support register s14

Default
Type Read/Write

Description Data break/watch-point 5 end address.

830 CHAPTER 25. INTERNAL REGISTERS

25.11 dma

Instance Base Address
dma0 0xb0000000

dma1 0xb0002000

dma2 0xb0004000

dma3 0xb0006000

dma4 0xb0008000

dma5 0xb000a000

dma6 0xb000c000

dma7 0xb000e000

dma8 0xb0010000

dma9 0xb0012000

25.11.1 rw data

Address 0x0

Default
Type Read/Write

Description Data descriptor. This register holds the pointer to the current data descriptor. Should
normally not be used by SW. SW may use the value read from this register to observe
list progression, but only if the corresponding context-descriptor is never re-read, eg.
by an ackpkt+restore stream command from the HW-client.

25.11. DMA 831

25.11.2 rw data next

Address 0x4

Default
Type Read/Write

Description Data descriptor next. This register holds the pointer to the next data descriptor of the
current data descriptor. Should normally not be used by SW.

832 CHAPTER 25. INTERNAL REGISTERS

25.11.3 rw data buf

Address 0x8

Default
Type Read/Write

Description Data descriptor buffer. This register holds the pointer to the first byte of the data buffer
of the current data descriptor. Should normally not be used by SW.

25.11. DMA 833

25.11.4 rw data ctrl

Address 0xc

Default
Type Read/Write

Description Data descriptor control. This register holds the ctrl field of the current data descriptor.
Should normally not be used by SW.

Bit(s) Name Description Value
5 wait Wait for command. Finish processing this buffer, then wait

for command from the client. Out channel only. Ignored by in
channel.
yes: Wait enabled
no: Wait disabled

yes=1
no=0

4 intr Interrupt. Indicates if an interrupt is generated when this data
descriptor has been processed and the next data descriptor is
loaded. Ifeol is set, this field indicates if an interrupt is gener-
ated when this data descriptor has been processed.
yes: Interrupt enabled
no: Interrupt disabled

yes=1
no=0

3 out eop Out channel end of packet. This is the last data descriptor of
the packet to be transmitted. Out channel only. Ignored by in
channel.
yes: End of packet
no: Not end of packet

yes=1
no=0

0 eol End of list. This is the last data descriptor of the list.
yes: End of list
no: Not end of list

yes=1
no=0

834 CHAPTER 25. INTERNAL REGISTERS

25.11.5 rw data stat

Address 0x10

Default
Type Read/Write

Description Data descriptor status. This register holds the status field of the current data descriptor.
Should normally not be used by SW.

Bit(s) Name Description Value
3 in eop In channel end of packet. This is the last descriptor of the re-

ceived packet. In channel only. Ignored by out channel.
yes: End of packet
no: Not end of packet

yes=1
no=0

25.11. DMA 835

25.11.6 rw data md

Address 0x14

Default
Type Read/Write

Description Data descriptor meta data. This register holds the meta data of the current data descrip-
tor. Should normally not be used by SW.

Bit(s) Name Description Value
15-0:16 md Meta data. Client read and write meta data area.

836 CHAPTER 25. INTERNAL REGISTERS

25.11.7 rw data md s

Address 0x18

Default
Type Read/Write

Description Sampled data descriptor meta data. This register holds the meta data field 0 sampled
from the client. Should normally not be used by SW.

Bit(s) Name Description Value
15-0:16 md s Meta data. Sampled meta data area.

25.11. DMA 837

25.11.8 rw data after

Address 0x1c

Default
Type Read/Write

Description Data descriptor after. This register holds the pointer to the byte after the last byte of the
data buffer. Should normally not be used by SW.

838 CHAPTER 25. INTERNAL REGISTERS

25.11.9 rw ctxt

Address 0x20

Default
Type Read/Write

Description Context descriptor. This register holds the pointer to the current context descriptor.
Should normally not be used by SW.

25.11. DMA 839

25.11.10 rw ctxt next

Address 0x24

Default
Type Read/Write

Description Context descriptor next. This register holds the pointer to the next context descriptor of
the context descriptor list. Should normally not be used by SW.

840 CHAPTER 25. INTERNAL REGISTERS

25.11.11 rw ctxt ctrl

Address 0x28

Default
Type Read/Write

Description Context control. This register holds the ctrl field of the current context descriptor.
Should normally not be used by SW.

Bit(s) Name Description Value
7 en Enable. Indicates if this context descriptor is en-

abled.
yes: Enabled
no: Disabled

yes=1
no=0

6 storemode Store mode. Indicates if the context descriptor may
be stored at any time during data transfer, or at
wait ack only. The buffer space of two consecu-
tive buffers must be at least 64 bytes to guarantee
full DMA performance, when a context descriptor
is to be stored at any time. Out channel only. Ig-
nored by in channel.
anytime: The context descriptor may be saved at
anytime
only at wait: wait ack is used to store the context
descriptor

anytime=1
only at wait=0

4 intr Interrupt. Indicates if an interrupt is generated
when this context descriptor has been processed,
and the next or n:th context descriptor is loaded.
yes: Interrupt enabled
no: Interrupt disabled

yes=1
no=0

0 eol End of list. Indicates if this is the last context de-
scriptor of the list.
yes: End of list
no: Not end of list

yes=1
no=0

25.11. DMA 841

25.11.12 rw ctxt stat

Address 0x2c

Default
Type Read/Write

Description Context descriptor status. This register holds the status field of the current context
descriptor. Should normally not be used by SW.

Bit(s) Name Description Value
7 dis Disabled. Indicates if this context descriptor is disabled by the

DMA. The priority of this bit is higher thanrw ctxt ctrl.en.
yes: Disabled
no: Not disabled

yes=1
no=0

842 CHAPTER 25. INTERNAL REGISTERS

25.11.13 rw ctxt md0

Address 0x30

Default
Type Read/Write

Description Context meta data 0. This register holds meta data of the current context descriptor.
Should normally not be used by SW.

Bit(s) Name Description Value
15-0:16 md0 Meta data. Client read and write meta data area.

25.11. DMA 843

25.11.14 rw ctxt md0 s

Address 0x34

Default
Type Read/Write

Description Sampled context meta data 0. This register holds the meta data field 0 sampled from
the client. Should normally not be used by SW.

Bit(s) Name Description Value
15-0:16 md0 s Sampled meta data area.

844 CHAPTER 25. INTERNAL REGISTERS

25.11.15 rw ctxt md1

Address 0x38

Default
Type Read/Write

Description Context meta data 1. This register holds meta data of the current context descriptor.
Should normally not be used by SW.

25.11. DMA 845

25.11.16 rw ctxt md1 s

Address 0x3c

Default
Type Read/Write

Description Sampled context meta data 1. This register holds the meta data field 1 sampled from
the client. Should normally not be used by SW.

846 CHAPTER 25. INTERNAL REGISTERS

25.11.17 rw ctxt md2

Address 0x40

Default
Type Read/Write

Description Context meta data 2. This register holds meta data of the current context descriptor.
Should normally not be used by SW.

25.11. DMA 847

25.11.18 rw ctxt md2 s

Address 0x44

Default
Type Read/Write

Description Sampled context meta data 2. This register holds the meta data field 2 sampled from
the client. Should normally not be used by SW.

848 CHAPTER 25. INTERNAL REGISTERS

25.11.19 rw ctxt md3

Address 0x48

Default
Type Read/Write

Description Context meta data 3. This register holds meta data of the current context descriptor.
Should normally not be used by SW.

25.11. DMA 849

25.11.20 rw ctxt md3 s

Address 0x4c

Default
Type Read/Write

Description Sampled context meta data 3. This register holds the meta data field 3 sampled from
the client. Should normally not be used by SW.

850 CHAPTER 25. INTERNAL REGISTERS

25.11.21 rw ctxt md4

Address 0x50

Default
Type Read/Write

Description Context meta data 4. This register holds meta data of the current context descriptor.
Should normally not be used by SW.

25.11. DMA 851

25.11.22 rw ctxt md4 s

Address 0x54

Default
Type Read/Write

Description Sampled context meta data 4. This register holds the meta data field 4 sampled from
the client. Should normally not be used by SW.

852 CHAPTER 25. INTERNAL REGISTERS

25.11.23 rw saved data

Address 0x58

Default
Type Read/Write

Description Saved data descriptor. This register holds the pointer to the last saved data descriptor of
the current context descriptor. Should normally not be used by SW.

25.11. DMA 853

25.11.24 rw saved data buf

Address 0x5c

Default
Type Read/Write

Description Saved data descriptor buffer. This register holds the pointer to the last saved buffer
position of the current context descriptor. Should normally not be used by SW.

854 CHAPTER 25. INTERNAL REGISTERS

25.11.25 rw group

Address 0x60

Default
Type Read/Write

Description Group descriptor. This register holds the pointer to the current group descriptor.

25.11. DMA 855

25.11.26 rw group next

Address 0x64

Default
Type Read/Write

Description Group descriptor next. This register holds the pointer to the next group descriptor at the
same level of the group descriptor hierarchy. Should normally not be used by SW.

856 CHAPTER 25. INTERNAL REGISTERS

25.11.27 rw group ctrl

Address 0x68

Default
Type Read/Write

Description Group descriptor control. This register holds the ctrl field of the current group descrip-
tor. Should normally not be used by SW.

Bit(s) Name Description Value
7 en Enable. Indicates if this group descriptor is enabled.

yes: Enabled
no: Disabled

yes=1
no=0

4 intr Interrupt. Indicates if an interrupt is generated when this group
descriptor has been processed, and the next, upper or lower group
descriptor is loaded.
yes: Interrupt enabled
no: Interrupt disabled

yes=1
no=0

2 bol Bottom of list. Indicates if the current group descriptor is at the
lowest level.
yes: Bottom of list
no: Not bottom of list

yes=1
no=0

1 tol Top of list. Indicates if the current group descriptor is at the high-
est level.
yes: Top of list
no: Not top of list

yes=1
no=0

0 eol End of list. Indicates if this is the last group descriptor of the list.
yes: End of list
no: Not end of list

yes=1
no=0

25.11. DMA 857

25.11.28 rw group stat

Address 0x6c

Default
Type Read/Write

Description Group descriptor status. This register holds the status field of the current group descrip-
tor. Should normally not be used by SW.

Bit(s) Name Description Value
7 dis Disable. Indicates if this group descriptor is disabled by the DMA.

The priority of this bit is higher thanrw groupctrl.en.
yes: Disabled
no: Not disabled

yes=1
no=0

858 CHAPTER 25. INTERNAL REGISTERS

25.11.29 rw group md

Address 0x70

Default
Type Read/Write

Description Group descriptor meta data. This register holds the meta data of the current group
descriptor. Should normally not be used by SW.

Bit(s) Name Description Value
15-0:16 md Meta data. Client read and write meta data area.

25.11. DMA 859

25.11.30 rw group md s

Address 0x74

Default
Type Read/Write

Description Sampled group meta data. This register holds the group meta data sampled from the
client. Should normally not be used by SW.

Bit(s) Name Description Value
15-0:16 md s Sampled meta data.

860 CHAPTER 25. INTERNAL REGISTERS

25.11.31 rw group up

Address 0x78

Default
Type Read/Write

Description Group descriptor up. This register holds the up pointer of the current group descriptor.
Should normally not be used by SW.

25.11. DMA 861

25.11.32 rw group down

Address 0x7c

Default
Type Read/Write

Description Group descriptor down. This register holds the down pointer of the current group de-
scriptor.

862 CHAPTER 25. INTERNAL REGISTERS

25.11.33 rw cmd

Address 0x80

Default 0x00000000

Type Read/Write

Description Command. The DMA channel command register.

Bit(s) Name Description Value
0 cont data Continue data descriptor processing. If the DMA has

reached the end of a data descriptor list, it reloads the last
data descriptor to check if the end of list has been removed.
If so the data processing continues.
yes: Continue data list processing
no: No operation

yes=1
no=0

25.11. DMA 863

25.11.34 rw cfg

Address 0x84

Default 0x00000000

Type Read/Write

Description Configuration. The DMA channel configuration register.

Bit(s) Name Description Value
1 stop Stop DMA channel. When set the DMA channel completes any

ongoing memory operation and then stops. When cleared the
DMA channel continues its normal function.
yes: Stop the DMA channel
no: Normal operation

yes=1
no=0

0 en Enable. Enable DMA channel. When set the DMA channel per-
forms its normal function. When cleared the DMA channel is
reset, and remains in this state until enable is set.
yes: Enable the DMA channel
no: Disable and reset the DMA channel

yes=1
no=0

864 CHAPTER 25. INTERNAL REGISTERS

25.11.35 rw stat

Address 0x88

Default 0x00000101

Type Read/Write

Description The DMA channel status. Note that this register cannot be set by stream command
set reg or by SW since the DMA updates this register each cycle.

Bit(s) Name Description Value
31-24:8 buf The amount of data buffered in the DMA.

15-8:8 streamcmd src Stream command source. The source of the ex-
ecuted stream command.
idle: No active command
client: The client is source
intern: Internal source
sw: The SW is source

idle=1
client=2
intern=4
sw=8

7-5:3 list state The DMA data list status.
dataat eol: The DMA channel has finished the
data list. Note that there still may be buffered
data in the DMA

dataat eol=1

4-0:5 mode The DMA channel status mode of operation.
rst: The DMA channel is reset
stopped: The DMA channel has stopped
running: The DMA channel is running

rst=1
stopped=2
running=4

25.11. DMA 865

25.11.36 rw intr mask

Address 0x8c

Default 0x00000000

Type Read/Write

Description Interrupt mask. DMA channel interrupts. Specifies which interrupts are enabled in this
subsystem. Only enabled interrupts will propagate to the central interrupt handler. In C
code the relationship betweenrw intr mask, r intr andr maskedintr can be expressed
as:
r maskedintr = r intr & rw intr mask

Bit(s) Name Description Value
4 streamcmd Enable/disable streamcmd interrupt. Stream command

done interrupt.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

3 in eop Enable/disable ineop interrupt. In channel end of packet
interrupt.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

2 data Enable/disable data interrupt. Data descriptor interrupt.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

1 ctxt Enable/disable ctxt interrupt. Context descriptor interrupt.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

0 group Enable/disable group interrupt. Group descriptor interrupt.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

866 CHAPTER 25. INTERNAL REGISTERS

25.11.37 rw ack intr

Address 0x90

Default
Type Read/Write

Description Acknowledge interrupts. DMA channel interrupts.

Bit(s) Name Description Value
4 streamcmd Acknowledge streamcmd interrupt.

yes: Acknowledge interrupt
no: No operation

yes=1
no=0

3 in eop Acknowledge ineop interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

2 data Acknowledge data interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

1 ctxt Acknowledge ctxt interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

0 group Acknowledge group interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

25.11. DMA 867

25.11.38 r intr

Address 0x94

Default
Type Read

Description Interrupts before the mask. DMA channel interrupts. Makes it possible to determine
if an interrupt is active even though it is not enabled in the mask (rw intr mask). In C
code the relationship betweenrw intr mask, r intr andr maskedintr can be expressed
as:
r maskedintr = r intr & rw intr mask

Bit(s) Name Description Value
4 streamcmd Interrupt streamcmd active.

yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

3 in eop Interrupt ineop active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

2 data Interrupt data active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1 ctxt Interrupt ctxt active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

0 group Interrupt group active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

868 CHAPTER 25. INTERNAL REGISTERS

25.11.39 r masked intr

Address 0x98

Default
Type Read

Description Interrupts after the mask. DMA channel interrupts. Tells which interrupts are active
and enabled (inrw intr mask). In C code the relationship betweenrw intr mask, r intr
andr maskedintr can be expressed as:
r maskedintr = r intr & rw intr mask

Bit(s) Name Description Value
4 streamcmd Interrupt streamcmd active and enabled.

yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

3 in eop Interrupt ineop active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

2 data Interrupt data active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1 ctxt Interrupt ctxt active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

0 group Interrupt group active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

25.11. DMA 869

25.11.40 rw stream cmd

Address 0x9c

Default 0x00000000

Type Read/Write

Description Stream command. This register holds the commands executing on the DMA channel.
May only be written to ifbusyis not set.

Bit(s) Name Description Value
31 busy Busy. Indicates if the DMA channel is busy.

yes: The DMA channel is busy
no: The DMA channel is not busy

yes=1
no=0

23-16:8 n Offset parameter to the commandcmd.loadc n.

870 CHAPTER 25. INTERNAL REGISTERS

9-0:10 cmd Command. DMA channel stream commands.
storedescr: Store descriptor(nop)
storemd: Store meta data
storec: Store context descriptor
storeg: Store group descriptor
array: When nexten, stop at eol
next en: Find the next enabled descriptor
copy next: Make the down pointer of the upper group,
point to the current next group
next pkt: Go to the first data descriptor of the next packet
dis c: Disable the current context descriptor
dis g: Disable the current group descriptor
copy up: Copy current up pointer when loading the next
group descriptor
savedown: Make the down pointer of the upper group,
point to current group
saveup: Make the up pointer of the lower group, point to
current group
updatedown: Make the down pointer of the group point to
the loaded context
restore: Restore context descriptor
burst: Start bursting
set reg: Used to modify pointer registers only. reg(n)
<= contextmd wr[47:16], where n == cmd[23:16], and
mapped to registers according to the ’addr’ field in this file.
For non pointer registers and non rw registers the command
is a no operation.
ack pkt: Acknowledge packet(continue burst)
load d: Load data descriptor
setw size1: Set word size to 1 byte
setw size2: Set word size to 2 bytes
setw size4: Set word size to 4 bytes
load c: Load context descriptor
load c next: Load next context descriptor
load c n: Load n:th context descriptor
load g: Load group descriptor
load g next: Load next group descriptor
load g up: Load upper group descriptor
load g down: Load lower group descriptor

storedescr=0
storemd=1
storec=2
storeg=4
array=8
next en=16
copy next=16
next pkt=16
dis c=16
dis g=32
copy up=32
savedown=32
saveup=32
updatedown=32
restore=32
burst=32
set reg=80
ack pkt=256
load d=320
setw size1=400
setw size2=416
setw size4=448
load c=512
load c next=576
load c n=640
load g=768
load g next=832
load g up=896
load g down=960

25.12. ETH 871

25.12 eth

Instance Base Address
eth0 0xb0034000

eth1 0xb0036000

25.12.1 rw ma0 lo

Address 0x0

Default 0x00000000

Type Read/Write

Description Bit 31 to 0 of station address MA0.

Bit(s) Name Description Value
31-0:32 addr Bit 31 to 0 of station address MA0.

872 CHAPTER 25. INTERNAL REGISTERS

25.12.2 rw ma0 hi

Address 0x4

Default 0x00000000

Type Read/Write

Description Bit 47 to 32 of station address MA0.

Bit(s) Name Description Value
15-0:16 addr Bit 47 to 32 of station address MA0.

25.12. ETH 873

25.12.3 rw ma1 lo

Address 0x8

Default 0x00000000

Type Read/Write

Description Bit 31 to 0 of station address MA1.

Bit(s) Name Description Value
31-0:32 addr Bit 31 to 0 of station address MA1.

874 CHAPTER 25. INTERNAL REGISTERS

25.12.4 rw ma1 hi

Address 0xc

Default 0x00000000

Type Read/Write

Description Bit 47 to 32 of station address MA1.

Bit(s) Name Description Value
15-0:16 addr Bit 47 to 32 of station address MA1.

25.12. ETH 875

25.12.5 rw ga lo

Address 0x10

Default 0x00000000

Type Read/Write

Description Bit 31 to 0 of the group address table.

Bit(s) Name Description Value
31-0:32 table Bit 31 to 0 of the group address table.

876 CHAPTER 25. INTERNAL REGISTERS

25.12.6 rw ga hi

Address 0x14

Default 0x00000000

Type Read/Write

Description Bit 63 to 32 of the group address table.

Bit(s) Name Description Value
31-0:32 table Bit 63 to 32 of the group address table.

25.12. ETH 877

25.12.7 rw gen ctrl

Address 0x18

Default 0x00000000

Type Read/Write

Description General control register for the Ethernet interface.

Bit(s) Name Description Value
5 flow ctrl This field turns flow control on or off.

no: Flow control disable
yes: Flow control enable

no=0
yes=1

4 loopback This field turns internal loop back mode on or off. In
loop back mode, the transmitted frames are directly
passed to the receiver and the MII interface is disabled.
no: Normal mode
yes: Internal loop back mode

no=0
yes=1

3 protocol Selects access protocol.
ether: Ethernet (CSMA/CD) access protocol
hsh: Handshake protocol

ether=0
hsh=1

2-1:2 phy Selects physical connection protocol.
mii clk: MII with 25 MHz clock output on phyclk pin
mii: MII interface
mii arec: MII with address recognized signal on phyclk
pin

mii clk=0
mii=1
mii arec=2

0 en General enable for the network interface.
no: Network interface disabled
yes: Network interface enabled

no=0
yes=1

878 CHAPTER 25. INTERNAL REGISTERS

25.12.8 rw rec ctrl

Address 0x1c

Default
Type Read/Write

Description Control register for the Ethernet receiver.

Bit(s) Name Description Value
8 max size This bit determines the maximum packet size for Eth-

ernet packets.
size1518: 1518 bytes maximum packet size
size1522: 1522 bytes maximum packet size

size1518=0
size1522=1

7 duplex Selects full or half duplex.
half: Half duplex
full: Full duplex

half=0
full=1

6 badcrc Receive or discard packets with crc or alignment errors.
discard: Discard frames with errors
rec: Receive all frames

discard=0
rec=1

5 oversize Receive or discard oversized packets.
discard: Discard oversized frames
rec: Receive all frames

discard=0
rec=1

4 undersize Receive or discard undersized packets.
discard: Discard undersized frames
rec: Receive all frames

discard=0
rec=1

3 broadcast Receive or discard broadcast frames (address
0xffffffffffff).
discard: Discard broadcast frames
rec: Receive all frames

discard=0
rec=1

2 individual Selects if the group address table will also match indi-
vidual addresses or not.
no: The group address table ony matches group ad-
dresses
yes: The group address table matches all addresses

no=0
yes=1

1 ma1 Use station address MA1
no: MA1 address disabled
yes: MA1 address enabled

no=0
yes=1

0 ma0 Use station address MA0
no: MA0 address disabled
yes: MA0 address enabled

no=0
yes=1

25.12. ETH 879

25.12.9 rw tr ctrl

Address 0x20

Default
Type Read/Write

Description Control register for the Ethernet transmitter.

Bit(s) Name Description Value
6 ignorecrs When set tonothe transmitter will reset the interframe gap

timer if crs is asserted during the first 64 bits of the in-
terframe gap. If set toyesthe transmitter will ignorecrs
while measuring the interframe gap, meaning that aftercrs
is deasserted the transmitter will wait for 96 bits and then
start to transmit.
no: Checkcrs in interframe gap
yes: Ignorecrs in interframe gap

no=0
yes=1

5 hshdelay Add 2µs delay after acknowledge in handshake access pro-
tocol mode. This mode bit has no effect in CSMA/CD
(Ethernet) access protocol mode.
no: No delay
yes: 2µs delay

no=0
yes=1

4 cancel This field cancels a pending frame. If set toyes, the trans-
mitter completes the current transmission attempt (if any),
and then stops. The excessive retry condition is then en-
tered, regardless of whether a transmission was in progress.
no: No action
yes: Cancel pending transmission attempts

no=0
yes=1

3 ignorecol Selects whether to use or ignore thecol signal. This field
only takes effect in half duplex Ethernet mode. It should
be set tono for normal operation.
no: Normal operation
yes: Collision detect ignored

no=0
yes=1

2 retry Enable or disable Ethernet transmission retries after a col-
lision. They should be enabled for normal Ethernet opera-
tion.
no: Transmission retries disabled
yes: Transmission retries enabled

no=0
yes=1

1 pad If this field is set toyes, a frame shorter than 60 bytes
(excluding preamble, start of frame delimiter and CRC) is
padded to 60 bytes. The pad consists of all 0’s.
no: Do not pad
yes: Pad short frames

no=0
yes=1

0 crc Selects whether to add CRC to the end of the transmitted
packets.
no: Do not add CRC
yes: Add CRC

no=0
yes=1

880 CHAPTER 25. INTERNAL REGISTERS

25.12.10 rw clr err

Address 0x24

Default
Type Read/Write

Description This register clears the excessive retry and underrun conditions. The register is tran-
sient. Its value reverts to 0 after action is taken.

Bit(s) Name Description Value
0 clr Clears the excessive retry and underrun conditions.

no: No action
yes: Clear error conditions

no=0
yes=1

25.12. ETH 881

25.12.11 rw mgm ctrl

Address 0x28

Default 0x00000000

Type Read/Write

Description This register controls the management port of the MII interface. It also controls the
values on the MII output pins when the network interface is disabled.

Bit(s) Name Description Value
8 txen This field is output on thetxen pin when the network controller

is disabled. When read, this field reflects the value set in the
register. To read the actual value on the pin, use ther statreg-
ister.

7-4:4 txdata This field is output ontxd3 - txd0 when the network controller
is disabled or in internal loopback mode. When read, this field
reflects the value set in the register. To read the actual values
on the pins, use ther statregister.

3 phyclk This field is output on thephyclk pin when the network con-
troller is disabled. When read, this field reflects the value set in
the register. To read the actual value on the pin, use ther stat
register.

2 mdc This field is output on themdc pin.

1 mdoe This field controls the ouput enable of themdio pin.
no: Output disabled
yes: Output enabled

no=0
yes=1

0 mdio This field is output on themdio pin. When read, this field re-
flects the value of the register. To read the actual value on the
pin, use ther statregister.

882 CHAPTER 25. INTERNAL REGISTERS

25.12.12 r stat

Address 0x2c

Default
Type Read

Description Network interface status.

Bit(s) Name Description Value
18 rxclk Value on therxclk pin.

17 rxdv Value on therxdv pin.

16 rxer Value on therxer pin.

15-12:4 rxdata Values on therxd3 - rxd0 pins.

11 txclk Value on thetxclk pin.

10 crs Value on thecrs pin.

9 col Value on thecol pin.

8 txen Value on thetxen pin.

7-4:4 txdata Values on thetxd3 - txd0 pins.

3 phyclk Value on thephyclk pin.

2 urun This bit is set if the transmitter is stopped due to a detected
underrun. The underrun condition is cleared by therw clr err
register.
no: No underrun
yes: Transmitter stopped due to underrun

no=0
yes=1

1 exc col This bit is set if the transmitter is stopped due to excessive
transmission retries. The excessive retry condition is cleared
by therw clr err register.
no: No excessive retries
yes: Transmitter stopped due to excessive retries

no=0
yes=1

0 mdio Value on themdio pin

25.12. ETH 883

25.12.13 rs rec cnt/r rec cnt

Address 0x30/0x34

Default
Type Read with side effects/Read

Description Receive error counters.

Bit(s) Name Description Value
31-24:8 congestion This field gives the number of otherwise correct frames

that were not received due to a receiver overrun condition.

23-16:8 oversize This field gives the number of oversized frames.

15-8:8 align err This field gives the number of frames with alignment er-
rors.

7-0:8 crc err This field gives the number of frames with CRC errors.

884 CHAPTER 25. INTERNAL REGISTERS

25.12.14 rs tr cnt/r tr cnt

Address 0x38/0x3c

Default
Type Read with side effects/Read

Description Transmit statistics counters.

Bit(s) Name Description Value
31-24:8 deferred This field gives the number of deferred transmit frames.

23-16:8 late col This field gives the number of frames that were involved in
late collisions.

15-8:8 mult col This field gives the number of frames that were involved in
more than one collision.

7-0:8 singlecol This field gives the number of frames that were involved in
exactly one collision.

25.12. ETH 885

25.12.15 rs phy cnt/r phy cnt

Address 0x40/0x44

Default
Type Read with side effects/Read

Description Physical layer error counters.

Bit(s) Name Description Value
15-8:8 sqeerr When the chip is configured for 10 Mb Ethernet, this

field gives the number of transmit frames for which the
sqe test signal was not recognized.

7-0:8 carrier loss This field gives the number of transmit frames for which
the carrier sense signal was not constantly present during
the transmission.

886 CHAPTER 25. INTERNAL REGISTERS

25.12.16 rw test ctrl

Address 0x48

Default 0x00000000

Type Read/Write

Description This register controls various internal test modes associated with the network interface.

Bit(s) Name Description Value
2 backoff Turn network transmitter backoff test mode on/off. When

enabling the backoff test mode, the backoff counter will be
decremented every txclk cycle. This will result in a shorter
backoff time. This mode should only be used during testing.
When configured for loopback mode this bit also enables the
col signal.
no: Backoff test off
yes: Backoff test on

no=0
yes=1

1 snmp Turn error and statistics counter test mode on/off. Makes it
possible to use thesnmpinc field described below to incre-
ment and test the error and statistics counters.
no: Normal mode
yes: Counter test mode on

no=0
yes=1

0 snmpinc Error and statistics counter test mode increment clock. In test
mode, a 0->1 transition makes all error and statistics coun-
ters count up by one.
no: Clock signal equal to 0
yes: Clock signal equal to 1

no=0
yes=1

25.12. ETH 887

25.12.17 rw intr mask

Address 0x4c

Default 0x00000000

Type Read/Write

Description Interrupt mask. Interrupts from the Ethernet interface. Specifies which interrupts are
enabled in this subsystem. Only enabled interrupts will propagate to the central inter-
rupt handler. In C code the relationship betweenrw intr mask, r intr andr maskedintr
can be expressed as:
r maskedintr = r intr & rw intr mask

Bit(s) Name Description Value
13 mdio Enable/disable mdio interrupt. Generated when the

mdio pin is low. This interrupt should be masked off
during normal transfers over the MDIO interface.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

12 exc col Enable/disable exccol interrupt. Generated when an ex-
cessive collision has occured.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

11 urun Enable/disable urun interrupt. Generated when transmit-
ter underrun has occured.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

10 orun Enable/disable orun interrupt. Generated when receiver
overrun has occured.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

9 sqetesterr Enable/disable sqetesterr interrupt. Interrupt generated
when the Ethernet SQE test error counter reaches 128.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

8 carrier loss Enable/disable carrierloss interrupt. Generated when
the Ethernet carrier loss counter reaches 128.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

7 deferred Enable/disable deferred interrupt. Generated when the
Ethernet deferred counter reaches 128.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

6 late col Enable/disable latecol interrupt. Generated when the
Ethernet late collision counter reaches 128.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

888 CHAPTER 25. INTERNAL REGISTERS

5 mult col Enable/disable multcol interrupt. Generated when the
Ethernet multiple collision counter reaches 128.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

4 singlecol Enable/disable singlecol interrupt. Generated when the
Ethernet single collision counter reaches 128.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

3 congestion Enable/disable congestion interrupt. Generated when
the Ethernet congestion counter reaches 128.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

2 oversize Enable/disable oversize interrupt. Generated when the
Ethernet oversize counter reaches 128.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

1 align Enable/disable align interrupt. Generated when the Eth-
ernet alignment error counter reaches 128.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

0 crc Enable/disable crc interrupt. Generated when the Ether-
net CRC error counter reaches 128.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

25.12. ETH 889

25.12.18 rw ack intr

Address 0x50

Default
Type Read/Write

Description Acknowledge interrupts. Interrupts from the Ethernet interface.

Bit(s) Name Description Value
13 mdio Acknowledge mdio interrupt.

yes: Acknowledge interrupt
no: No operation

yes=1
no=0

12 exc col Acknowledge exccol interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

11 urun Acknowledge urun interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

10 orun Acknowledge orun interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

9 sqetesterr Acknowledge sqetesterr interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

8 carrier loss Acknowledge carrierloss interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

7 deferred Acknowledge deferred interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

6 late col Acknowledge latecol interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

5 mult col Acknowledge multcol interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

4 singlecol Acknowledge singlecol interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

3 congestion Acknowledge congestion interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

2 oversize Acknowledge oversize interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

890 CHAPTER 25. INTERNAL REGISTERS

1 align Acknowledge align interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

0 crc Acknowledge crc interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

25.12. ETH 891

25.12.19 r intr

Address 0x54

Default
Type Read

Description Interrupts before the mask. Interrupts from the Ethernet interface. Makes it pos-
sible to determine if an interrupt is active even though it is not enabled in the
mask (rw intr mask). In C code the relationship betweenrw intr mask, r intr and
r maskedintr can be expressed as:
r maskedintr = r intr & rw intr mask

Bit(s) Name Description Value
13 mdio Interrupt mdio active.

yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

12 exc col Interrupt exccol active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

11 urun Interrupt urun active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

10 orun Interrupt orun active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

9 sqetesterr Interrupt sqetesterr active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

8 carrier loss Interrupt carrierloss active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

7 deferred Interrupt deferred active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

6 late col Interrupt latecol active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

5 mult col Interrupt multcol active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

4 singlecol Interrupt singlecol active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

892 CHAPTER 25. INTERNAL REGISTERS

3 congestion Interrupt congestion active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

2 oversize Interrupt oversize active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1 align Interrupt align active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

0 crc Interrupt crc active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

25.12. ETH 893

25.12.20 r masked intr

Address 0x58

Default
Type Read

Description Interrupts after the mask. Interrupts from the Ethernet interface. Tells which inter-
rupts are active and enabled (inrw intr mask). In C code the relationship between
rw intr mask, r intr andr maskedintr can be expressed as:
r maskedintr = r intr & rw intr mask

Bit(s) Name Description Value
13 mdio Interrupt mdio active and enabled.

yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

12 exc col Interrupt exccol active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

11 urun Interrupt urun active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

10 orun Interrupt orun active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

9 sqetesterr Interrupt sqetesterr active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

8 carrier loss Interrupt carrierloss active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

7 deferred Interrupt deferred active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

6 late col Interrupt latecol active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

5 mult col Interrupt multcol active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

4 singlecol Interrupt singlecol active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

3 congestion Interrupt congestion active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

894 CHAPTER 25. INTERNAL REGISTERS

2 oversize Interrupt oversize active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1 align Interrupt align active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

0 crc Interrupt crc active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

25.13. GIO 895

25.13 gio

Instance Base Address
gio 0xb001a000

25.13.1 rw pa dout

Address 0x0

Default
Type Read/Write

Description General portpa data out. When read, it only reads back the register values. To read the
actual port data, user pa din.

Bit(s) Name Description Value
7-0:8 data Data out.

896 CHAPTER 25. INTERNAL REGISTERS

25.13.2 r pa din

Address 0x4

Default
Type Read

Description General portpa data in.

Bit(s) Name Description Value
7-0:8 data Data in.

25.13. GIO 897

25.13.3 rw pa oe

Address 0x8

Default 0x00000000

Type Read/Write

Description General portpa output enable.

Bit(s) Name Description Value
7-0:8 oe Output enables.

898 CHAPTER 25. INTERNAL REGISTERS

25.13.4 rw intr cfg

Address 0xc

Default 0x00000000

Type Read/Write

Description Configuration register for the interrupts on portpa.

Bit(s) Name Description Value
23-21:3 pa7 configuration for interrupt onpa7.

off: Interrupt turned off
hi: Level triggered active high
lo: Level triggered active low
set: Interrupt always set
posedge: Positive edge triggered
negedge: Negative edge triggered
anyedge: Triggered on both edges

off=0
hi=1
lo=2
set=3
posedge=5
negedge=6
anyedge=7

20-18:3 pa6 configuration for interrupt onpa6.
off: Interrupt turned off
hi: Level triggered active high
lo: Level triggered active low
set: Interrupt always set
posedge: Positive edge triggered
negedge: Negative edge triggered
anyedge: Triggered on both edges

off=0
hi=1
lo=2
set=3
posedge=5
negedge=6
anyedge=7

17-15:3 pa5 configuration for interrupt onpa5.
off: Interrupt turned off
hi: Level triggered active high
lo: Level triggered active low
set: Interrupt always set
posedge: Positive edge triggered
negedge: Negative edge triggered
anyedge: Triggered on both edges

off=0
hi=1
lo=2
set=3
posedge=5
negedge=6
anyedge=7

14-12:3 pa4 configuration for interrupt onpa4.
off: Interrupt turned off
hi: Level triggered active high
lo: Level triggered active low
set: Interrupt always set
posedge: Positive edge triggered
negedge: Negative edge triggered
anyedge: Triggered on both edges

off=0
hi=1
lo=2
set=3
posedge=5
negedge=6
anyedge=7

25.13. GIO 899

11-9:3 pa3 configuration for interrupt onpa3.
off: Interrupt turned off
hi: Level triggered active high
lo: Level triggered active low
set: Interrupt always set
posedge: Positive edge triggered
negedge: Negative edge triggered
anyedge: Triggered on both edges

off=0
hi=1
lo=2
set=3
posedge=5
negedge=6
anyedge=7

8-6:3 pa2 configuration for interrupt onpa2.
off: Interrupt turned off
hi: Level triggered active high
lo: Level triggered active low
set: Interrupt always set
posedge: Positive edge triggered
negedge: Negative edge triggered
anyedge: Triggered on both edges

off=0
hi=1
lo=2
set=3
posedge=5
negedge=6
anyedge=7

5-3:3 pa1 configuration for interrupt onpa1.
off: Interrupt turned off
hi: Level triggered active high
lo: Level triggered active low
set: Interrupt always set
posedge: Positive edge triggered
negedge: Negative edge triggered
anyedge: Triggered on both edges

off=0
hi=1
lo=2
set=3
posedge=5
negedge=6
anyedge=7

2-0:3 pa0 configuration for interrupt onpa0.
off: Interrupt turned off
hi: Level triggered active high
lo: Level triggered active low
set: Interrupt always set
posedge: Positive edge triggered
negedge: Negative edge triggered
anyedge: Triggered on both edges

off=0
hi=1
lo=2
set=3
posedge=5
negedge=6
anyedge=7

900 CHAPTER 25. INTERNAL REGISTERS

25.13.5 rw intr mask

Address 0x10

Default 0x00000000

Type Read/Write

Description Interrupt mask. Interrupts from portpa. Specifies which interrupts are enabled in this
subsystem. Only enabled interrupts will propagate to the central interrupt handler. In C
code the relationship betweenrw intr mask, r intr andr maskedintr can be expressed
as:
r maskedintr = r intr & rw intr mask

Bit(s) Name Description Value
7 pa7 Enable/disable pa7 interrupt.

yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

6 pa6 Enable/disable pa6 interrupt.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

5 pa5 Enable/disable pa5 interrupt.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

4 pa4 Enable/disable pa4 interrupt.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

3 pa3 Enable/disable pa3 interrupt.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

2 pa2 Enable/disable pa2 interrupt.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

1 pa1 Enable/disable pa1 interrupt.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

0 pa0 Enable/disable pa0 interrupt.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

25.13. GIO 901

25.13.6 rw ack intr

Address 0x14

Default
Type Read/Write

Description Acknowledge interrupts. Interrupts from portpa.

Bit(s) Name Description Value
7 pa7 Acknowledge pa7 interrupt.

yes: Acknowledge interrupt
no: No operation

yes=1
no=0

6 pa6 Acknowledge pa6 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

5 pa5 Acknowledge pa5 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

4 pa4 Acknowledge pa4 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

3 pa3 Acknowledge pa3 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

2 pa2 Acknowledge pa2 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

1 pa1 Acknowledge pa1 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

0 pa0 Acknowledge pa0 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

902 CHAPTER 25. INTERNAL REGISTERS

25.13.7 r intr

Address 0x18

Default
Type Read

Description Interrupts before the mask. Interrupts from portpa. Makes it possible to determine if
an interrupt is active even though it is not enabled in the mask (rw intr mask). In C
code the relationship betweenrw intr mask, r intr andr maskedintr can be expressed
as:
r maskedintr = r intr & rw intr mask

Bit(s) Name Description Value
7 pa7 Interrupt pa7 active.

yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

6 pa6 Interrupt pa6 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

5 pa5 Interrupt pa5 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

4 pa4 Interrupt pa4 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

3 pa3 Interrupt pa3 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

2 pa2 Interrupt pa2 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1 pa1 Interrupt pa1 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

0 pa0 Interrupt pa0 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

25.13. GIO 903

25.13.8 r masked intr

Address 0x1c

Default
Type Read

Description Interrupts after the mask. Interrupts from portpa. Tells which interrupts are active and
enabled (inrw intr mask). In C code the relationship betweenrw intr mask, r intr and
r maskedintr can be expressed as:
r maskedintr = r intr & rw intr mask

Bit(s) Name Description Value
7 pa7 Interrupt pa7 active and enabled.

yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

6 pa6 Interrupt pa6 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

5 pa5 Interrupt pa5 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

4 pa4 Interrupt pa4 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

3 pa3 Interrupt pa3 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

2 pa2 Interrupt pa2 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1 pa1 Interrupt pa1 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

0 pa0 Interrupt pa0 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

904 CHAPTER 25. INTERNAL REGISTERS

25.13.9 rw pb dout

Address 0x20

Default
Type Read/Write

Description General portpb data out. When read, it only reads back the register values. To read the
actual port data, user pb din.

Bit(s) Name Description Value
17-0:18 data Data out.

25.13. GIO 905

25.13.10 r pb din

Address 0x24

Default
Type Read

Description General portpb data in.

Bit(s) Name Description Value
17-0:18 data Data in.

906 CHAPTER 25. INTERNAL REGISTERS

25.13.11 rw pb oe

Address 0x28

Default 0x00000000

Type Read/Write

Description General portpb output enable.

Bit(s) Name Description Value
17-0:18 oe Output enables.

25.13. GIO 907

25.13.12 rw pc dout

Address 0x30

Default
Type Read/Write

Description General portpc data out. When read, it only reads back the register values. To read the
actual port data, user pc din.

Bit(s) Name Description Value
17-0:18 data Data out.

908 CHAPTER 25. INTERNAL REGISTERS

25.13.13 r pc din

Address 0x34

Default
Type Read

Description General portpc data in.

Bit(s) Name Description Value
17-0:18 data Data in.

25.13. GIO 909

25.13.14 rw pc oe

Address 0x38

Default 0x00000000

Type Read/Write

Description General portpc output enable.

Bit(s) Name Description Value
17-0:18 oe Output enables.

910 CHAPTER 25. INTERNAL REGISTERS

25.13.15 rw pd dout

Address 0x40

Default
Type Read/Write

Description General portpd data out. When read, it only reads back the register values. To read the
actual port data, user pd din.

Bit(s) Name Description Value
17-0:18 data Data out.

25.13. GIO 911

25.13.16 r pd din

Address 0x44

Default
Type Read

Description General portpd data in.

Bit(s) Name Description Value
17-0:18 data Data in.

912 CHAPTER 25. INTERNAL REGISTERS

25.13.17 rw pd oe

Address 0x48

Default 0x00000000

Type Read/Write

Description General portpd output enable.

Bit(s) Name Description Value
17-0:18 oe Output enables.

25.13. GIO 913

25.13.18 rw pe dout

Address 0x50

Default
Type Read/Write

Description General portpedata out. When read, it only reads back the register values. To read the
actual port data, user pe din.

Bit(s) Name Description Value
17-0:18 data Data out.

914 CHAPTER 25. INTERNAL REGISTERS

25.13.19 r pe din

Address 0x54

Default
Type Read

Description General portpedata in.

Bit(s) Name Description Value
17-0:18 data Data in.

25.13. GIO 915

25.13.20 rw pe oe

Address 0x58

Default 0x00000000

Type Read/Write

Description General portpeoutput enable.

Bit(s) Name Description Value
17-0:18 oe Output enables.

916 CHAPTER 25. INTERNAL REGISTERS

25.14 intr vect

Instance Base Address
irq 0xb001c000

25.14.1 rw mask

Address 0x0

Default 0x00000000

Type Read/Write

Description Interrupt vector mask. Enables or disables all interrupts from a particular source.

Bit(s) Name Description Value
29 ext Enable/disable External IRQ pin interrupts. Vector number

0x4e.
yes: Enable interrupts
no: Disable interrupts

yes=1
no=0

28 bif dma Enable/disable Bus interface DMA interrupts. Vector number
0x4d.
yes: Enable interrupts
no: Disable interrupts

yes=1
no=0

27 bif arb Enable/disable Bus interface arbiter interrupts. Vector number
0x4c.
yes: Enable interrupts
no: Disable interrupts

yes=1
no=0

26 timer Enable/disable Timers interrupts. Vector number 0x4b.
yes: Enable interrupts
no: Disable interrupts

yes=1
no=0

25 eth1 Enable/disable Ethernet port 1 interrupts. Vector number
0x4a.
yes: Enable interrupts
no: Disable interrupts

yes=1
no=0

24 eth0 Enable/disable Ethernet port 0 interrupts. Vector number
0x49.
yes: Enable interrupts
no: Disable interrupts

yes=1
no=0

22 ser3 Enable/disable Serial port 3 interrupts. Vector number 0x47.
yes: Enable interrupts
no: Disable interrupts

yes=1
no=0

21 ser2 Enable/disable Serial port 2 interrupts. Vector number 0x46.
yes: Enable interrupts
no: Disable interrupts

yes=1
no=0

25.14. INTR VECT 917

20 ser1 Enable/disable Serial port 1 interrupts. Vector number 0x45.
yes: Enable interrupts
no: Disable interrupts

yes=1
no=0

19 ser0 Enable/disable Serial port 0 interrupts. Vector number 0x44.
yes: Enable interrupts
no: Disable interrupts

yes=1
no=0

18 sser1 Enable/disable Synchronous serial port 1 interrupts. Vector
number 0x43.
yes: Enable interrupts
no: Disable interrupts

yes=1
no=0

17 sser0 Enable/disable Synchronous serial port 0 interrupts. Vector
number 0x42.
yes: Enable interrupts
no: Disable interrupts

yes=1
no=0

16 ata Enable/disable ATA interface interrupts. Vector number 0x41.
yes: Enable interrupts
no: Disable interrupts

yes=1
no=0

15 dma9 Enable/disable dma channel 9 interrupts. Vector number 0x40.
yes: Enable interrupts
no: Disable interrupts

yes=1
no=0

14 dma8 Enable/disable dma channel 8 interrupts. Vector number 0x3f.
yes: Enable interrupts
no: Disable interrupts

yes=1
no=0

13 dma7 Enable/disable dma channel 7 interrupts. Vector number 0x3e.
yes: Enable interrupts
no: Disable interrupts

yes=1
no=0

12 dma6 Enable/disable dma channel 6 interrupts. Vector number 0x3d.
yes: Enable interrupts
no: Disable interrupts

yes=1
no=0

11 dma5 Enable/disable dma channel 5 interrupts. Vector number 0x3c.
yes: Enable interrupts
no: Disable interrupts

yes=1
no=0

10 dma4 Enable/disable dma channel 4 interrupts. Vector number 0x3b.
yes: Enable interrupts
no: Disable interrupts

yes=1
no=0

9 dma3 Enable/disable dma channel 3 interrupts. Vector number 0x3a.
yes: Enable interrupts
no: Disable interrupts

yes=1
no=0

8 dma2 Enable/disable dma channel 2 interrupts. Vector number 0x39.
yes: Enable interrupts
no: Disable interrupts

yes=1
no=0

7 dma1 Enable/disable dma channel 1 interrupts. Vector number 0x38.
yes: Enable interrupts
no: Disable interrupts

yes=1
no=0

918 CHAPTER 25. INTERNAL REGISTERS

6 dma0 Enable/disable dma channel 0 interrupts. Vector number 0x37.
yes: Enable interrupts
no: Disable interrupts

yes=1
no=0

5 iop3 Enable/disable I/O processor port 3 interrupts. Vector number
0x36.
yes: Enable interrupts
no: Disable interrupts

yes=1
no=0

4 iop2 Enable/disable I/O processor port 2 interrupts. Vector number
0x35.
yes: Enable interrupts
no: Disable interrupts

yes=1
no=0

3 iop1 Enable/disable I/O processor port 1 interrupts. Vector number
0x34.
yes: Enable interrupts
no: Disable interrupts

yes=1
no=0

2 iop0 Enable/disable I/O processor port 0 interrupts. Vector number
0x33.
yes: Enable interrupts
no: Disable interrupts

yes=1
no=0

1 gen io Enable/disable general I/O interrupts. Vector number 0x32.
yes: Enable interrupts
no: Disable interrupts

yes=1
no=0

0 memarb Enable/disable memory arbiter breakpoints interrupts. Vector
number 0x31.
yes: Enable interrupts
no: Disable interrupts

yes=1
no=0

25.14. INTR VECT 919

25.14.2 r vect

Address 0x4

Default
Type Read

Description Unmasked vectors. Interrupt status before the vector mask. May be used to tell if there
are active interrupts for a particular vector even if it that vector is masked.

Bit(s) Name Description Value
29 ext Set if there are active External IRQ pin interrupts before vector

mask. Vector number 0x4e.
yes: Active interrupts
no: No active interrupts

yes=1
no=0

28 bif dma Set if there are active Bus interface DMA interrupts before
vector mask. Vector number 0x4d.
yes: Active interrupts
no: No active interrupts

yes=1
no=0

27 bif arb Set if there are active Bus interface arbiter interrupts before
vector mask. Vector number 0x4c.
yes: Active interrupts
no: No active interrupts

yes=1
no=0

26 timer Set if there are active Timers interrupts before vector mask.
Vector number 0x4b.
yes: Active interrupts
no: No active interrupts

yes=1
no=0

25 eth1 Set if there are active Ethernet port 1 interrupts before vector
mask. Vector number 0x4a.
yes: Active interrupts
no: No active interrupts

yes=1
no=0

24 eth0 Set if there are active Ethernet port 0 interrupts before vector
mask. Vector number 0x49.
yes: Active interrupts
no: No active interrupts

yes=1
no=0

22 ser3 Set if there are active Serial port 3 interrupts before vector
mask. Vector number 0x47.
yes: Active interrupts
no: No active interrupts

yes=1
no=0

21 ser2 Set if there are active Serial port 2 interrupts before vector
mask. Vector number 0x46.
yes: Active interrupts
no: No active interrupts

yes=1
no=0

20 ser1 Set if there are active Serial port 1 interrupts before vector
mask. Vector number 0x45.
yes: Active interrupts
no: No active interrupts

yes=1
no=0

920 CHAPTER 25. INTERNAL REGISTERS

19 ser0 Set if there are active Serial port 0 interrupts before vector
mask. Vector number 0x44.
yes: Active interrupts
no: No active interrupts

yes=1
no=0

18 sser1 Set if there are active Synchronous serial port 1 interrupts be-
fore vector mask. Vector number 0x43.
yes: Active interrupts
no: No active interrupts

yes=1
no=0

17 sser0 Set if there are active Synchronous serial port 0 interrupts be-
fore vector mask. Vector number 0x42.
yes: Active interrupts
no: No active interrupts

yes=1
no=0

16 ata Set if there are active ATA interface interrupts before vector
mask. Vector number 0x41.
yes: Active interrupts
no: No active interrupts

yes=1
no=0

15 dma9 Set if there are active dma channel 9 interrupts before vector
mask. Vector number 0x40.
yes: Active interrupts
no: No active interrupts

yes=1
no=0

14 dma8 Set if there are active dma channel 8 interrupts before vector
mask. Vector number 0x3f.
yes: Active interrupts
no: No active interrupts

yes=1
no=0

13 dma7 Set if there are active dma channel 7 interrupts before vector
mask. Vector number 0x3e.
yes: Active interrupts
no: No active interrupts

yes=1
no=0

12 dma6 Set if there are active dma channel 6 interrupts before vector
mask. Vector number 0x3d.
yes: Active interrupts
no: No active interrupts

yes=1
no=0

11 dma5 Set if there are active dma channel 5 interrupts before vector
mask. Vector number 0x3c.
yes: Active interrupts
no: No active interrupts

yes=1
no=0

10 dma4 Set if there are active dma channel 4 interrupts before vector
mask. Vector number 0x3b.
yes: Active interrupts
no: No active interrupts

yes=1
no=0

9 dma3 Set if there are active dma channel 3 interrupts before vector
mask. Vector number 0x3a.
yes: Active interrupts
no: No active interrupts

yes=1
no=0

25.14. INTR VECT 921

8 dma2 Set if there are active dma channel 2 interrupts before vector
mask. Vector number 0x39.
yes: Active interrupts
no: No active interrupts

yes=1
no=0

7 dma1 Set if there are active dma channel 1 interrupts before vector
mask. Vector number 0x38.
yes: Active interrupts
no: No active interrupts

yes=1
no=0

6 dma0 Set if there are active dma channel 0 interrupts before vector
mask. Vector number 0x37.
yes: Active interrupts
no: No active interrupts

yes=1
no=0

5 iop3 Set if there are active I/O processor port 3 interrupts before
vector mask. Vector number 0x36.
yes: Active interrupts
no: No active interrupts

yes=1
no=0

4 iop2 Set if there are active I/O processor port 2 interrupts before
vector mask. Vector number 0x35.
yes: Active interrupts
no: No active interrupts

yes=1
no=0

3 iop1 Set if there are active I/O processor port 1 interrupts before
vector mask. Vector number 0x34.
yes: Active interrupts
no: No active interrupts

yes=1
no=0

2 iop0 Set if there are active I/O processor port 0 interrupts before
vector mask. Vector number 0x33.
yes: Active interrupts
no: No active interrupts

yes=1
no=0

1 gen io Set if there are active general I/O interrupts before vector
mask. Vector number 0x32.
yes: Active interrupts
no: No active interrupts

yes=1
no=0

0 memarb Set if there are active memory arbiter breakpoints interrupts
before vector mask. Vector number 0x31.
yes: Active interrupts
no: No active interrupts

yes=1
no=0

922 CHAPTER 25. INTERNAL REGISTERS

25.14.3 r masked vect

Address 0x8

Default
Type Read

Description Masked vectors. Interrupt status after the vector mask. If more than one vector is active
and unmasked at the same time, this register may be used to tell which these vectors
are. The value of this register can be expressed as:
r maskedvect = r vect & rw mask;

Bit(s) Name Description Value
29 ext Set if there are active External IRQ pin interrupts after vector

mask. Vector number 0x4e.
yes: Active interrupts
no: No active interrupts

yes=1
no=0

28 bif dma Set if there are active Bus interface DMA interrupts after vec-
tor mask. Vector number 0x4d.
yes: Active interrupts
no: No active interrupts

yes=1
no=0

27 bif arb Set if there are active Bus interface arbiter interrupts after vec-
tor mask. Vector number 0x4c.
yes: Active interrupts
no: No active interrupts

yes=1
no=0

26 timer Set if there are active Timers interrupts after vector mask. Vec-
tor number 0x4b.
yes: Active interrupts
no: No active interrupts

yes=1
no=0

25 eth1 Set if there are active Ethernet port 1 interrupts after vector
mask. Vector number 0x4a.
yes: Active interrupts
no: No active interrupts

yes=1
no=0

24 eth0 Set if there are active Ethernet port 0 interrupts after vector
mask. Vector number 0x49.
yes: Active interrupts
no: No active interrupts

yes=1
no=0

22 ser3 Set if there are active Serial port 3 interrupts after vector mask.
Vector number 0x47.
yes: Active interrupts
no: No active interrupts

yes=1
no=0

21 ser2 Set if there are active Serial port 2 interrupts after vector mask.
Vector number 0x46.
yes: Active interrupts
no: No active interrupts

yes=1
no=0

25.14. INTR VECT 923

20 ser1 Set if there are active Serial port 1 interrupts after vector mask.
Vector number 0x45.
yes: Active interrupts
no: No active interrupts

yes=1
no=0

19 ser0 Set if there are active Serial port 0 interrupts after vector mask.
Vector number 0x44.
yes: Active interrupts
no: No active interrupts

yes=1
no=0

18 sser1 Set if there are active Synchronous serial port 1 interrupts after
vector mask. Vector number 0x43.
yes: Active interrupts
no: No active interrupts

yes=1
no=0

17 sser0 Set if there are active Synchronous serial port 0 interrupts after
vector mask. Vector number 0x42.
yes: Active interrupts
no: No active interrupts

yes=1
no=0

16 ata Set if there are active ATA interface interrupts after vector
mask. Vector number 0x41.
yes: Active interrupts
no: No active interrupts

yes=1
no=0

15 dma9 Set if there are active dma channel 9 interrupts after vector
mask. Vector number 0x40.
yes: Active interrupts
no: No active interrupts

yes=1
no=0

14 dma8 Set if there are active dma channel 8 interrupts after vector
mask. Vector number 0x3f.
yes: Active interrupts
no: No active interrupts

yes=1
no=0

13 dma7 Set if there are active dma channel 7 interrupts after vector
mask. Vector number 0x3e.
yes: Active interrupts
no: No active interrupts

yes=1
no=0

12 dma6 Set if there are active dma channel 6 interrupts after vector
mask. Vector number 0x3d.
yes: Active interrupts
no: No active interrupts

yes=1
no=0

11 dma5 Set if there are active dma channel 5 interrupts after vector
mask. Vector number 0x3c.
yes: Active interrupts
no: No active interrupts

yes=1
no=0

10 dma4 Set if there are active dma channel 4 interrupts after vector
mask. Vector number 0x3b.
yes: Active interrupts
no: No active interrupts

yes=1
no=0

924 CHAPTER 25. INTERNAL REGISTERS

9 dma3 Set if there are active dma channel 3 interrupts after vector
mask. Vector number 0x3a.
yes: Active interrupts
no: No active interrupts

yes=1
no=0

8 dma2 Set if there are active dma channel 2 interrupts after vector
mask. Vector number 0x39.
yes: Active interrupts
no: No active interrupts

yes=1
no=0

7 dma1 Set if there are active dma channel 1 interrupts after vector
mask. Vector number 0x38.
yes: Active interrupts
no: No active interrupts

yes=1
no=0

6 dma0 Set if there are active dma channel 0 interrupts after vector
mask. Vector number 0x37.
yes: Active interrupts
no: No active interrupts

yes=1
no=0

5 iop3 Set if there are active I/O processor port 3 interrupts after vec-
tor mask. Vector number 0x36.
yes: Active interrupts
no: No active interrupts

yes=1
no=0

4 iop2 Set if there are active I/O processor port 2 interrupts after vec-
tor mask. Vector number 0x35.
yes: Active interrupts
no: No active interrupts

yes=1
no=0

3 iop1 Set if there are active I/O processor port 1 interrupts after vec-
tor mask. Vector number 0x34.
yes: Active interrupts
no: No active interrupts

yes=1
no=0

2 iop0 Set if there are active I/O processor port 0 interrupts after vec-
tor mask. Vector number 0x33.
yes: Active interrupts
no: No active interrupts

yes=1
no=0

1 gen io Set if there are active general I/O interrupts after vector mask.
Vector number 0x32.
yes: Active interrupts
no: No active interrupts

yes=1
no=0

0 memarb Set if there are active memory arbiter breakpoints interrupts
after vector mask. Vector number 0x31.
yes: Active interrupts
no: No active interrupts

yes=1
no=0

25.14. INTR VECT 925

25.14.4 r nmi

Address 0xc

Default
Type Read

Description Active non maskable interrupt (NMI) sources.

Bit(s) Name Description Value
1 watchdog Set if NMI from Watchdog timer is active.

yes: active
no: not active

yes=1
no=0

0 ext Set if NMI from External NMI pin is active.
yes: active
no: not active

yes=1
no=0

926 CHAPTER 25. INTERNAL REGISTERS

25.14.5 r guru

Address 0x10

Default
Type Read

Description Active guru mode exception sources.

Bit(s) Name Description Value
0 jtag Set if guru mode exception signal from JTAG debug interface is

active.
yes: active
no: not active

yes=1
no=0

25.15. IOP CRC PAR 927

25.15 iop crc par

Instance Base Address
iop crc par0 0xb0020380

iop crc par1 0xb0020400

25.15.1 rw cfg

Address 0x0

Default 0x00000000

Type Read/Write

Description Configures the parallel CRC.

Bit(s) Name Description Value
8-6:3 poly Select the CRC generator polynomial. Polynomials:

crc32 p(x)=x 32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 +
x8 + x7 + x5 + x4 + x2 + x + 1

crc16 p(x)=x 16 + x15 + x2 + 1

ccitt p(x)=x 16 + x12 + x5 + 1

crc5 p(x)=x 5 + x2 + 1

crc5 11 differs from the others. It can only be used for cal-
culating CRC when data is received fromrw wr2byte last.
Only the 11 least significant bits ofrw wr2byte lastare then
used, all other bits of the register are ignored. CRC-5 is used
by the Universal Serial Bus (USB) protocol. The data rate
of USB 2.0 is too high for the I/O Processor to be handled
serially. The serial data must therefore be transformed to
8-bit or 16-bit wide data words by an external circuit if the
I/O Processor shall handle USB 2.0.
crc32: CRC-32
crc16: CRC-16
ccitt: CRC-CCITT
crc5: CRC-5
crc5 11: CRC-5 (11-bit data width)

crc32=0
crc16=1
ccitt=2
crc5=3
crc5 11=4

5-4:2 trig Select if the strobe for incoming data on the receiving data
interface, should be triggered when it is high or on positive
or negative edge.
hi: High strobe
pos: Positive edge of strobe
neg: Negative edge of strobe
posneg: Both positive and negative edge of strobe

hi=0
pos=1
neg=2
posneg=3

928 CHAPTER 25. INTERNAL REGISTERS

3 inv out Select if the calculated CRC bits shall be inverted or not.
no: CRC bits are not inverted
yes: CRC bits are inverted

no=0
yes=1

2 rev out Select if the bit order of the CRC output shall be reversed or
not.
no: The bits are not reversed
yes: The bits are reversed

no=0
yes=1

1 crc out Select if the calculated CRC should be sent after the trans-
mitted data.crc out is only used whenmodeequalscalc.
no: The CRC is never sent
yes: The CRC is sent after the last data word

no=0
yes=1

0 mode Configure the parallel CRC to either check the received
CRC or calculate CRC for the transmitted data.
check: Check received CRC
calc: Calculate CRC

check=0
calc=1

25.15. IOP CRC PAR 929

25.15.2 rw init crc

Address 0x4

Default
Type Read/Write

Description Initial shift register value of the parallel CRC.

930 CHAPTER 25. INTERNAL REGISTERS

25.15.3 rw correct crc

Address 0x8

Default
Type Read/Write

Description Set the correct CRC value. If the CRC is correct,r sh reg shall have the value of
rw correctcrc, after the data stream (including the CRC) has been received, otherwise
it is a CRC error.

25.15. IOP CRC PAR 931

25.15.4 rw ctrl

Address 0xc

Default 0x00000000

Type Read/Write

Description Control register for the parallel CRC.

Bit(s) Name Description Value
0 en Enable or disable the CRC module. When disabled, the data will

pass the parallel CRC module unchanged.
no: Parallel CRC disabled
yes: Parallel CRC enabled

no=0
yes=1

932 CHAPTER 25. INTERNAL REGISTERS

25.15.5 rw set last

Address 0x10

Default
Type Read/Write

Description Write a zero-sized word to the parallel CRC. The word is marked as the last word of
the packet.

Bit(s) Name Description Value
0 tr dif Set last on the transmitting data interface.

no: No action
yes: Send zero-byte data, marked with last

no=0
yes=1

25.15. IOP CRC PAR 933

25.15.6 rw wr1byte

Address 0x14

Default
Type Read/Write

Description Write one byte of data to the CRC.

Bit(s) Name Description Value
7-0:8 data 8-bit data to write to the CRC.

934 CHAPTER 25. INTERNAL REGISTERS

25.15.7 rw wr2byte

Address 0x18

Default
Type Read/Write

Description Write two bytes of data to the CRC.

Bit(s) Name Description Value
15-0:16 data 16-bit data to write to the CRC.

25.15. IOP CRC PAR 935

25.15.8 rw wr3byte

Address 0x1c

Default
Type Read/Write

Description Write three bytes of data to the CRC.

Bit(s) Name Description Value
23-0:24 data 24-bit data to write to the CRC.

936 CHAPTER 25. INTERNAL REGISTERS

25.15.9 rw wr4byte

Address 0x20

Default
Type Read/Write

Description Write four bytes of data to the CRC.

Bit(s) Name Description Value
31-0:32 data 32-bit data to write to the CRC.

25.15. IOP CRC PAR 937

25.15.10 rw wr1byte last

Address 0x24

Default
Type Read/Write

Description Write one byte of data to the crc and mark the data as the last of the data stream.

Bit(s) Name Description Value
7-0:8 data 8-bit data to write to the parallel to serial converter.

938 CHAPTER 25. INTERNAL REGISTERS

25.15.11 rw wr2byte last

Address 0x28

Default
Type Read/Write

Description Write two bytes of data to the crc and mark the data as the last of the data stream.

Bit(s) Name Description Value
15-0:16 data 16-bit data to write to the parallel to serial converter.

25.15. IOP CRC PAR 939

25.15.12 rw wr3byte last

Address 0x2c

Default
Type Read/Write

Description Write three bytes of data to the crc and mark the data as the last of the data stream.

Bit(s) Name Description Value
23-0:24 data 24-bit data to write to the parallel to serial converter.

940 CHAPTER 25. INTERNAL REGISTERS

25.15.13 rw wr4byte last

Address 0x30

Default
Type Read/Write

Description Write four bytes of data to the crc and mark the data as the last of the data stream.

Bit(s) Name Description Value
31-0:32 data 32-bit data to write to the parallel to serial converter.

25.15. IOP CRC PAR 941

25.15.14 r stat

Address 0x34

Default
Type Read

Description Status register for the parallel CRC.

Bit(s) Name Description Value
1 busy Shows if it is possible to send more data to the parallel CRC block.

no: Data can be received
yes: Data can not be received

no=0
yes=1

0 err Check ifr sh regequalsrw correctcrcor not.
no: CRC is correct
yes: CRC error

no=0
yes=1

942 CHAPTER 25. INTERNAL REGISTERS

25.15.15 r sh reg

Address 0x38

Default
Type Read

Description The current value of the CRC shift register.

25.15. IOP CRC PAR 943

25.15.16 r crc

Address 0x3c

Default
Type Read

Description The current value of the CRC. I.e. the value ofr sh regwhere the bits are inverted or
the bit order reversed depending on the value ofinv outandrev out.

944 CHAPTER 25. INTERNAL REGISTERS

25.15.17 rw strb rec dif in

Address 0x40

Default
Type Read/Write

Description The current incoming data on the received data interface will be read by the parallel
CRC when writing torw strb rec dif in.

Bit(s) Name Description Value
1-0:2 last The data can be marked as the last word of the data stream de-

pending on the value oflast and the value of signal last on the
data interface.
no: No last is set
yes: Last is set
dif in: Last is sampled from difin last signal

no=0
yes=1
dif in=2

25.16. IOP DMC IN 945

25.16 iop dmc in

Instance Base Address
iop dmc in0 0xb0020480

iop dmc in1 0xb0020500

25.16.1 rw cfg

Address 0x0

Default 0x00000000

Type Read/Write

Description Configuration register for the DMA Communicator.

Bit(s) Name Description Value
3 last dis dif Select if the DMA Communicator shall not request more

data bytes from the data interface when data, which is
the last of the data stream, is received.r stat.dif enwill
then equalno.
no: Continue receiving data after last
yes: No request for data after last

no=0
yes=1

2-0:3 sth intr Selects the number of bytes which must be free in the
DMA FIFO if the threshold interrupt should be gener-
ated.
lim1: At least 1 byte of available buffer space
lim2: At least 2 bytes of available buffer space
lim4: At least 4 bytes of available buffer space
lim8: At least 8 bytes of available buffer space
lim16: At least 16 bytes of available buffer space
lim32: At least 32 bytes of available buffer space
lim64: At least 64 bytes of available buffer space

lim1=0
lim2=1
lim4=2
lim8=3
lim16=4
lim32=5
lim64=6

946 CHAPTER 25. INTERNAL REGISTERS

25.16.2 rw ctrl

Address 0x4

Default
Type Read/Write

Description Control register for the DMA Communicator.

Bit(s) Name Description Value
2 streamclr Select if all data in the current data stream written to the

DMA since the last saved context descriptor shall be dis-
carded or not.yesmust not be written if a context descrip-
tor is not declared.
no: Keep data
yes: Clear data

no=0
yes=1

1 dif dis Disable the data interface (DIF) for input data.
no: The state of DIF will not change
yes: Disable DIF

no=0
yes=1

0 dif en Enable the data interface (DIF) for input data. This field
will not have any effect ifdif dis is at the same time set to
yes.
no: The state of DIF will not change
yes: Enable DIF

no=0
yes=1

25.16. IOP DMC IN 947

25.16.3 r stat

Address 0x8

Default
Type Read

Description DMC status register.

Bit(s) Name Description Value
0 dif en Shows if the data interface is currently enabled or disabled.

no: Disabled
yes: Enabled

no=0
yes=1

948 CHAPTER 25. INTERNAL REGISTERS

25.16.4 rw stream cmd

Address 0xc

Default
Type Read/Write

Description Command register for the DMA in-channel. Before writing to this register you should
check if it is ready to use by readingr streamstat.cmdrdy. The command will not be
executed untilr streamstat.streambusyequalsno.

Bit(s) Name Description Value
23-16:8 n Offset parameter used by the commandload c n in cmd.

25.16. IOP DMC IN 949

9-0:10 cmd Write a command to the DMA. The constants with a de-
scription beginning with (Cmd) are commands and those be-
ginning with (Opt) are options. For more information about
the commands and their options read section5.5.5.2.
storedescr: (Cmd) Store descriptor (nop)
storemd: (Opt) Store meta data
storec: (Opt) Store context descriptor
storeg: (Opt) Store group descriptor
array: (Opt) When nexten, stop at eol
next en: (Opt) Find the next enabled descriptor
copy next: (Opt) Make the down pointer of the upper group,
point to the current next group.
next pkt: (Opt) Go to the first data descriptor of the next
packet
dis c: (Opt) Disable the current context descriptor
dis g: (Opt) Disable the current group descriptor
copy up: (Opt) Copy current up pointer when loading the
next group descriptor
savedown: (Opt) Make the down pointer of the upper
group, point to current group
saveup: (Opt) Make the up pointer of the lower group,
point to current group
updatedown: (Opt) Make the down pointer of the group
point to the loaded context
restore: (Opt) Restore context descriptor
burst: (Opt) Start bursting
set reg: (Cmd) Set reg
ack pkt: (Cmd) Acknowledge packet(continue burst)
load d: (Cmd) Load data descriptor
setw size1: (Cmd) Set word size to 1 byte
setw size2: (Cmd) Set word size to 2 bytes
setw size4: (Cmd) Set word size to 4 bytes
load c: (Cmd) Load context descriptor
load c next: (Cmd) Load next context descriptor
load c n: (Cmd) Load n:th context descriptor
load g: (Cmd) Load group descriptor
load g next: (Cmd) Load next group descriptor
load g up: (Cmd) Load upper group descriptor
load g down: (Cmd) Load lower group descriptor

storedescr=0
storemd=1
storec=2
storeg=4
array=8
next en=16
copy next=16
next pkt=16
dis c=16
dis g=32
copy up=32
savedown=32
saveup=32
updatedown=32
restore=32
burst=32
set reg=80
ack pkt=256
load d=320
setw size1=400
setw size2=416
setw size4=448
load c=512
load c next=576
load c n=640
load g=768
load g next=832
load g up=896
load g down=960

950 CHAPTER 25. INTERNAL REGISTERS

25.16.5 rw stream wr data

Address 0x10

Default
Type Read/Write

Description Data to write to the DMA in-channel. Before writing to this register, you should make
surer stat.dif en is set tono and check if the DMA FIFO can receive more bytes by
readingr streamstat.full. The register should contain 1-4 valid bytes, depending on
how large the transfer size was set by the DMA command field,rw streamcmd.cmd.

25.16. IOP DMC IN 951

25.16.6 rw stream wr data last

Address 0x14

Default
Type Read/Write

Description Data to write to the DMA in-channel which contains the last byte of the current data
stream. Before writing to this register, you should make surer stat.dif en is set tono
and check if the DMA FIFO can receive more bytes by readingr streamstat.full. The
register should contain 1-4 valid bytes, depending on how large the transfer size was set
in rw streamctrl.size.

952 CHAPTER 25. INTERNAL REGISTERS

25.16.7 rw stream ctrl

Address 0x18

Default 0x00000000

Type Read/Write

Description rw streamctrl is valid only when the data word, which is about to be sent on the stream-
ing interface, contains the last byte of the data stream.

Bit(s) Name Description Value
5-3:3 size The size of the last word of the current data stream.

Will only be used when transferring data through
rw streamwr datalast.

2 keepmd Select if the source of meta data written to the data descriptor
should berw datadescr.mdor r datadescr.md.
no: Write new data fromrw datadescr.md
yes: Keep the last read meta data (r datadescr.md)

no=0
yes=1

1 wait Select if you want the DMA channel to stop and wait for a
DMA command.
no: The DMA will not stop
yes: The DMA will stop and wait for a DMA command

no=0
yes=1

0 eop Select if the last byte of the packet is about to be sent to the
DMA.
no: Not end of packet
yes: End of packet

no=0
yes=1

25.16. IOP DMC IN 953

25.16.8 r stream stat

Address 0x1c

Default
Type Read

Description Status register for the streaming interface.

Bit(s) Name Description Value
22 cmd rdy Shows ifrw streamcmd contains a command which

has not yet been executed. A command written to
rw streamcmd will be executed whenstreambusy
equalsno.
no: rw streamcmdalready contains a command
yes: A command can be written torw streamcmd

no=0
yes=1

21 streambusy Shows if the DMA can or can not receive commands
at the moment.
no: DMA is ready to execute commands
yes: DMA can not handle commands at the moment

no=0
yes=1

20 groupmd valid Set when meta data from the group descriptor is valid.
no: Meta data from the group descriptor is not valid
yes: Meta data from the group descriptor is valid

no=0
yes=1

19 ctxt md valid Set when meta data from the context descriptor is
valid.
no: Meta data from the context descriptor is not valid
yes: Meta data from the context descriptor is valid

no=0
yes=1

18 datamd valid Set when meta data from the data descriptor is valid.
no: Meta data from the data descriptor is not valid
yes: Meta data from the data descriptor is valid

no=0
yes=1

17 last pkt The current packet is the last packet the DMA buffer
can receive. The next data written which is marked
with last will make the DMA buffer full. In other
words, the fieldfull will then be set toyes.
no: There is zero or one packet in the DMA FIFO
yes: There are two packets in the DMA FIFO

no=0
yes=1

16 full Set when the DMA can not receive more data bytes.
no: There is available buffer space in the DMA
yes: DMA FIFO is full

no=0
yes=1

6-0:7 sth Space threshold. When bit n is set there are 2ˆn or
more bytes of available buffer space in the DMA for
immediate writing.

954 CHAPTER 25. INTERNAL REGISTERS

25.16.9 r data descr

Address 0x20

Default
Type Read

Description Data descriptor. Before reading this register, you must check if the descriptor
is valid by readingr streamstat.datamd valid. r datadescr is updated whenever
r streamstat.datamd valid equalsyes

Bit(s) Name Description Value
31-
16:16

md Meta data from the data descriptor.

15-8:8 stat Status from the data descriptor.

7-0:8 ctrl Control from the data descriptor.

25.16. IOP DMC IN 955

25.16.10 r ctxt descr

Address 0x24

Default
Type Read

Description Context descriptor. Before reading this register, you must check if the descrip-
tor is valid by readingr streamstat.ctxtmd valid. r ctxt descris updated whenever
r streamstat.ctxtmd valid equalsyes.

Bit(s) Name Description Value
31-
16:16

md0 Meta data bit 15-0 from the context descriptor.

15-8:8 stat Status from the context descriptor.

7-0:8 ctrl Control from the context descriptor.

956 CHAPTER 25. INTERNAL REGISTERS

25.16.11 r ctxt descr md1

Address 0x28

Default
Type Read

Description Meta data bit 47-16 from the context descriptor.r ctxt descrmd1is updated whenever
r streamstat.ctxtmd valid equalsyes.

25.16. IOP DMC IN 957

25.16.12 r ctxt descr md2

Address 0x2c

Default
Type Read

Description Meta data bit 79-48 from the context descriptor.r ctxt descrmd2is updated whenever
r streamstat.ctxtmd valid equalsyes.

958 CHAPTER 25. INTERNAL REGISTERS

25.16.13 r group descr

Address 0x38

Default
Type Read

Description Group descriptor. Before reading this register, you must check if the descriptor is
valid by readingr streamstat.groupmd valid. r groupdescr is updated whenever
r streamstat.groupmd valid equalsyes.

Bit(s) Name Description Value
31-
16:16

md Meta data from the group descriptor.

15-8:8 stat Status from the group descriptor.

7-0:8 ctrl Control from the group descriptor.

25.16. IOP DMC IN 959

25.16.14 rw data descr

Address 0x3c

Default 0x00000000

Type Read/Write

Description Data to be written to the data descriptor.rw datadescris used when a command,
rw streamcmd.cmd, contains the save data descriptor flag.

Bit(s) Name Description Value
31-
16:16

md Meta data to be written to the data descriptor.

960 CHAPTER 25. INTERNAL REGISTERS

25.16.15 rw ctxt descr

Address 0x40

Default 0x00000000

Type Read/Write

Description Data to be written to the context descriptor.rw ctxt descris used when a command,
rw streamcmd.cmd, contains the save context descriptor flag.

Bit(s) Name Description Value
31-
16:16

md0 Meta data bit 15-0 to be written to the context descriptor.

25.16. IOP DMC IN 961

25.16.16 rw ctxt descr md1

Address 0x44

Default 0x00000000

Type Read/Write

Description Meta data bit 47-16 to be written to the context descriptor.rw ctxt descrmd1 is used
when a command,rw streamcmd.cmd, contains the save context descriptor flag.

962 CHAPTER 25. INTERNAL REGISTERS

25.16.17 rw ctxt descr md2

Address 0x48

Default 0x00000000

Type Read/Write

Description Meta data bit 79-48 to be written to the context descriptor.rw ctxt descrmd2 is used
when a command,rw streamcmd.cmd, contains the save context descriptor flag.

25.16. IOP DMC IN 963

25.16.18 rw group descr

Address 0x54

Default 0x00000000

Type Read/Write

Description Data to be written to the group descriptor.rw groupdescris used when a command,
rw streamcmd.cmd, contains the save group descriptor flag.

Bit(s) Name Description Value
31-
16:16

md Meta data to be written to the group descriptor.

964 CHAPTER 25. INTERNAL REGISTERS

25.16.19 rw intr mask

Address 0x58

Default 0x00000000

Type Read/Write

Description Interrupt mask. Interrupts from DMA Communicator in-channel. Specifies which in-
terrupts are enabled in this subsystem. Only enabled interrupts will propagate to the
central interrupt handler. In C code the relationship betweenrw intr mask, r intr and
r maskedintr can be expressed as:
r maskedintr = r intr & rw intr mask

Bit(s) Name Description Value
5 full Enable/disable full interrupt. Generate interrupt when

r streamstat.fullchanges its value fromno to yes.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

4 sth Enable/disable sth interrupt. Generate interrupt if the number
of free bytes in the DMA is equal or larger than the specified
number inrw cfg.sth intr.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

3 cmd rdy Enable/disable cmdrdy interrupt. Generate interrupt when
r streamstat.cmdrdy changes its value fromno to yes.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

2 groupmd Enable/disable groupmd interrupt. Generate interrupt when
r streamstat.groupmd valid changes its value fromno to
yes.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

1 ctxt md Enable/disable ctxtmd interrupt. Generate interrupt when
r streamstat.ctxtmd valid changes its value fromno to yes.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

0 datamd Enable/disable datamd interrupt. Generate interrupt when
r streamstat.datamd valid changes its value fromnoto yes.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

25.16. IOP DMC IN 965

25.16.20 rw ack intr

Address 0x5c

Default
Type Read/Write

Description Acknowledge interrupts. Interrupts from DMA Communicator in-channel.

Bit(s) Name Description Value
5 full Acknowledge full interrupt.

yes: Acknowledge interrupt
no: No operation

yes=1
no=0

4 sth Acknowledge sth interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

3 cmd rdy Acknowledge cmdrdy interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

2 groupmd Acknowledge groupmd interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

1 ctxt md Acknowledge ctxtmd interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

0 datamd Acknowledge datamd interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

966 CHAPTER 25. INTERNAL REGISTERS

25.16.21 r intr

Address 0x60

Default
Type Read

Description Interrupts before the mask. Interrupts from DMA Communicator in-channel. Makes
it possible to determine if an interrupt is active even though it is not enabled in the
mask (rw intr mask). In C code the relationship betweenrw intr mask, r intr and
r maskedintr can be expressed as:
r maskedintr = r intr & rw intr mask

Bit(s) Name Description Value
5 full Interrupt full active.

yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

4 sth Interrupt sth active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

3 cmd rdy Interrupt cmdrdy active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

2 groupmd Interrupt groupmd active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1 ctxt md Interrupt ctxtmd active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

0 datamd Interrupt datamd active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

25.16. IOP DMC IN 967

25.16.22 r masked intr

Address 0x64

Default
Type Read

Description Interrupts after the mask. Interrupts from DMA Communicator in-channel. Tells which
interrupts are active and enabled (inrw intr mask). In C code the relationship between
rw intr mask, r intr andr maskedintr can be expressed as:
r maskedintr = r intr & rw intr mask

Bit(s) Name Description Value
5 full Interrupt full active and enabled.

yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

4 sth Interrupt sth active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

3 cmd rdy Interrupt cmdrdy active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

2 groupmd Interrupt groupmd active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1 ctxt md Interrupt ctxtmd active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

0 datamd Interrupt datamd active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

968 CHAPTER 25. INTERNAL REGISTERS

25.17 iop dmc out

Instance Base Address
iop dmc out0 0xb0020580

iop dmc out1 0xb0020600

25.17.1 rw cfg

Address 0x0

Default 0x00000000

Type Read/Write

Description Configuration register for the DMA Communicator.

Bit(s) Name Description Value
19-17:3 dth intr Selects the number of bytes which must be buffered

by the DMA if the threshold interrupt should be gen-
erated.
lim1: At least 1 byte of buffered data
lim2: At least 2 bytes of buffered data
lim4: At least 4 bytes of buffered data
lim8: At least 8 bytes of buffered data
lim16: At least 16 bytes of buffered data
lim32: At least 32 bytes of buffered data
lim64: At least 64 bytes of buffered data

lim1=0
lim2=1
lim4=2
lim8=3
lim16=4
lim32=5
lim64=6

16 last at trf lim When set, last is signaled on the data interface when
the last word is read.
no: Last is not signaled on trflimit
yes: Last is signaled

no=0
yes=1

15-0:16 trf lim The DMA Communicator will disable the data inter-
face when it has transmitted a number of transfers,
specified bytrf lim. An interrupt will then be gen-
erated andrw ctrl.dif enwill change its value tono.
This functionality will be disabled if the value is set
to zero.

25.17. IOP DMC OUT 969

25.17.2 rw ctrl

Address 0x4

Default
Type Read/Write

Description Control register for the DMA Communicator.

Bit(s) Name Description Value
1 dif dis Disable the data interface (DIF) for output data.

no: The state of DIF will not change
yes: Disable

no=0
yes=1

0 dif en Enable the data interface (DIF) for output data. This field will
not have any effect ifdif dis is at the same time set toyes.
no: The state of DIF will not change
yes: Enable

no=0
yes=1

970 CHAPTER 25. INTERNAL REGISTERS

25.17.3 r stat

Address 0x8

Default
Type Read

Description DMC status register.

Bit(s) Name Description Value
0 dif en Shows if the data interface is enabled or disabled. No data will

be sent on the interface when disabled. The interface can be
enabled or disabled byrw ctrl.dif enandrw ctrl.dif dis.
no: Disabled
yes: Enabled

no=0
yes=1

25.17. IOP DMC OUT 971

25.17.4 rw stream cmd

Address 0xc

Default
Type Read/Write

Description Command register for the DMA out-channel. Before writing to this register you should
check if rw streamcmd is ready to use by readingr streamstat.cmdrdy. The com-
mand will not be executed untilr streamstat.streambusyequalsno.

Bit(s) Name Description Value
23-16:8 n Offset parameter used by the commandload c n in cmd.

972 CHAPTER 25. INTERNAL REGISTERS

9-0:10 cmd Write a command to the DMA. The constants with a de-
scription beginning with (Cmd) are commands and those be-
ginning with (Opt) are options. For more information about
the commands and their options read section5.5.5.2.
storedescr: (Cmd) Store descriptor (nop)
storemd: (Opt) Store meta data
storec: (Opt) Store context descriptor
storeg: (Opt) Store group descriptor
array: (Opt) When nexten, stop at eol
next en: (Opt) Find the next enabled descriptor
copy next: (Opt) Make the down pointer of the upper group,
point to the current next group
next pkt: (Opt) Go to the first data descriptor of the next
packet
dis c: (Opt) Disable the current context descriptor
dis g: (Opt) Disable the current group descriptor
copy up: (Opt) Copy current up pointer when loading the
next group descriptor
savedown: (Opt) Make the down pointer of the upper
group, point to current group
saveup: (Opt) Make the up pointer of the lower group,
point to current group
updatedown: (Opt) Make the down pointer of the group
point to the loaded context
restore: (Opt) Restore context descriptor
burst: (Opt) Start bursting
set reg: (Cmd) Set reg
ack pkt: (Cmd) Acknowledge packet(continue burst)
load d: (Cmd) Load data descriptor
setw size1: (Cmd) Set word size to 1 byte
setw size2: (Cmd) Set word size to 2 bytes
setw size4: (Cmd) Set word size to 4 bytes
load c: (Cmd) Load context descriptor
load c next: (Cmd) Load next context descriptor
load c n: (Cmd) Load n:th context descriptor
load g: (Cmd) Load group descriptor
load g next: (Cmd) Load next group descriptor
load g up: (Cmd) Load upper group descriptor
load g down: (Cmd) Load lower group descriptor

storedescr=0
storemd=1
storec=2
storeg=4
array=8
next en=16
copy next=16
next pkt=16
dis c=16
dis g=32
copy up=32
savedown=32
saveup=32
updatedown=32
restore=32
burst=32
set reg=80
ack pkt=256
load d=320
setw size1=400
setw size2=416
setw size4=448
load c=512
load c next=576
load c n=640
load g=768
load g next=832
load g up=896
load g down=960

25.17. IOP DMC OUT 973

25.17.5 rs stream data/r stream data

Address 0x10/0x14

Default
Type Read with side effects/Read

Description Data from the DMA out-channel. Before reading this register, you should check if data
is valid by readingr streamstat.dv. Readr streamstat.sizeand r streamstat.lastto
find out the size of the read data and if it is marked as the last data. Whenrs streamdata
is read, the DMA Communicator will acknowledge the read to the DMA and new data
from the DMA will be on the streaming interface. If there is no more data in the DMA
FIFO,r streamstat.dvwill be set tono.

974 CHAPTER 25. INTERNAL REGISTERS

25.17.6 r stream stat

Address 0x18

Default
Type Read

Description Status register for the streaming interface.

Bit(s) Name Description Value
27 cmd rq Command request. DMA is waiting for a command.

Set after the last word is received by the DMA, if the
wait bit in r datadescr.ctrlis set.
no: DMA is not waiting for a command
yes: DMA has requested and is waiting for a com-
mand

no=0
yes=1

26 cmd rdy Shows ifrw streamcmd contains a command which
has not yet been executed. A command written to
rw streamcmd will be executed whenstreambusy
equalsno.
no: rw streamcmdalready contains a command
yes: A command can be written torw streamcmd

no=0
yes=1

25 streambusy Shows if the DMA can or can not receive commands
at the moment.
no: DMA is ready to execute commands
yes: DMA can not handle commands at the moment

no=0
yes=1

24 groupmd valid Set when meta data from the group descriptor is valid.
no: Meta data from the group descriptor is not valid
yes: Meta data from the group descriptor is valid

no=0
yes=1

23 ctxt md valid Set when meta data from the context descriptor is
valid.
no: Meta data from the context descriptor is not valid
yes: Meta data from the context descriptor is valid

no=0
yes=1

22 datamd valid Set when meta data from the data descriptor is valid.
no: Meta data from the data descriptor is not valid
yes: Meta data from the data descriptor is valid

no=0
yes=1

21-19:3 size Size of the current data on the DMA out-channel
(number of bytes).

18 last Set when the current data on the DMA out-channel is
the last of the packet.
no: Data word does not contain the last byte of data
stream
yes: Data word does contain the last byte of data
stream

no=0
yes=1

25.17. IOP DMC OUT 975

17 all avail Is set when all data in the packet has been read from
memory and it is available for immediate reading on
the DMA out-channel. In other words there is a com-
plete packet or the data left in the current packet is
smaller than the data threshold.
no: The whole packet is not available in the DMA
FIFO
yes: The whole packet is available in the DMA FIFO

no=0
yes=1

16 dv Set when there is valid data on the DMA out-channel.
no: Data from the stream interface is not valid
yes: Data from the stream interface is valid

no=0
yes=1

6-0:7 dth When bit n is set there are 2ˆn or more bytes of
buffered data available for immediate reading on the
DMA out-channel.

976 CHAPTER 25. INTERNAL REGISTERS

25.17.7 r data descr

Address 0x1c

Default
Type Read

Description Data descriptor. Before reading this register, you must check if descriptor is
valid by reading r streamstat.datamd valid. r datadescr is updated whenever
r streamstat.datamd valid equalsyes

Bit(s) Name Description Value
31-
16:16

md Meta data from the data descriptor.

15-8:8 stat Status from the data descriptor.

7-0:8 ctrl Control from the data descriptor.

25.17. IOP DMC OUT 977

25.17.8 r ctxt descr

Address 0x20

Default
Type Read

Description Context descriptor. Before reading this register, you must check if the descrip-
tor is valid by readingr streamstat.ctxtmd valid. r ctxt descris updated whenever
r streamstat.ctxtmd valid equalsyes.

Bit(s) Name Description Value
31-
16:16

md0 Meta data bit 15-0 from the context descriptor.

15-8:8 stat Status from the context descriptor.

7-0:8 ctrl Control from the context descriptor.

978 CHAPTER 25. INTERNAL REGISTERS

25.17.9 r ctxt descr md1

Address 0x24

Default
Type Read

Description Meta data bit 47-16 from the context descriptor.r ctxt descrmd1is updated whenever
r streamstat.ctxtmd valid equalsyes.

25.17. IOP DMC OUT 979

25.17.10 r ctxt descr md2

Address 0x28

Default
Type Read

Description Meta data bit 79-48 from the context descriptor.r ctxt descrmd2is updated whenever
r streamstat.ctxtmd valid equalsyes.

980 CHAPTER 25. INTERNAL REGISTERS

25.17.11 r group descr

Address 0x34

Default
Type Read

Description Group descriptor. Before reading this register, you must check if the descriptor is
valid by readingr streamstat.groupmd valid. r groupdescr is updated whenever
r streamstat.groupmd valid equalsyes.

Bit(s) Name Description Value
31-
16:16

md Meta data from the group descriptor.

15-8:8 stat Status from the group descriptor.

7-0:8 ctrl Control from the group descriptor.

25.17. IOP DMC OUT 981

25.17.12 rw data descr

Address 0x38

Default 0x00000000

Type Read/Write

Description Data to be written to the data descriptor.rw datadescris used when a command,
rw streamcmd.cmd, uses the save data descriptor optionstoremd.

Bit(s) Name Description Value
31-
16:16

md Meta data to be written to the data descriptor.

982 CHAPTER 25. INTERNAL REGISTERS

25.17.13 rw ctxt descr

Address 0x3c

Default 0x00000000

Type Read/Write

Description Data to be written to the context descriptor.rw ctxt descris used when a command,
rw streamcmd.cmd, uses the save data descriptor optionstorec.

Bit(s) Name Description Value
31-
16:16

md0 Meta data bit 15-0 to be written to the context descriptor.

25.17. IOP DMC OUT 983

25.17.14 rw ctxt descr md1

Address 0x40

Default 0x00000000

Type Read/Write

Description Meta data bit 47-16 to be written to the context descriptor.rw ctxt descrmd1 is used
when a command,rw streamcmd.cmd, uses the save data descriptor optionstorec.

984 CHAPTER 25. INTERNAL REGISTERS

25.17.15 rw ctxt descr md2

Address 0x44

Default 0x00000000

Type Read/Write

Description Meta data bit 79-48 to be written to the context descriptor.rw ctxt descrmd2 is used
when a command,rw streamcmd.cmd, uses the save data descriptor optionstorec.

25.17. IOP DMC OUT 985

25.17.16 rw group descr

Address 0x50

Default 0x00000000

Type Read/Write

Description Data to be written to the group descriptor.rw groupdescris used when a command,
rw streamcmd.cmd, uses the save data descriptor optionstoreg.

Bit(s) Name Description Value
31-
16:16

md Meta data to be written to the group descriptor.

986 CHAPTER 25. INTERNAL REGISTERS

25.17.17 rw intr mask

Address 0x54

Default 0x00000000

Type Read/Write

Description Interrupt mask. Interrupts from DMA Communicator out-channel. Specifies which
interrupts are enabled in this subsystem. Only enabled interrupts will propagate to the
central interrupt handler. In C code the relationship betweenrw intr mask, r intr and
r maskedintr can be expressed as:
r maskedintr = r intr & rw intr mask

Bit(s) Name Description Value
8 cmd rq Enable/disable cmdrq interrupt. Generate interrupt when

r streamstat.cmdrq changes its value fromno to yes.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

7 trf lim Enable/disable trflim interrupt. Generate interrupt when
the DMA Communicator automatically disables the data in-
terface after counted a specified number of transfers, con-
figured inrw cfg.trf lim.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

6 last data Enable/disable lastdata interrupt. Generate interrupt if data
from the streaming interface is the last of the packet.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

5 dv Enable/disable dv interrupt. Generate interrupt if data from
the streaming interface is valid.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

4 dth Enable/disable dth interrupt. Generate interrupt if the num-
ber of bytes buffered in the DMA is equal or larger than the
specified number inrw cfg.dth intr. The interrupt is also
generated if all data in the packet has been read from mem-
ory and is available for immediate reading on the streaming
interface.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

3 cmd rdy Enable/disable cmdrdy interrupt. Generate interrupt when
r streamstat.cmdrdy changes its value fromno to yes.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

25.17. IOP DMC OUT 987

2 groupmd Enable/disable groupmd interrupt. Generate interrupt
whenr streamstat.groupmd valid changes its value from
no to yes.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

1 ctxt md Enable/disable ctxtmd interrupt. Generate interrupt when
r streamstat.ctxtmd validchanges its value fromnotoyes.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

0 datamd Enable/disable datamd interrupt. Generate interrupt when
r streamstat.datamd valid changes its value fromno to
yes.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

988 CHAPTER 25. INTERNAL REGISTERS

25.17.18 rw ack intr

Address 0x58

Default
Type Read/Write

Description Acknowledge interrupts. Interrupts from DMA Communicator out-channel.

Bit(s) Name Description Value
8 cmd rq Acknowledge cmdrq interrupt.

yes: Acknowledge interrupt
no: No operation

yes=1
no=0

7 trf lim Acknowledge trflim interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

6 last data Acknowledge lastdata interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

5 dv Acknowledge dv interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

4 dth Acknowledge dth interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

3 cmd rdy Acknowledge cmdrdy interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

2 groupmd Acknowledge groupmd interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

1 ctxt md Acknowledge ctxtmd interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

0 datamd Acknowledge datamd interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

25.17. IOP DMC OUT 989

25.17.19 r intr

Address 0x5c

Default
Type Read

Description Interrupts before the mask. Interrupts from DMA Communicator out-channel. Makes
it possible to determine if an interrupt is active even though it is not enabled in the
mask (rw intr mask). In C code the relationship betweenrw intr mask, r intr and
r maskedintr can be expressed as:
r maskedintr = r intr & rw intr mask

Bit(s) Name Description Value
8 cmd rq Interrupt cmdrq active.

yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

7 trf lim Interrupt trf lim active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

6 last data Interrupt lastdata active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

5 dv Interrupt dv active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

4 dth Interrupt dth active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

3 cmd rdy Interrupt cmdrdy active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

2 groupmd Interrupt groupmd active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1 ctxt md Interrupt ctxtmd active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

0 datamd Interrupt datamd active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

990 CHAPTER 25. INTERNAL REGISTERS

25.17.20 r masked intr

Address 0x60

Default
Type Read

Description Interrupts after the mask. Interrupts from DMA Communicator out-channel. Tells
which interrupts are active and enabled (inrw intr mask). In C code the relationship
betweenrw intr mask, r intr andr maskedintr can be expressed as:
r maskedintr = r intr & rw intr mask

Bit(s) Name Description Value
8 cmd rq Interrupt cmdrq active and enabled.

yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

7 trf lim Interrupt trf lim active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

6 last data Interrupt lastdata active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

5 dv Interrupt dv active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

4 dth Interrupt dth active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

3 cmd rdy Interrupt cmdrdy active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

2 groupmd Interrupt groupmd active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1 ctxt md Interrupt ctxtmd active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

0 datamd Interrupt datamd active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

25.18. IOP FIFO OUT 991

25.18 iop fifo out

Instance Base Address
iop fifo out0 0xb0020780

iop fifo out1 0xb0020800

25.18.1 rw cfg

Address 0x0

Default 0x00000024

Type Read/Write

Description Configuration register for FIFO. The FIFO will be reset when writing to this register,
i.e. the FIFO will be emptied.

Bit(s) Name Description Value
11 last dis dif out If set the dif out port of the FIFO will be disabled

after last word is sent.
no: The FIFO will not be disabled
yes: The FIFO will be disabled

no=0
yes=1

10 delayout last Selects if the difout last signal will be delayed
5ns or not, relative to data.
no: Do not delay last
yes: Delay last 5 ns

no=0
yes=1

9-8:2 mode Select mode of operation for FIFO as well as the
width of the DIF-buses.
size32: Configure FIFO as 32-bit FIFO. Output is
32-bits wide
size24: Configure FIFO as 24-bit FIFO. Output is
24-bits wide
size16: Configure FIFO as 16-bit FIFO. Output is
16-bits wide
size8: Configure FIFO as 8-bit FIFO. Output is
8-bits wide

size32=0
size24=1
size16=2
size8=3

7 last dis dif in If set the dif in port of the FIFO will be disabled
after the last word is received.
no: The FIFO will not be disabled
yes: The FIFO will be disabled

no=0
yes=1

992 CHAPTER 25. INTERNAL REGISTERS

6-5:2 trig Select if the strobe for FIFO output should be trig-
gered when it is high or on positive or negative
edge.
hi: High strobe
pos: Positive edge of strobe
neg: Negative edge of strobe
posneg: Both positive and negative edge of
strobe

hi=0
pos=1
neg=2
posneg=3

4-3:2 byte order Controls the byte swapping mechanism.
order8: 8-bit mode (3 2 1 0)
order16: 16-bit mode (2 3 0 1)
order24: 24-bit mode (3 0 1 2)
order32: 32-bit mode (0 1 2 3)

order8=0
order16=1
order24=2
order32=3

2-0:3 free lim Set the number of bytes which must be free in the
FIFO before the FIFO will generate an interrupt
or signal the parallel in-data interface that it can
receive data.

25.18. IOP FIFO OUT 993

25.18.2 rw ctrl

Address 0x4

Default 0x00000000

Type Read/Write

Description FIFO command register.

Bit(s) Name Description Value
1 dif out en Enable/disable the output strobe of the FIFO

no: Disabled
yes: Enabled

no=0
yes=1

0 dif in en Enable/disable the input strobe of the FIFO
no: Disabled
yes: Enabled

no=0
yes=1

994 CHAPTER 25. INTERNAL REGISTERS

25.18.3 r stat

Address 0x8

Default
Type Read

Description Status of FIFO.

Bit(s) Name Description Value
14 zerodatalast Indicates if a last-mark is, or has been, present in an

empty FIFO
no: Last mark is not present
yes: Last mark is present

no=0
yes=1

13 dif out en Status of the FIFOs output strobe enable bit. See
rw ctrl.dif out en.
no: FIFO is disabled
yes: FIFO is enabled

no=0
yes=1

12 dif in en Status of the FIFOs input strobe enable bit. See
rw ctrl.dif in en.
no: FIFO is disabled
yes: FIFO is enabled

no=0
yes=1

11-4:8 last Vector with last marks for the bytes in FIFO. The least
significant bit (lsb) holds the last mark for first byte to
be shifted out.

3-0:4 avail bytes Number of bytes currently available in the FIFO.

25.18. IOP FIFO OUT 995

25.18.4 rw wr1byte

Address 0xc

Default 0x00000000

Type Read/Write

Description Write one byte of data to FIFO. Only the 8 least significant bits of the register are used.
NOTE: To avoid overrun, fieldr stat.availbytesshould be checked.

Bit(s) Name Description Value
7-0:8 data Payload data.

996 CHAPTER 25. INTERNAL REGISTERS

25.18.5 rw wr2byte

Address 0x10

Default 0x00000000

Type Read/Write

Description Write two bytes of data to FIFO. Only the 16 least significant bits of the register are
used. NOTE: To avoid overrun, fieldr stat.availbytesshould be checked.

Bit(s) Name Description Value
15-0:16 data Payload data.

25.18. IOP FIFO OUT 997

25.18.6 rw wr3byte

Address 0x14

Default 0x00000000

Type Read/Write

Description Write three bytes of data to FIFO. Only the 24 least significant bits of the register are
used. NOTE: To avoid overrun, fieldr stat.availbytesshould be checked.

Bit(s) Name Description Value
23-0:24 data Payload data.

998 CHAPTER 25. INTERNAL REGISTERS

25.18.7 rw wr4byte

Address 0x18

Default 0x00000000

Type Read/Write

Description Write four bytes of data to the FIFO. NOTE: To avoid overrun, fieldr stat.availbytes
should be checked.

Bit(s) Name Description Value
31-0:32 data Payload data.

25.18. IOP FIFO OUT 999

25.18.8 rw wr1byte last

Address 0x1c

Default 0x00000000

Type Read/Write

Description Write one byte of data to FIFO and set last flag for that byte. Only the 8 least significant
bits of the register are used. NOTE: To avoid overrun, fieldr stat.availbytesshould be
checked.

Bit(s) Name Description Value
7-0:8 data Payload data.

1000 CHAPTER 25. INTERNAL REGISTERS

25.18.9 rw wr2byte last

Address 0x20

Default 0x00000000

Type Read/Write

Description Write two bytes of data to FIFO and set the last flag for that byte. Only the 16 least
significant bits of the register are used. NOTE: To avoid overrun, fieldr stat.availbytes
should be checked.

Bit(s) Name Description Value
15-0:16 data Payload data.

25.18. IOP FIFO OUT 1001

25.18.10 rw wr3byte last

Address 0x24

Default 0x00000000

Type Read/Write

Description Write three bytes of data to FIFO and set the last flag. Only the 24 least significant
bits of the register are used. NOTE: To avoid overrun, fieldr stat.availbytesshould be
checked.

Bit(s) Name Description Value
23-0:24 data Payload data.

1002 CHAPTER 25. INTERNAL REGISTERS

25.18.11 rw wr4byte last

Address 0x28

Default 0x00000000

Type Read/Write

Description Write four bytes of data to the FIFO and set the last flag. NOTE: To avoid overrun, field
r stat.availbytesshould be checked.

Bit(s) Name Description Value
31-0:32 data Payload data.

25.18. IOP FIFO OUT 1003

25.18.12 rw set last

Address 0x2c

Default 0x00000000

Type Read/Write

Description Mark the last byte in the FIFO with last.

1004 CHAPTER 25. INTERNAL REGISTERS

25.18.13 rs rd data/r rd data

Address 0x30/0x34

Default
Type Read with side effects/Read

Description Reads a word from the FIFO. The FIFO will place one to four bytes in the register, so
the owner must be aware of the current FIFO configuration. Reading this register will
advance the fifo read-pointer by a value corresponding to the FIFOs current configura-
tion i.e. one to four bytes.

25.18. IOP FIFO OUT 1005

25.18.14 rw strb dif out

Address 0x38

Default 0x00000000

Type Read/Write

Description Generate a strobe at the input-channel of the FIFO. Forces the fifo to read data. The
number of bytes read corresponds to the width of the FIFO.

1006 CHAPTER 25. INTERNAL REGISTERS

25.18.15 rw intr mask

Address 0x3c

Default 0x00000000

Type Read/Write

Description Interrupt mask. Interrupts generated by generic FIFO. Specifies which interrupts are
enabled in this subsystem. Only enabled interrupts will propagate to the central inter-
rupt handler. In C code the relationship betweenrw intr mask, r intr andr maskedintr
can be expressed as:
r maskedintr = r intr & rw intr mask

Bit(s) Name Description Value
4 orun Enable/disable orun interrupt. FIFO overrun interrupt. Gen-

erated when an attempt to write data beyond the end of the
FIFO is made.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

3 free Enable/disable free interrupt. Free interrupt. Generated
when the amount of free space available exceeds the amount
specified inrw cfg.freelim.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

2 dav Enable/disable dav interrupt. Data available interrupt. Gen-
erated when data the amount of data available exceeds the
number specified inrw cfg.mode.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

1 last data Enable/disable lastdata interrupt. Last interrupt. Generated
if a byte with last-flag is received.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

0 urun Enable/disable urun interrupt. FIFO underrun interrupt.
Generated if the FIFO is read through the register interfaces
while empty.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

25.18. IOP FIFO OUT 1007

25.18.16 rw ack intr

Address 0x40

Default
Type Read/Write

Description Acknowledge interrupts. Interrupts generated by generic FIFO.

Bit(s) Name Description Value
4 orun Acknowledge orun interrupt.

yes: Acknowledge interrupt
no: No operation

yes=1
no=0

3 free Acknowledge free interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

2 dav Acknowledge dav interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

1 last data Acknowledge lastdata interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

0 urun Acknowledge urun interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

1008 CHAPTER 25. INTERNAL REGISTERS

25.18.17 r intr

Address 0x44

Default
Type Read

Description Interrupts before the mask. Interrupts generated by generic FIFO. Makes it pos-
sible to determine if an interrupt is active even though it is not enabled in the
mask (rw intr mask). In C code the relationship betweenrw intr mask, r intr and
r maskedintr can be expressed as:
r maskedintr = r intr & rw intr mask

Bit(s) Name Description Value
4 orun Interrupt orun active.

yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

3 free Interrupt free active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

2 dav Interrupt dav active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1 last data Interrupt lastdata active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

0 urun Interrupt urun active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

25.18. IOP FIFO OUT 1009

25.18.18 r masked intr

Address 0x48

Default
Type Read

Description Interrupts after the mask. Interrupts generated by generic FIFO. Tells which inter-
rupts are active and enabled (inrw intr mask). In C code the relationship between
rw intr mask, r intr andr maskedintr can be expressed as:
r maskedintr = r intr & rw intr mask

Bit(s) Name Description Value
4 orun Interrupt orun active and enabled.

yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

3 free Interrupt free active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

2 dav Interrupt dav active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1 last data Interrupt lastdata active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

0 urun Interrupt urun active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1010 CHAPTER 25. INTERNAL REGISTERS

25.19 iop fifo in

Instance Base Address
iop fifo in0 0xb0020680

iop fifo in1 0xb0020700

25.19.1 rw cfg

Address 0x0

Default 0x00000024

Type Read/Write

Description Configuration register for FIFO. The FIFO will be reset when writing to this register,
i.e. the FIFO will be emptied.

Bit(s) Name Description Value
9-8:2 mode Select mode of operation for FIFO as well as the

width of the DIF-buses.
size32: Configure FIFO as 32-bit FIFO. Output is
32-bits wide
size24: Configure FIFO as 24-bit FIFO. Output is
24-bits wide
size16: Configure FIFO as 16-bit FIFO. Output is
16-bits wide
size8: Configure FIFO as 8-bit FIFO. Output is 8-
bits wide

size32=0
size24=1
size16=2
size8=3

7 last dis dif in If set the dif in port of the FIFO will be disabled
after the last word is received.
no: The FIFO will not be disabled
yes: The FIFO will be disabled

no=0
yes=1

6-5:2 trig Select if the strobe for FIFO output should be trig-
gered when it is high or on positive or negative
edge.
hi: High strobe
pos: Positive edge of strobe
neg: Negative edge of strobe
posneg: Both positive and negative edge of strobe

hi=0
pos=1
neg=2
posneg=3

4-3:2 byte order Controls the byte swapping mechanism.
order8: 8-bit mode (3 2 1 0)
order16: 16-bit mode (2 3 0 1)
order24: 24-bit mode (3 0 1 2)
order32: 32-bit mode (0 1 2 3)

order8=0
order16=1
order24=2
order32=3

2-0:3 avail lim Set the number of bytes which must be available in
the FIFO before the FIFO will signal the DMC-in
that it has data to send.

25.19. IOP FIFO IN 1011

25.19.2 rw ctrl

Address 0x4

Default 0x00000000

Type Read/Write

Description FIFO command register.

Bit(s) Name Description Value
1 dif out en Enable/disable the output strobe of the FIFO

no: Disabled
yes: Enabled

no=0
yes=1

0 dif in en Enable/disable the input strobe of the FIFO
no: Disabled
yes: Enabled

no=0
yes=1

1012 CHAPTER 25. INTERNAL REGISTERS

25.19.3 r stat

Address 0x8

Default
Type Read

Description Status of FIFO.

Bit(s) Name Description Value
13 dif out en Status of the FIFOs output strobe enable bit. See

rw ctrl.dif out en.
no: FIFO is disabled
yes: FIFO is enabled

no=0
yes=1

12 dif in en Status of the FIFOs input strobe enable bit. See
rw ctrl.dif in en.
no: FIFO is disabled
yes: FIFO is enabled

no=0
yes=1

11-4:8 last Vector with last marks for the bytes in FIFO. The least
significant bit (lsb) holds the last mark for first byte to be
shifted out.

3-0:4 avail bytes Number of bytes currently available in the FIFO.

25.19. IOP FIFO IN 1013

25.19.4 rs rd1byte/r rd1byte

Address 0xc/0x10

Default
Type Read with side effects/Read

Description Read one byte of data from the FIFO. Number of available bytes must be checked
in r stat.availbytes. The side-effect of reading this register is that the read-pointer is
advanced by one byte.

Bit(s) Name Description Value
7-0:8 data Payload data.

1014 CHAPTER 25. INTERNAL REGISTERS

25.19.5 rs rd2byte/r rd2byte

Address 0x14/0x18

Default
Type Read with side effects/Read

Description Read two bytes of data from the FIFO. Number of available bytes must be checked
in r stat.availbytes. The side-effect of reading this register is that the read-pointer is
advanced by two bytes.

Bit(s) Name Description Value
15-0:16 data Payload data.

25.19. IOP FIFO IN 1015

25.19.6 rs rd3byte/r rd3byte

Address 0x1c/0x20

Default
Type Read with side effects/Read

Description Read three bytes of data from the FIFO. Number of available bytes must be checked
in r stat.availbytes. The side-effect of reading this register is that the read-pointer is
advanced by three bytes.

Bit(s) Name Description Value
23-0:24 data Payload data.

1016 CHAPTER 25. INTERNAL REGISTERS

25.19.7 rs rd4byte/r rd4byte

Address 0x24/0x28

Default
Type Read with side effects/Read

Description Read four bytes of data from the FIFO. Number of available bytes must be checked
in r stat.availbytes. The side-effect of reading this register is that the read-pointer is
advanced by four bytes.

Bit(s) Name Description Value
31-0:32 data Payload data.

25.19. IOP FIFO IN 1017

25.19.8 rw set last

Address 0x2c

Default 0x00000000

Type Read/Write

Description Mark the last byte in the FIFO with last.

1018 CHAPTER 25. INTERNAL REGISTERS

25.19.9 rw strb dif in

Address 0x30

Default 0x00000000

Type Read/Write

Description Generate a strobe at the input-channel of the FIFO. Forces the fifo to read data. The
number of bytes read corresponds to the width of the FIFO.

Bit(s) Name Description Value
1-0:2 last Select source used to define value of the last-bit.

no: Do not set the last flag
yes: Set last flag
dif in: Assign value from DIF

no=0
yes=1
dif in=2

25.19. IOP FIFO IN 1019

25.19.10 rw intr mask

Address 0x34

Default 0x00000000

Type Read/Write

Description Interrupt mask. Interrupts generated by generic FIFO. Specifies which interrupts are
enabled in this subsystem. Only enabled interrupts will propagate to the central inter-
rupt handler. In C code the relationship betweenrw intr mask, r intr andr maskedintr
can be expressed as:
r maskedintr = r intr & rw intr mask

Bit(s) Name Description Value
4 orun Enable/disable orun interrupt. FIFO overrun interrupt. Gen-

erated when an attempt to write data beyond the end of the
FIFO is made.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

3 avail Enable/disable avail interrupt. Avail interrupt. Generated
when the number of available bytes exceed the amount spec-
ified in rw cfg.avail lim.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

2 dav Enable/disable dav interrupt. Data available interrupt. Gen-
erated when the amount of data available exceeds the num-
ber specified inrw cfg.mode.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

1 last data Enable/disable lastdata interrupt. Last interrupt. Generated
if a byte with last-flag is received.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

0 urun Enable/disable urun interrupt. FIFO underrun interrupt.
Generated if the FIFO is read through the register interfaces
while empty.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

1020 CHAPTER 25. INTERNAL REGISTERS

25.19.11 rw ack intr

Address 0x38

Default
Type Read/Write

Description Acknowledge interrupts. Interrupts generated by generic FIFO.

Bit(s) Name Description Value
4 orun Acknowledge orun interrupt.

yes: Acknowledge interrupt
no: No operation

yes=1
no=0

3 avail Acknowledge avail interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

2 dav Acknowledge dav interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

1 last data Acknowledge lastdata interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

0 urun Acknowledge urun interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

25.19. IOP FIFO IN 1021

25.19.12 r intr

Address 0x3c

Default
Type Read

Description Interrupts before the mask. Interrupts generated by generic FIFO. Makes it pos-
sible to determine if an interrupt is active even though it is not enabled in the
mask (rw intr mask). In C code the relationship betweenrw intr mask, r intr and
r maskedintr can be expressed as:
r maskedintr = r intr & rw intr mask

Bit(s) Name Description Value
4 orun Interrupt orun active.

yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

3 avail Interrupt avail active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

2 dav Interrupt dav active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1 last data Interrupt lastdata active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

0 urun Interrupt urun active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1022 CHAPTER 25. INTERNAL REGISTERS

25.19.13 r masked intr

Address 0x40

Default
Type Read

Description Interrupts after the mask. Interrupts generated by generic FIFO. Tells which inter-
rupts are active and enabled (inrw intr mask). In C code the relationship between
rw intr mask, r intr andr maskedintr can be expressed as:
r maskedintr = r intr & rw intr mask

Bit(s) Name Description Value
4 orun Interrupt orun active and enabled.

yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

3 avail Interrupt avail active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

2 dav Interrupt dav active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1 last data Interrupt lastdata active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

0 urun Interrupt urun active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

25.20. IOP FIFO OUT EXTRA 1023

25.20 iop fifo out extra

Instance Base Address
iop fifo out0 extra 0xb00200c0

iop fifo out1 extra 0xb0020100

25.20.1 rs rd data/r rd data

Address 0x0/0x4

Default
Type Read with side effects/Read

Description Reads data from the FIFO. The FIFO will place one to four bytes in the register, so the
owner must be aware of the current FIFO configuration. Reading this register will ad-
vance the fifo read-pointer by a value corresponding to the FIFOs current configuration
i.e. one to four bytes.

1024 CHAPTER 25. INTERNAL REGISTERS

25.20.2 r stat

Address 0x8

Default
Type Read

Description FIFO status register.

Bit(s) Name Description Value
14 zerodatalast Indicates if a last-mark is, or has been, present in an

empty FIFO.
no: Last mark is not present
yes: Last mark is present

no=0
yes=1

13 dif out en Status of the FIFOs output strobe enable bit.
no: FIFO is disabled
yes: FIFO is enabled

no=0
yes=1

12 dif in en Status of the FIFOs input strobe enable bit.
no: FIFO is disabled
yes: FIFO is enabled

no=0
yes=1

11-4:8 last Vector with last marks for the bytes in FIFO. The least
significant bit (lsb) holds the last mark for first byte to
be shifted out.

3-0:4 avail bytes Number of bytes currently available in the FIFO.

25.20. IOP FIFO OUT EXTRA 1025

25.20.3 rw strb dif out

Address 0xc

Default
Type Read/Write

Description Generate a strobe at the input-channel of the FIFO. Forces the fifo to read data. The
number of bytes read corresponds to the width of the FIFO.

1026 CHAPTER 25. INTERNAL REGISTERS

25.20.4 rw intr mask

Address 0x10

Default 0x00000000

Type Read/Write

Description Interrupt mask. Interrupts generated by generic FIFO. Specifies which interrupts are
enabled in this subsystem. Only enabled interrupts will propagate to the central inter-
rupt handler. In C code the relationship betweenrw intr mask, r intr andr maskedintr
can be expressed as:
r maskedintr = r intr & rw intr mask

Bit(s) Name Description Value
4 orun Enable/disable orun interrupt. FIFO overrun interrupt. Gen-

erated when an attempt to write data beyond the end of the
FIFO is made.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

3 free Enable/disable free interrupt. Free interrupt. Generated
when the amount of free space available exceeds the amount
specified inrw cfg.freelim.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

2 dav Enable/disable dav interrupt. Data available interrupt. Gen-
erated when the amount of data available exceeds the num-
ber specified in:rw cfg.mode.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

1 last data Enable/disable lastdata interrupt. Last interrupt. Generated
if a byte with last-flag is received.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

0 urun Enable/disable urun interrupt. FIFO underrun interrupt.
Generated if the FIFO is read through the register interfaces
while empty.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

25.20. IOP FIFO OUT EXTRA 1027

25.20.5 rw ack intr

Address 0x14

Default
Type Read/Write

Description Acknowledge interrupts. Interrupts generated by generic FIFO.

Bit(s) Name Description Value
4 orun Acknowledge orun interrupt.

yes: Acknowledge interrupt
no: No operation

yes=1
no=0

3 free Acknowledge free interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

2 dav Acknowledge dav interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

1 last data Acknowledge lastdata interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

0 urun Acknowledge urun interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

1028 CHAPTER 25. INTERNAL REGISTERS

25.20.6 r intr

Address 0x18

Default
Type Read

Description Interrupts before the mask. Interrupts generated by generic FIFO. Makes it pos-
sible to determine if an interrupt is active even though it is not enabled in the
mask (rw intr mask). In C code the relationship betweenrw intr mask, r intr and
r maskedintr can be expressed as:
r maskedintr = r intr & rw intr mask

Bit(s) Name Description Value
4 orun Interrupt orun active.

yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

3 free Interrupt free active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

2 dav Interrupt dav active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1 last data Interrupt lastdata active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

0 urun Interrupt urun active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

25.20. IOP FIFO OUT EXTRA 1029

25.20.7 r masked intr

Address 0x1c

Default
Type Read

Description Interrupts after the mask. Interrupts generated by generic FIFO. Tells which inter-
rupts are active and enabled (inrw intr mask). In C code the relationship between
rw intr mask, r intr andr maskedintr can be expressed as:
r maskedintr = r intr & rw intr mask

Bit(s) Name Description Value
4 orun Interrupt orun active and enabled.

yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

3 free Interrupt free active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

2 dav Interrupt dav active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1 last data Interrupt lastdata active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

0 urun Interrupt urun active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1030 CHAPTER 25. INTERNAL REGISTERS

25.21 iop fifo in extra

Instance Base Address
iop fifo in0 extra 0xb0020040

iop fifo in1 extra 0xb0020080

25.21.1 rw wr data

Address 0x0

Default
Type Read/Write

Description Writes data to the FIFO. The FIFO will read one to four bytes from the register, so the
owner must be aware of the current FIFO configuration. Reading this register returns
undefined data.

25.21. IOP FIFO IN EXTRA 1031

25.21.2 r stat

Address 0x4

Default
Type Read

Description FIFO status register.

Bit(s) Name Description Value
13 dif out en Status of the FIFOs output strobe enable bit.

no: FIFO is disabled
yes: FIFO is enabled

no=0
yes=1

12 dif in en Status of the FIFOs input strobe enable bit.
no: FIFO is disabled
yes: FIFO is enabled

no=0
yes=1

11-4:8 last Vector with last marks for the bytes in FIFO. The least
significant bit (lsb) holds the last mark for first byte to be
shifted out.

3-0:4 avail bytes Number of bytes currently available in the FIFO.

1032 CHAPTER 25. INTERNAL REGISTERS

25.21.3 rw strb dif in

Address 0x8

Default
Type Read/Write

Description Generate a strobe at the input-channel of the FIFO. Forces the fifo to read data. The
number of bytes read corresponds to the width of the FIFO.

Bit(s) Name Description Value
1-0:2 last Select source used to define value of the last-bit.

no: Do not set the last flag
yes: Set last flag
fifo in: Use value stored in FIFO

no=0
yes=1
fifo in=2

25.21. IOP FIFO IN EXTRA 1033

25.21.4 rw intr mask

Address 0xc

Default 0x00000000

Type Read/Write

Description Interrupt mask. Interrupts generated by generic FIFO. Specifies which interrupts are
enabled in this subsystem. Only enabled interrupts will propagate to the central inter-
rupt handler. In C code the relationship betweenrw intr mask, r intr andr maskedintr
can be expressed as:
r maskedintr = r intr & rw intr mask

Bit(s) Name Description Value
4 orun Enable/disable orun interrupt. FIFO overrun interrupt. Gen-

erated when an attempt to write data beyond the end of the
FIFO is made.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

3 avail Enable/disable avail interrupt. Avail interrupt. Generated
when the number of available bytes exceeds the amount
specified inrw cfg.avail lim.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

2 dav Enable/disable dav interrupt. Data available interrupt. Gen-
erated when the amount of data available exceeds the num-
ber specified in:rw cfg.mode.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

1 last data Enable/disable lastdata interrupt. Last interrupt. Generated
if a byte with last-flag is received.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

0 urun Enable/disable urun interrupt. FIFO underrun interrupt.
Generated if the FIFO is read through the register interfaces
while empty.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

1034 CHAPTER 25. INTERNAL REGISTERS

25.21.5 rw ack intr

Address 0x10

Default
Type Read/Write

Description Acknowledge interrupts. Interrupts generated by generic FIFO.

Bit(s) Name Description Value
4 orun Acknowledge orun interrupt.

yes: Acknowledge interrupt
no: No operation

yes=1
no=0

3 avail Acknowledge avail interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

2 dav Acknowledge dav interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

1 last data Acknowledge lastdata interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

0 urun Acknowledge urun interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

25.21. IOP FIFO IN EXTRA 1035

25.21.6 r intr

Address 0x14

Default
Type Read

Description Interrupts before the mask. Interrupts generated by generic FIFO. Makes it pos-
sible to determine if an interrupt is active even though it is not enabled in the
mask (rw intr mask). In C code the relationship betweenrw intr mask, r intr and
r maskedintr can be expressed as:
r maskedintr = r intr & rw intr mask

Bit(s) Name Description Value
4 orun Interrupt orun active.

yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

3 avail Interrupt avail active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

2 dav Interrupt dav active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1 last data Interrupt lastdata active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

0 urun Interrupt urun active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1036 CHAPTER 25. INTERNAL REGISTERS

25.21.7 r masked intr

Address 0x18

Default
Type Read

Description Interrupts after the mask. Interrupts generated by generic FIFO. Tells which inter-
rupts are active and enabled (inrw intr mask). In C code the relationship between
rw intr mask, r intr andr maskedintr can be expressed as:
r maskedintr = r intr & rw intr mask

Bit(s) Name Description Value
4 orun Interrupt orun active and enabled.

yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

3 avail Interrupt avail active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

2 dav Interrupt dav active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1 last data Interrupt lastdata active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

0 urun Interrupt urun active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

25.22. IOP MPU 1037

25.22 iop mpu

Instance Base Address
iop mpu 0xb0021600

25.22.1 rw r

Address 0x0, 0x4, 0x8, 0xc, 0x10, 0x14, 0x18, 0x1c, 0x20, 0x24, 0x28, 0x2c, 0x30, 0x34, 0x38,
0x3c

Default
Type Read/Write

Description MPU general register. If data is written to the register then the corresponding bit in
r wr statis set.

1038 CHAPTER 25. INTERNAL REGISTERS

25.22.2 rw ctrl

Address 0x80

Default 0x00000000

Type Read/Write

Description The MPU control register.

Bit(s) Name Description Value
0 en The function of this field is to enable the MPU. Theenfield must not

be used for disabling the MPU. Disabling the MPU is done by writ-
ing the HALT instruction to therw instr register. When the MPU
is disabled, no micro code is executed except for the instruction in
rw instr.
no: Disable the MPU
yes: Enable the MPU

no=0
yes=1

25.22. IOP MPU 1039

25.22.3 r pc

Address 0x84

Default 0x00000000

Type Read

Description The MPU program counter.

Bit(s) Name Description Value
11-0:12 addr The program counter.

1040 CHAPTER 25. INTERNAL REGISTERS

25.22.4 r stat

Address 0x88

Default
Type Read

Description The MPU status register.

Bit(s) Name Description Value
17-2:16 intr vect Interrupt vector. Shows the interrupt requests.

intr vectis only updated whenrw ctrl.enequalsyes.

1 intr busy Interrupt status.
no: MPU is not running an interrupt routine
yes: MPU is running an interrupt routine

no=0
yes=1

0 instr reg busy Shows ifrw instrcontains an instruction which hasn’t
been executed.
no: The instruction register is not busy
yes: The instruction register is in use

no=0
yes=1

25.22. IOP MPU 1041

25.22.5 rw instr

Address 0x8c

Default
Type Read/Write

Description The instruction register. A MPU instruction can be written to this register. The MPU
will then be interrupted and the instruction from this register is executed. If the the MPU
is running an interrupt routine, the instruction won’t be executed until after the interrupt
routine has finished. When this register contains an instruction which has not yet been
executed, the status fieldr stat.instrreg busywill be set. If the instruction contains a
32-bit immediate value, the instruction must first be written torw instr before writing
the immediate value torw immediate.

1042 CHAPTER 25. INTERNAL REGISTERS

25.22.6 rw immediate

Address 0x90

Default
Type Read/Write

Description See description inrw instr.

25.22. IOP MPU 1043

25.22.7 r trace

Address 0x94

Default
Type Read

Description Trace register.

Bit(s) Name Description Value
30 intr busy Interrupt status (same asr stat.intrbusy).

no: MPU is not running an interrupt routine
yes: MPU is running an interrupt routine

no=0
yes=1

29 instr reg busy Status ofrw instr (same asr stat.instrreg busy).
no: The instruction register is not busy
yes: The instruction register is in use

no=0
yes=1

28 en MPU is enabled or disabled.
no: The MPU is disabled
yes: The MPU is enabled

no=0
yes=1

27-
16:12

pc The program counter (same asr pc.addr).

15-0:16 intr vect Interrupt vector. Shows the interrupt requests.
intr vectis only updated whenrw ctrl.enequalsyes.

1044 CHAPTER 25. INTERNAL REGISTERS

25.22.8 r wr stat

Address 0x98

Default
Type Read

Description When data is written to one of the general registers, the corresponding status bit in this
register is set. The MPU can acknowledge the change of a register by clearing the status
bit by executing an arithmetic instruction on the special register WSTS.

Bit(s) Name Description Value
15 r15 Write status for R15.

no: No value has been written to R15
yes: A value has been written to R15

no=0
yes=1

14 r14 Write status for R14.
no: No value has been written to R14
yes: A value has been written to R14

no=0
yes=1

13 r13 Write status for R13.
no: No value has been written to R13
yes: A value has been written to R13

no=0
yes=1

12 r12 Write status for R12.
no: No value has been written to R12
yes: A value has been written to R12

no=0
yes=1

11 r11 Write status for R11.
no: No value has been written to R11
yes: A value has been written to R11

no=0
yes=1

10 r10 Write status for R10.
no: No value has been written to R10
yes: A value has been written to R10

no=0
yes=1

9 r9 Write status for R9.
no: No value has been written to R9
yes: A value has been written to R9

no=0
yes=1

8 r8 Write status for R8.
no: No value has been written to R8
yes: A value has been written to R8

no=0
yes=1

7 r7 Write status for R7.
no: No value has been written to R7
yes: A value has been written to R7

no=0
yes=1

6 r6 Write status for R6.
no: No value has been written to R6
yes: A value has been written to R6

no=0
yes=1

5 r5 Write status for R5.
no: No value has been written to R5
yes: A value has been written to R5

no=0
yes=1

25.22. IOP MPU 1045

4 r4 Write status for R4.
no: No value has been written to R4
yes: A value has been written to R4

no=0
yes=1

3 r3 Write status for R3.
no: No value has been written to R3
yes: A value has been written to R3

no=0
yes=1

2 r2 Write status for R2.
no: No value has been written to R2
yes: A value has been written to R2

no=0
yes=1

1 r1 Write status for R1.
no: No value has been written to R1
yes: A value has been written to R1

no=0
yes=1

0 r0 Write status for R0.
no: No value has been written to R0
yes: A value has been written to R0

no=0
yes=1

1046 CHAPTER 25. INTERNAL REGISTERS

25.22.9 rw thread

Address 0x9c, 0xa0, 0xa4, 0xa8

Default 0x00000000, 0x00000000, 0x00000000, 0x00000000

Type Read/Write

Description Thread address.

Bit(s) Name Description Value
11-0:12 addr Contains a thread address which points to an address in the MPU

memory. Threads are explained in13.4.1.8.

25.22. IOP MPU 1047

25.22.10 rw intr

Address 0xc4, 0xc8, 0xcc, 0xd0, 0xd4, 0xd8, 0xdc, 0xe0, 0xe4, 0xe8, 0xec, 0xf0, 0xf4, 0xf8,
0xfc, 0x100

Default
Type Read/Write

Description Interrupt vector.

Bit(s) Name Description Value
11-0:12 addr Interrupt address in the MPU memory.

1048 CHAPTER 25. INTERNAL REGISTERS

25.23 iop sap in

Instance Base Address
iop sapin 0xb0020d00

25.23.1 rw bus0 sync

Address 0x0

Default 0x02020202

Type Read/Write

Description This register controls the synchronization of input BUS0. There are separate fields for
each byte of the bus.

Bit(s) Name Description Value
31 byte3delay Delay BUS0[31:24] with one 200 MHz

flip-flop, after synchronization.
no: No extra 200 MHz flip-flop
yes: Add one extra 200 MHz flip-flop

no=0
yes=1

30-29:2 byte3edge Selects edge of external source for
synchronization, only used ifbyte3sel
equalsext clk200or no del ext clk200.
pos: Data is synchronized on positive
edge
neg: Data is synchronized on negative
edge
posneg: Data is synchronized on both
positive and negative edge

pos=1
neg=2
posneg=3

28-26:3 byte3ext src Select source for external synchro-
nization (byte3sel equals ext clk200
or no del ext clk200) or Timer source
(byte3selequalstmr clk200).
gio1: Usein gio[1]
gio6: Usein gio[6]
gio7: Usein gio[7]
gio18: Usein gio[18]
gio19: Usein gio[19]
gio23: Usein gio[23]
timer grp0 tmr3: Use Timer group 0,
Timer 3
timer grp3 tmr3: Use Timer group 3,
Timer 3

gio1=0
gio6=1
gio7=2
gio18=3
gio19=4
gio23=5
timer grp0 tmr3=6
timer grp3 tmr3=7

25.23. IOP SAP IN 1049

25-24:2 byte3sel Select synchronization path for byte3,
BUS0[31:24].
tmr clk200: Use timer + 200 MHz flip-
flops for synchronization
two clk200: Use two 200 MHz flip-flops
for synchronization
no del ext clk200: Use external signal
(selected bybyte3ext src) and two 200
MHz flip-flops
ext clk200: Use external signal (selected
by byte3ext src) and two 200 MHz flip-
flops, data can handle zero hold time

tmr clk200=0
two clk200=2
no del ext clk200=1
ext clk200=3

23 byte2delay Delay BUS0[23:16] with one 200 MHz
flip-flop, after synchronization.
no: No extra 200 MHz flip-flop
yes: Add one extra 200 MHz flip-flop

no=0
yes=1

22-21:2 byte2edge Selects edge of external source for
synchronization, only used ifbyte2sel
equalsext clk200or no del ext clk200.
pos: Data is synchronized on positive
edge
neg: Data is synchronized on negative
edge
posneg: Data is synchronized on both
positive and negative edge

pos=1
neg=2
posneg=3

20-18:3 byte2ext src Select source for external synchro-
nization (byte2sel equals ext clk200
or no del ext clk200) or Timer source
(byte2selequalstmr clk200).
gio1: Usein gio[1]
gio6: Usein gio[6]
gio7: Usein gio[7]
gio18: Usein gio[18]
gio19: Usein gio[19]
gio23: Usein gio[23]
timer grp0 tmr3: Use Timer group 0,
Timer 3
timer grp3 tmr3: Use Timer group 3,
Timer 3

gio1=0
gio6=1
gio7=2
gio18=3
gio19=4
gio23=5
timer grp0 tmr3=6
timer grp3 tmr3=7

1050 CHAPTER 25. INTERNAL REGISTERS

17-16:2 byte2sel Select synchronization path for byte2,
BUS0[23:16].
tmr clk200: Use timer + 200 MHz flip-
flops for synchronization
two clk200: Use two 200 MHz flip-flops
for synchronization
no del ext clk200: Use external signal
(selected bybyte2ext src) and two 200
MHz flip-flops
ext clk200: Use external signal (selected
by byte2ext src) and two 200 MHz flip-
flops, data can handle zero hold time

tmr clk200=0
two clk200=2
no del ext clk200=1
ext clk200=3

15 byte1delay Delay BUS0[15:8] with one 200 MHz
flip-flop, after synchronization.
no: No extra 200 MHz flip-flop
yes: Add one extra 200 MHz flip-flop

no=0
yes=1

14-13:2 byte1edge Selects edge of external source for
synchronization, only used ifbyte1sel
equalsext clk200or no del ext clk200.
pos: Data is synchronized on positive
edge
neg: Data is synchronized on negative
edge
posneg: Data is synchronized on both
positive and negative edge

pos=1
neg=2
posneg=3

12-10:3 byte1ext src Select source for external synchro-
nization (byte1sel equals ext clk200
or no del ext clk200) or Timer source
(byte1selequalstmr clk200).
gio1: Usein gio[1]
gio6: Usein gio[6]
gio7: Usein gio[7]
gio18: Usein gio[18]
gio19: Usein gio[19]
gio23: Usein gio[23]
timer grp0 tmr3: Use Timer group 0,
Timer 3
timer grp3 tmr3: Use Timer group 3,
Timer 3

gio1=0
gio6=1
gio7=2
gio18=3
gio19=4
gio23=5
timer grp0 tmr3=6
timer grp3 tmr3=7

25.23. IOP SAP IN 1051

9-8:2 byte1sel Select synchronization path for byte1,
BUS0[15:8].
tmr clk200: Use timer + 200 MHz flip-
flops for synchronization
two clk200: Use two 200 MHz flip-flops
for synchronization
no del ext clk200: Use external signal
(selected bybyte1ext src) and two 200
MHz flip-flops
ext clk200: Use external signal (selected
by byte1ext src) and two 200 MHz flip-
flops, data can handle zero hold time

tmr clk200=0
two clk200=2
no del ext clk200=1
ext clk200=3

7 byte0delay Delay BUS0[7:0] with one 200 MHz flip-
flop, after synchronization.
no: No extra 200 MHz flip-flop
yes: Add one extra 200 MHz flip-flop

no=0
yes=1

6-5:2 byte0edge Selects edge of external source for
synchronization, only used ifbyte0sel
equalsext clk200or no del ext clk200.
pos: Data is synchronized on positive
edge
neg: Data is synchronized on negative
edge
posneg: Data is synchronized on both
positive and negative edge

pos=1
neg=2
posneg=3

4-2:3 byte0ext src Select source for external synchro-
nization (byte0sel equals ext clk200
or no del ext clk200) or Timer source
(byte0selequalstmr clk200).
gio1: Usein gio[1]
gio6: Usein gio[6]
gio7: Usein gio[7]
gio18: Usein gio[18]
gio19: Usein gio[19]
gio23: Usein gio[23]
timer grp0 tmr3: Use Timer group 0,
Timer 3
timer grp3 tmr3: Use Timer group 3,
Timer 3

gio1=0
gio6=1
gio7=2
gio18=3
gio19=4
gio23=5
timer grp0 tmr3=6
timer grp3 tmr3=7

1052 CHAPTER 25. INTERNAL REGISTERS

1-0:2 byte0sel Select synchronization path for byte0,
BUS0[7:0].
tmr clk200: Use timer + 200 MHz flip-
flops for synchronization
two clk200: Use two 200 MHz flip-flops
for synchronization
no del ext clk200: Use external signal
(selected bybyte0ext src) and two 200
MHz flip-flops
ext clk200: Use external signal (selected
by byte0ext src) and two 200 MHz flip-
flops, data can handle zero hold time

tmr clk200=0
two clk200=2
no del ext clk200=1
ext clk200=3

25.23. IOP SAP IN 1053

25.23.2 rw bus1 sync

Address 0x4

Default 0x02020202

Type Read/Write

Description This register controls the synchronization of input BUS1. There are separate fields for
each byte of the bus.

Bit(s) Name Description Value
31 byte3delay Delay BUS1[31:24] with one 200 MHz

flip-flop, after synchronization.
no: No extra 200 MHz flip-flop
yes: Add one extra 200 MHz flip-flop

no=0
yes=1

30-29:2 byte3edge Selects edge of external source for
synchronization, only used ifbyte3sel
equalsext clk200or no del ext clk200.
pos: Data is synchronized on positive
edge
neg: Data is synchronized on negative
edge
posneg: Data is synchronized on both
positive and negative edge

pos=1
neg=2
posneg=3

28-26:3 byte3ext src Select source for external synchro-
nization (byte3sel equals ext clk200
or no del ext clk200) or Timer source
(byte3selequalstmr clk200).
gio1: Usein gio[1]
gio6: Usein gio[6]
gio7: Usein gio[7]
gio18: Usein gio[18]
gio19: Usein gio[19]
gio23: Usein gio[23]
timer grp0 tmr3: Use Timer group 0,
Timer 3
timer grp3 tmr3: Use Timer group 3,
Timer 3

gio1=0
gio6=1
gio7=2
gio18=3
gio19=4
gio23=5
timer grp0 tmr3=6
timer grp3 tmr3=7

1054 CHAPTER 25. INTERNAL REGISTERS

25-24:2 byte3sel Select synchronization path for byte3,
BUS1[31:24].
tmr clk200: Use timer + 200 MHz flip-
flops for synchronization
two clk200: Use two 200 MHz flip-flops
for synchronization
no del ext clk200: Use external signal
(selected bybyte3ext src) and two 200
MHz flip-flops
ext clk200: Use external signal (selected
by byte3ext src) and two 200 MHz flip-
flops, data can handle zero hold time

tmr clk200=0
two clk200=2
no del ext clk200=1
ext clk200=3

23 byte2delay Delay BUS1[23:16] with one 200 MHz
flip-flop, after synchronization.
no: No extra 200 MHz flip-flop
yes: Add one extra 200 MHz flip-flop

no=0
yes=1

22-21:2 byte2edge Selects edge of external source for
synchronization, only used ifbyte2sel
equalsext clk200or no del ext clk200.
pos: Data is synchronized on positive
edge
neg: Data is synchronized on negative
edge
posneg: Data is synchronized on both
positive and negative edge

pos=1
neg=2
posneg=3

20-18:3 byte2ext src Select source for external synchro-
nization (byte2sel equals ext clk200
or no del ext clk200) or Timer source
(byte2selequalstmr clk200).
gio1: Usein gio[1]
gio6: Usein gio[6]
gio7: Usein gio[7]
gio18: Usein gio[18]
gio19: Usein gio[19]
gio23: Usein gio[23]
timer grp0 tmr3: Use Timer group 0,
Timer 3
timer grp3 tmr3: Use Timer group 3,
Timer 3

gio1=0
gio6=1
gio7=2
gio18=3
gio19=4
gio23=5
timer grp0 tmr3=6
timer grp3 tmr3=7

25.23. IOP SAP IN 1055

17-16:2 byte2sel Select synchronization path for byte2,
BUS1[23:16].
tmr clk200: Use timer + 200 MHz flip-
flops for synchronization
two clk200: Use two 200 MHz flip-flops
for synchronization
no del ext clk200: Use external signal
(selected bybyte2ext src) and two 200
MHz flip-flops
ext clk200: Use external signal (selected
by byte2ext src) and two 200 MHz flip-
flops, data can handle zero hold time

tmr clk200=0
two clk200=2
no del ext clk200=1
ext clk200=3

15 byte1delay Delay BUS1[15:8] with one 200 MHz
flip-flop, after synchronization.
no: No extra 200 MHz flip-flop
yes: Add one extra 200 MHz flip-flop

no=0
yes=1

14-13:2 byte1edge Selects edge of external source for
synchronization, only used ifbyte1sel
equalsext clk200or no del ext clk200.
pos: Data is synchronized on positive
edge
neg: Data is synchronized on negative
edge
posneg: Data is synchronized on both
positive and negative edge

pos=1
neg=2
posneg=3

12-10:3 byte1ext src Select source for external synchro-
nization (byte1sel equals ext clk200
or no del ext clk200) or Timer source
(byte1selequalstmr clk200).
gio1: Usein gio[1]
gio6: Usein gio[6]
gio7: Usein gio[7]
gio18: Usein gio[18]
gio19: Usein gio[19]
gio23: Usein gio[23]
timer grp0 tmr3: Use Timer group 0,
Timer 3
timer grp3 tmr3: Use Timer group 3,
Timer 3

gio1=0
gio6=1
gio7=2
gio18=3
gio19=4
gio23=5
timer grp0 tmr3=6
timer grp3 tmr3=7

1056 CHAPTER 25. INTERNAL REGISTERS

9-8:2 byte1sel Select synchronization path for byte1,
BUS1[15:8].
tmr clk200: Use timer + 200 MHz flip-
flops for synchronization
two clk200: Use two 200 MHz flip-flops
for synchronization
no del ext clk200: Use external signal
(selected bybyte1ext src) and two 200
MHz flip-flops
ext clk200: Use external signal (selected
by byte1ext src) and two 200 MHz flip-
flops, data can handle zero hold time

tmr clk200=0
two clk200=2
no del ext clk200=1
ext clk200=3

7 byte0delay Delay BUS1[7:0] with one 200 MHz flip-
flop, after synchronization.
no: No extra 200 MHz flip-flop
yes: Add one extra 200 MHz flip-flop

no=0
yes=1

6-5:2 byte0edge Selects edge of external source for
synchronization, only used ifbyte0sel
equalsext clk200or no del ext clk200.
pos: Data is synchronized on positive
edge
neg: Data is synchronized on negative
edge
posneg: Data is synchronized on both
positive and negative edge

pos=1
neg=2
posneg=3

4-2:3 byte0ext src Select source for external synchro-
nization (byte0sel equals ext clk200
or no del ext clk200) or Timer source
(byte0selequalstmr clk200).
gio1: Usein gio[1]
gio6: Usein gio[6]
gio7: Usein gio[7]
gio18: Usein gio[18]
gio19: Usein gio[19]
gio23: Usein gio[23]
timer grp0 tmr3: Use Timer group 0,
Timer 3
timer grp3 tmr3: Use Timer group 3,
Timer 3

gio1=0
gio6=1
gio7=2
gio18=3
gio19=4
gio23=5
timer grp0 tmr3=6
timer grp3 tmr3=7

25.23. IOP SAP IN 1057

1-0:2 byte0sel Select synchronization path for byte0,
BUS1[7:0].
tmr clk200: Use timer + 200 MHz flip-
flops for synchronization
two clk200: Use two 200 MHz flip-flops
for synchronization
no del ext clk200: Use external signal
(selected bybyte0ext src) and two 200
MHz flip-flops
ext clk200: Use external signal (selected
by byte0ext src) and two 200 MHz flip-
flops, data can handle zero hold time

tmr clk200=0
two clk200=2
no del ext clk200=1
ext clk200=3

1058 CHAPTER 25. INTERNAL REGISTERS

25.23.3 rw gio

Address 0x8, 0xc, 0x10, 0x14, 0x18, 0x1c, 0x20, 0x24, 0x28, 0x2c, 0x30, 0x34, 0x38, 0x3c,
0x40, 0x44, 0x48, 0x4c, 0x50, 0x54, 0x58, 0x5c, 0x60, 0x64, 0x68, 0x6c, 0x70, 0x74,
0x78, 0x7c, 0x80, 0x84

Default 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000

Type Read/Write

Description This vector register controls the synchronization and NOT/AND/OR logic of each input
GIO.

Bit(s) Name Description Value
9-8:2 logic NOT/AND/OR logic for GIO. Each syn-

chronized GIO can be and:ed or or:ed with
another synchronized GIO input. e.g.,
GIO[0] can be and:ed with GIO[1]. Note:
GIO[31] uses GIO[0] as operand.
none: No extra logic
inv: The GIO[x] signal is inverted
and: The GIO[x] signal is and:ed with
GIO[x+1]
or: The GIO[x] signal is or:ed with
GIO[x+1]

none=0
inv=1
and=2
or=3

7 delay Delay GIO with one 200 MHz flip-flop, af-
ter synchronization.
no: No extra 200 MHz flip-flop
yes: Add one extra 200 MHz flip-flop

no=0
yes=1

6-5:2 syncedge Selects edge of external source for syn-
chronization, only used ifsyncsel equals
ext clk200or no del ext clk200.
pos: Data is synchronized on positive edge
neg: Data is synchronized on negative
edge
posneg: Data is synchronized on both
positive and negative edge

pos=1
neg=2
posneg=3

25.23. IOP SAP IN 1059

4-2:3 syncext src Select source for external synchro-
nization (syncsel equals ext clk200
or no del ext clk200) or Timer source
(syncselequalstmr clk200).
timer grp1 tmr3: Use Timer group 1,
Timer 3
timer grp2 tmr3: Use Timer group 2,
Timer 3
timer grp0 tmr3: Use Timer group 0,
Timer 3
timer grp3 tmr3: Use Timer group 3,
Timer 3
gio1: Usein gio[1]
gio6: Usein gio[6]
gio7: Usein gio[7]
gio18: Usein gio[18]
gio5: Usein gio[5]
gio13: Usein gio[13]
gio21: Usein gio[21]
gio29: Usein gio[29]

timer grp1 tmr3=4
timer grp2 tmr3=5
timer grp0 tmr3=6
timer grp3 tmr3=7
gio1=0
gio6=1
gio7=2
gio18=3
gio5=4
gio13=5
gio21=6
gio29=7

1-0:2 syncsel Select synchronization path for GIO.
tmr clk200: Use Timer, selected by
syncext src, followed by two 200 MHz
flip-flops for synchronization
two clk200: Use two 200 MHz flip-flops
for synchronization
no del ext clk200: Use external signal
(selected bysyncext src) and two 200
MHz flip-flops
ext clk200: Use external signal (selected
by syncext src) and two 200 MHz flip-
flops, data can handle zero hold time

tmr clk200=0
two clk200=2
no del ext clk200=1
ext clk200=3

1060 CHAPTER 25. INTERNAL REGISTERS

25.24 iop sap out

Instance Base Address
iop sapout 0xb0020e00

25.24.1 rw gen gated

Address 0x0

Default 0x00000000

Type Read/Write

Description This register is used to configure the SAPOUT gated clocks. There are four gated
clocks which can be used to clock out signals.

Bit(s) Name Description Value
27-25:3 clk3 force src The clk3 force src selects a signal to OR with

the signal selected byclk3 gatesrc, before
latch.
none: Use no signal
spu0gio6: Use spu0out gio[6]
spu0gio7: Use spu0out gio[7]
spu0gio15: Use spu0out gio[15]
spu1gio6: Use spu1out gio[6]
spu1gio7: Use spu1out gio[7]
spu1gio15: Use spu1out gio[15]

none=0
spu0gio6=2
spu0gio7=3
spu0gio15=4
spu1gio6=5
spu1gio7=6
spu1gio15=7

24-23:2 clk3 gatesrc Gate source for gated clock 3.
gio7: Usein gio[7]
gio15: Usein gio[15]
gio23: Usein gio[23]
gio31: Usein gio[31]

gio7=0
gio15=1
gio23=2
gio31=3

22-21:2 clk3 src Clock source for gated clock 3.
gio1: Usein gio[1]
gio5: Usein gio[5]
gio13: Usein gio[13]
gio18: Usein gio[18]

gio1=0
gio5=1
gio13=2
gio18=3

20-18:3 clk2 force src The clk2 force src selects a signal to OR with
the signal selected byclk2 gatesrc, before
latch.
none: Use no signal
spu0gio4: Use spu0out gio[4]
spu0gio5: Use spu0out gio[5]
spu0gio14: Use spu0out gio[14]
spu1gio4: Use spu1out gio[4]
spu1gio5: Use spu1out gio[5]
spu1gio14: Use spu1out gio[14]

none=0
spu0gio4=2
spu0gio5=3
spu0gio14=4
spu1gio4=5
spu1gio5=6
spu1gio14=7

25.24. IOP SAP OUT 1061

17-16:2 clk2 gatesrc Gate source for gated clock 2.
gio7: Usein gio[7]
gio15: Usein gio[15]
gio23: Usein gio[23]
gio31: Usein gio[31]

gio7=0
gio15=1
gio23=2
gio31=3

15-14:2 clk2 src Clock source for gated clock 2.
gio1: Usein gio[1]
gio5: Usein gio[5]
gio13: Usein gio[13]
gio18: Usein gio[18]

gio1=0
gio5=1
gio13=2
gio18=3

13-11:3 clk1 force src The clk1 force src selects a signal to OR with
the signal selected byclk1 gatesrc, before
latch.
none: Use no signal
spu0gio2: Use spu0out gio[2]
spu0gio3: Use spu0out gio[3]
spu0gio13: Use spu0out gio[13]
spu1gio2: Use spu1out gio[2]
spu1gio3: Use spu1out gio[3]
spu1gio13: Use spu1out gio[13]

none=0
spu0gio2=2
spu0gio3=3
spu0gio13=4
spu1gio2=5
spu1gio3=6
spu1gio13=7

10-9:2 clk1 gatesrc Gate source for gated clock 1.
gio7: Usein gio[7]
gio15: Usein gio[15]
gio23: Usein gio[23]
gio31: Usein gio[31]

gio7=0
gio15=1
gio23=2
gio31=3

8-7:2 clk1 src Clock source for gated clock 1.
gio1: Usein gio[1]
gio5: Usein gio[5]
gio13: Usein gio[13]
gio18: Usein gio[18]

gio1=0
gio5=1
gio13=2
gio18=3

6-4:3 clk0 force src The clk0 force src selects a signal to OR with
the signal selected byclk0 gatesrc, before
latch.
none: Use no signal
spu0gio0: Use spu0out gio[0]
spu0gio1: Use spu0out gio[1]
spu0gio12: Use spu0out gio[12]
spu1gio0: Use spu1out gio[0]
spu1gio1: Use spu1out gio[1]
spu1gio12: Use spu1out gio[12]

none=0
spu0gio0=2
spu0gio1=3
spu0gio12=4
spu1gio0=5
spu1gio1=6
spu1gio12=7

3-2:2 clk0 gatesrc Gate source for gated clock 0.
gio7: Usein gio[7]
gio15: Usein gio[15]
gio23: Usein gio[23]
gio31: Usein gio[31]

gio7=0
gio15=1
gio23=2
gio31=3

1062 CHAPTER 25. INTERNAL REGISTERS

1-0:2 clk0 src Clock source for gated clock 0.
gio1: Usein gio[1]
gio5: Usein gio[5]
gio13: Usein gio[13]
gio18: Usein gio[18]

gio1=0
gio5=1
gio13=2
gio18=3

25.24. IOP SAP OUT 1063

25.24.2 rw bus0

Address 0x4

Default 0x00000000

Type Read/Write

Description This register controls the out-clocking of BUS0. Each byte of the bus has separate fields
to select out-clocking behavior.

Bit(s) Name Description Value
23 byte3clk inv Invert gated clock before out clocking. This field is

only used ifbyte3clk selequalsgated.
no: Do not invert gated clock (posedge)
yes: Inverted gated clock (negedge)

no=0
yes=1

22-21:2 byte3gatedclk Select which gated clock to use. This field is only
used ifbyte3clk selequalsgated.
clk0: Use gated clock 0
clk1: Use gated clock 1
clk2: Use gated clock 2
clk3: Use gated clock 3

clk0=0
clk1=1
clk2=2
clk3=3

20-18:3 byte3clk sel Out-clocking of byte3, bus0[31:24].
none: No flip-flops at all
clk200: Use one 200 MHz flip-flop
gated: Use one flip-flop, clocked by gated clock

none=0
clk200=1
gated=4

17 byte2clk inv Invert gated clock before out clocking. This field is
only used ifbyte2clk selequalsgated.
no: Do not invert gated clock (posedge)
yes: Inverted gated clock (negedge)

no=0
yes=1

16-15:2 byte2gatedclk Select which gated clock to use. This field is only
used ifbyte2clk selequalsgated.
clk0: Use gated clock 0
clk1: Use gated clock 1
clk2: Use gated clock 2
clk3: Use gated clock 3

clk0=0
clk1=1
clk2=2
clk3=3

14-12:3 byte2clk sel Out-clocking of byte2, bus0[23:16].
none: No flip-flops at all
clk200: Use one 200 MHz flip-flop
gated: Use one flip-flop, clocked by gated clock

none=0
clk200=1
gated=4

11 byte1clk inv Invert gated clock before out clocking. This field is
only used ifbyte1clk selequalsgated.
no: Do not invert gated clock (posedge)
yes: Inverted gated clock (negedge)

no=0
yes=1

1064 CHAPTER 25. INTERNAL REGISTERS

10-9:2 byte1gatedclk Select which gated clock to use. This field is only
used ifbyte1clk selequalsgated.
clk0: Use gated clock 0
clk1: Use gated clock 1
clk2: Use gated clock 2
clk3: Use gated clock 3

clk0=0
clk1=1
clk2=2
clk3=3

8-6:3 byte1clk sel Out-clocking of byte1, bus0[15:8].
none: No flip-flops at all
clk200: Use one 200 MHz flip-flop
gated: Use one flip-flop, clocked by gated clock

none=0
clk200=1
gated=4

5 byte0clk inv Invert gated clock before out clocking. This field is
only used ifbyte0clk selequalsgated.
no: Do not invert gated clock (posedge)
yes: Inverted gated clock (negedge)

no=0
yes=1

4-3:2 byte0gatedclk Select which gated clock to use. This field is only
used ifbyte0clk selequalsgated.
clk0: Use gated clock 0
clk1: Use gated clock 1
clk2: Use gated clock 2
clk3: Use gated clock 3

clk0=0
clk1=1
clk2=2
clk3=3

2-0:3 byte0clk sel Out-clocking of byte0, bus0[7:0].
none: No flip-flops at all
clk200: Use one 200 MHz flip-flop
gated: Use one flip-flop, clocked by gated clock

none=0
clk200=1
gated=4

25.24. IOP SAP OUT 1065

25.24.3 rw bus1

Address 0x8

Default 0x00000000

Type Read/Write

Description This register controls the out-clocking of BUS1. Each byte of the bus has separate fields
to select out-clocking behavior.

Bit(s) Name Description Value
23 byte3clk inv Invert gated clock before out clocking. This field is

only used ifbyte3clk selequalsgated.
no: Do not invert gated clock (posedge)
yes: Inverted gated clock (negedge)

no=0
yes=1

22-21:2 byte3gatedclk Select which gated clock to use. This field is only
used ifbyte3clk selequalsgated.
clk0: Use gated clock 0
clk1: Use gated clock 1
clk2: Use gated clock 2
clk3: Use gated clock 3

clk0=0
clk1=1
clk2=2
clk3=3

20-18:3 byte3clk sel Out-clocking of byte3, bus1[31:24].
none: No flip-flops at all
clk200: Use one 200 MHz flip-flop
gated: Use one flip-flop, clocked by gated clock

none=0
clk200=1
gated=4

17 byte2clk inv Invert gated clock before out clocking. This field is
only used ifbyte2clk selequalsgated.
no: Do not invert gated clock (posedge)
yes: Inverted gated clock (negedge)

no=0
yes=1

16-15:2 byte2gatedclk Select which gated clock to use. This field is only
used ifbyte2clk selequalsgated.
clk0: Use gated clock 0
clk1: Use gated clock 1
clk2: Use gated clock 2
clk3: Use gated clock 3

clk0=0
clk1=1
clk2=2
clk3=3

14-12:3 byte2clk sel Out-clocking of byte2, bus1[23:16].
none: No flip-flops at all
clk200: Use one 200 MHz flip-flop
gated: Use one flip-flop, clocked by gated clock

none=0
clk200=1
gated=4

11 byte1clk inv Invert gated clock before out clocking. This field is
only used ifbyte1clk selequalsgated.
no: Do not invert gated clock (posedge)
yes: Inverted gated clock (negedge)

no=0
yes=1

1066 CHAPTER 25. INTERNAL REGISTERS

10-9:2 byte1gatedclk Select which gated clock to use. This field is only
used ifbyte1clk selequalsgated.
clk0: Use gated clock 0
clk1: Use gated clock 1
clk2: Use gated clock 2
clk3: Use gated clock 3

clk0=0
clk1=1
clk2=2
clk3=3

8-6:3 byte1clk sel Out-clocking of byte1, bus1[15:8].
none: No flip-flops at all
clk200: Use one 200 MHz flip-flop
gated: Use one flip-flop, clocked by gated clock

none=0
clk200=1
gated=4

5 byte0clk inv Invert gated clock before out clocking. This field is
only used ifbyte0clk selequalsgated.
no: Do not invert gated clock (posedge)
yes: Inverted gated clock (negedge)

no=0
yes=1

4-3:2 byte0gatedclk Select which gated clock to use. This field is only
used ifbyte0clk selequalsgated.
clk0: Use gated clock 0
clk1: Use gated clock 1
clk2: Use gated clock 2
clk3: Use gated clock 3

clk0=0
clk1=1
clk2=2
clk3=3

2-0:3 byte0clk sel Out-clocking of byte0, bus1[7:0].
none: No flip-flops at all
clk200: Use one 200 MHz flip-flop
gated: Use one flip-flop, clocked by gated clock

none=0
clk200=1
gated=4

25.24. IOP SAP OUT 1067

25.24.4 rw bus0 lo oe

Address 0xc

Default 0x00000000

Type Read/Write

Description This register controls the out-clocking of the output enable (OE) signal used for byte0
and byte1 of BUS0. OE for each byte can be clocked out by selected source.

Bit(s) Name Description Value
21-20:2 byte1 logic NOT/AND/NAND logic for byte1 OE signal.

none: No extra logic
inv: The OE signal is inverted
and: The OE signal is and:ed without gio[4]
nand: The OE signal is nand:ed without gio[4]

none=0
inv=1
and=2
nand=3

19 byte1clk inv Invert gated, external clock or 12 MHz clock
before out clocking. This field is only used if
byte1clk selequalsgated, extor clk12.
no: Do not invert clock (posedge)
yes: Inverted clock (negedge)

no=0
yes=1

18-17:2 byte1gatedclk Select which gated clock to use. This field is only
used ifbyte1clk selequalsgated.
clk0: Use gated clock 0
clk1: Use gated clock 1
clk2: Use gated clock 2
clk3: Use gated clock 3

clk0=0
clk1=1
clk2=2
clk3=3

16-14:3 byte1clk ext External signal used for clocking out OE for
byte1, BUS0[15:8]. This field is only used if
byte1clk selequalsext.
in gio5: Usein gio[5]
in gio13: Usein gio[13]
in gio21: Usein gio[21]
in gio29: Usein gio[29]

in gio5=0
in gio13=1
in gio21=2
in gio29=3

13-11:3 byte1clk sel Out-clocking source of OE for byte1,
BUS0[15:8].
none: No flip-flops at all
clk200: Use one 200 MHz flip-flop
clk12: Use one 12 MHz flip-flop
ext: Use one flip-flop, clocked by an external
source (selected bybyte1clk ext)
gated: Use one flip-flop, clocked by gated clock
(selected bybyte1gatedclk)

none=0
clk200=1
clk12=2
ext=3
gated=4

10-9:2 byte0 logic NOT/AND/NAND logic for byte0 OE signal.
none: No extra logic
inv: The OE signal is inverted
and: The OE signal is and:ed without gio[4]
nand: The OE signal is nand:ed without gio[4]

none=0
inv=1
and=2
nand=3

1068 CHAPTER 25. INTERNAL REGISTERS

8 byte0clk inv Invert gated, external clock or 12 MHz clock
before out clocking. This field is only used if
byte0clk selequalsgated, extor clk12.
no: Do not invert clock (posedge)
yes: Inverted clock (negedge)

no=0
yes=1

7-6:2 byte0gatedclk Select which gated clock to use. This field is only
used ifbyte0clk selequalsgated.
clk0: Use gated clock 0
clk1: Use gated clock 1
clk2: Use gated clock 2
clk3: Use gated clock 3

clk0=0
clk1=1
clk2=2
clk3=3

5-3:3 byte0clk ext External signal used for clocking out OE for
byte0, BUS0[7:0]. This field is only used if
byte0clk selequalsext.
in gio5: Usein gio[5]
in gio13: Usein gio[13]
in gio21: Usein gio[21]
in gio29: Usein gio[29]

in gio5=0
in gio13=1
in gio21=2
in gio29=3

2-0:3 byte0clk sel Out-clocking source of OE for byte0, BUS0[7:0].
none: No flip-flops at all
clk200: Use one 200 MHz flip-flop
clk12: Use one 12 MHz flip-flop
ext: Use one flip-flop, clocked by an external
source (selected bybyte0clk ext)
gated: Use one flip-flop, clocked by gated clock
(selected bybyte0gatedclk)

none=0
clk200=1
clk12=2
ext=3
gated=4

25.24. IOP SAP OUT 1069

25.24.5 rw bus0 hi oe

Address 0x10

Default 0x00000000

Type Read/Write

Description This register controls the out-clocking of the output enable (OE) signal used for byte2
and byte3 of BUS0. OE for each byte can be clocked out by selected source.

Bit(s) Name Description Value
21-20:2 byte3 logic NOT/AND/NAND logic for byte3 OE signal.

none: No extra logic
inv: The OE signal is inverted
and: The OE signal is and:ed without gio[4]
nand: The OE signal is nand:ed without gio[4]

none=0
inv=1
and=2
nand=3

19 byte3clk inv Invert gated, external clock or 12 MHz clock
before out clocking. This field is only used if
byte3clk selequalsgated, extor clk12.
no: Do not invert clock (posedge)
yes: Inverted clock (negedge)

no=0
yes=1

18-17:2 byte3gatedclk Select which gated clock to use. This field is only
used ifbyte3clk selequalsgated.
clk0: Use gated clock 0
clk1: Use gated clock 1
clk2: Use gated clock 2
clk3: Use gated clock 3

clk0=0
clk1=1
clk2=2
clk3=3

16-14:3 byte3clk ext External signal used for clocking out OE for
byte3, BUS0[31:24]. This field is only used if
byte3clk selequalsext.
in gio5: Usein gio[5]
in gio13: Usein gio[13]
in gio21: Usein gio[21]
in gio29: Usein gio[29]

in gio5=0
in gio13=1
in gio21=2
in gio29=3

13-11:3 byte3clk sel Out-clocking source of OE for byte3,
BUS0[31:24].
none: No flip-flops at all
clk200: Use one 200 MHz flip-flop
clk12: Use one 12 MHz flip-flop
ext: Use one flip-flop, clocked by an external
source (selected bybyte3clk ext)
gated: Use one flip-flop, clocked by gated clock
(selected bybyte3gatedclk)

none=0
clk200=1
clk12=2
ext=3
gated=4

10-9:2 byte2 logic NOT/AND/NAND logic for byte2 OE signal.
none: No extra logic
inv: The OE signal is inverted
and: The OE signal is and:ed without gio[4]
nand: The OE signal is nand:ed without gio[4]

none=0
inv=1
and=2
nand=3

1070 CHAPTER 25. INTERNAL REGISTERS

8 byte2clk inv Invert gated, external clock or 12 MHz clock
before out clocking. This field is only used if
byte2clk selequalsgated, extor clk12.
no: Do not invert clock (posedge)
yes: Inverted clock (negedge)

no=0
yes=1

7-6:2 byte2gatedclk Select which gated clock to use. This field is only
used ifbyte2clk selequalsgated.
clk0: Use gated clock 0
clk1: Use gated clock 1
clk2: Use gated clock 2
clk3: Use gated clock 3

clk0=0
clk1=1
clk2=2
clk3=3

5-3:3 byte2clk ext External signal used for clocking out OE for
byte2, BUS0[23:16]. This field is only used if
byte2clk selequalsext.
in gio5: Usein gio[5]
in gio13: Usein gio[13]
in gio21: Usein gio[21]
in gio29: Usein gio[29]

in gio5=0
in gio13=1
in gio21=2
in gio29=3

2-0:3 byte2clk sel Out-clocking source of OE for byte2,
BUS0[23:16].
none: No flip-flops at all
clk200: Use one 200 MHz flip-flop
clk12: Use one 12 MHz flip-flop
ext: Use one flip-flop, clocked by an external
source (selected bybyte2clk ext)
gated: Use one flip-flop, clocked by gated clock
(selected bybyte2gatedclk)

none=0
clk200=1
clk12=2
ext=3
gated=4

25.24. IOP SAP OUT 1071

25.24.6 rw bus1 lo oe

Address 0x14

Default 0x00000000

Type Read/Write

Description This register controls the out-clocking of the output enable (OE) signal used for byte0
and byte1 of BUS1. OE for each byte can be clocked out by selected source.

Bit(s) Name Description Value
21-20:2 byte1 logic NOT/AND/NAND logic for byte1 OE signal.

none: No extra logic
inv: The OE signal is inverted
and: The OE signal is and:ed without gio[0]
nand: The OE signal is nand:ed without gio[0]

none=0
inv=1
and=2
nand=3

19 byte1clk inv Invert gated, external clock or 12 MHz clock
before out clocking. This field is only used if
byte1clk selequalsgated, extor clk12.
no: Do not invert clock (posedge)
yes: Inverted clock (negedge)

no=0
yes=1

18-17:2 byte1gatedclk Select which gated clock to use. This field is only
used ifbyte1clk selequalsgated.
clk0: Use gated clock 0
clk1: Use gated clock 1
clk2: Use gated clock 2
clk3: Use gated clock 3

clk0=0
clk1=1
clk2=2
clk3=3

16-14:3 byte1clk ext External signal used for clocking out OE for
byte1, BUS1[15:8]. This field is only used if
byte1clk selequalsext.
in gio5: Usein gio[5]
in gio13: Usein gio[13]
in gio21: Usein gio[21]
in gio29: Usein gio[29]

in gio5=0
in gio13=1
in gio21=2
in gio29=3

13-11:3 byte1clk sel Out-clocking source of OE for byte1,
BUS1[15:8].
none: No flip-flops at all
clk200: Use one 200 MHz flip-flop
clk12: Use one 12 MHz flip-flop
ext: Use one flip-flop, clocked by an external
source (selected bybyte1clk ext)
gated: Use one flip-flop, clocked by gated clock
(selected bybyte1gatedclk)

none=0
clk200=1
clk12=2
ext=3
gated=4

10-9:2 byte0 logic NOT/AND/NAND logic for byte0 OE signal.
none: No extra logic
inv: The OE signal is inverted
and: The OE signal is and:ed without gio[0]
nand: The OE signal is nand:ed without gio[0]

none=0
inv=1
and=2
nand=3

1072 CHAPTER 25. INTERNAL REGISTERS

8 byte0clk inv Invert gated, external clock or 12 MHz clock
before out clocking. This field is only used if
byte0clk selequalsgated, extor clk12.
no: Do not invert clock (posedge)
yes: Inverted clock (negedge)

no=0
yes=1

7-6:2 byte0gatedclk Select which gated clock to use. This field is only
used ifbyte0clk selequalsgated.
clk0: Use gated clock 0
clk1: Use gated clock 1
clk2: Use gated clock 2
clk3: Use gated clock 3

clk0=0
clk1=1
clk2=2
clk3=3

5-3:3 byte0clk ext External signal used for clocking out OE for
byte0, BUS1[7:0]. This field is only used if
byte0clk selequalsext.
in gio5: Usein gio[5]
in gio13: Usein gio[13]
in gio21: Usein gio[21]
in gio29: Usein gio[29]

in gio5=0
in gio13=1
in gio21=2
in gio29=3

2-0:3 byte0clk sel Out-clocking source of OE for byte0, BUS1[7:0].
none: No flip-flops at all
clk200: Use one 200 MHz flip-flop
clk12: Use one 12 MHz flip-flop
ext: Use one flip-flop, clocked by an external
source (selected bybyte0clk ext)
gated: Use one flip-flop, clocked by gated clock
(selected bybyte0gatedclk)

none=0
clk200=1
clk12=2
ext=3
gated=4

25.24. IOP SAP OUT 1073

25.24.7 rw bus1 hi oe

Address 0x18

Default 0x00000000

Type Read/Write

Description This register controls the out-clocking of the output enable (OE) signal used for byte2
and byte3 of BUS1. OE for each byte can be clocked out by selected source.

Bit(s) Name Description Value
21-20:2 byte3 logic NOT/AND/NAND logic for byte3 OE signal.

none: No extra logic
inv: The OE signal is inverted
and: The OE signal is and:ed without gio[0]
nand: The OE signal is nand:ed without gio[0]

none=0
inv=1
and=2
nand=3

19 byte3clk inv Invert gated, external clock or 12 MHz clock
before out clocking. This field is only used if
byte3clk selequalsgated, extor clk12.
no: Do not invert clock (posedge)
yes: Inverted clock (negedge)

no=0
yes=1

18-17:2 byte3gatedclk Select which gated clock to use. This field is only
used ifbyte3clk selequalsgated.
clk0: Use gated clock 0
clk1: Use gated clock 1
clk2: Use gated clock 2
clk3: Use gated clock 3

clk0=0
clk1=1
clk2=2
clk3=3

16-14:3 byte3clk ext External signal used for clocking out OE for
byte3, BUS1[31:24]. This field is only used if
byte3clk selequalsext.
in gio5: Usein gio[5]
in gio13: Usein gio[13]
in gio21: Usein gio[21]
in gio29: Usein gio[29]

in gio5=0
in gio13=1
in gio21=2
in gio29=3

13-11:3 byte3clk sel Out-clocking source of OE for byte3,
BUS1[31:24].
none: No flip-flops at all
clk200: Use one 200 MHz flip-flop
clk12: Use one 12 MHz flip-flop
ext: Use one flip-flop, clocked by an external
source (selected bybyte3clk ext)
gated: Use one flip-flop, clocked by gated clock
(selected bybyte3gatedclk)

none=0
clk200=1
clk12=2
ext=3
gated=4

10-9:2 byte2 logic NOT/AND/NAND logic for byte2 OE signal.
none: No extra logic
inv: The OE signal is inverted
and: The OE signal is and:ed without gio[0]
nand: The OE signal is nand:ed without gio[0]

none=0
inv=1
and=2
nand=3

1074 CHAPTER 25. INTERNAL REGISTERS

8 byte2clk inv Invert gated, external clock or 12 MHz clock
before out clocking. This field is only used if
byte2clk selequalsgated, extor clk12.
no: Do not invert clock (posedge)
yes: Inverted clock (negedge)

no=0
yes=1

7-6:2 byte2gatedclk Select which gated clock to use. This field is only
used ifbyte2clk selequalsgated.
clk0: Use gated clock 0
clk1: Use gated clock 1
clk2: Use gated clock 2
clk3: Use gated clock 3

clk0=0
clk1=1
clk2=2
clk3=3

5-3:3 byte2clk ext External signal used for clocking out OE for
byte2, BUS1[23:16]. This field is only used if
byte2clk selequalsext.
in gio5: Usein gio[5]
in gio13: Usein gio[13]
in gio21: Usein gio[21]
in gio29: Usein gio[29]

in gio5=0
in gio13=1
in gio21=2
in gio29=3

2-0:3 byte2clk sel Out-clocking source of OE for byte2,
BUS1[23:16].
none: No flip-flops at all
clk200: Use one 200 MHz flip-flop
clk12: Use one 12 MHz flip-flop
ext: Use one flip-flop, clocked by an external
source (selected bybyte2clk ext)
gated: Use one flip-flop, clocked by gated clock
(selected bybyte2gatedclk)

none=0
clk200=1
clk12=2
ext=3
gated=4

25.24. IOP SAP OUT 1075

25.24.8 rw gio

Address 0x1c, 0x20, 0x24, 0x28, 0x2c, 0x30, 0x34, 0x38, 0x3c, 0x40, 0x44, 0x48, 0x4c, 0x50,
0x54, 0x58, 0x5c, 0x60, 0x64, 0x68, 0x6c, 0x70, 0x74, 0x78, 0x7c, 0x80, 0x84, 0x88,
0x8c, 0x90, 0x94, 0x98

Default 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000

Type Read/Write

Description This register controls the out-clocking of the GIO and output enable (OE). The gio and
its oe signal can be clocked out by selected source.

Bit(s) Name Description Value
21-20:2 oe logic NOT/AND/NAND logic for GIO OE sig-

nal. The value of a is either 0 or 4 depend-
ing on the index number ofrw gio. For in-
dex 0, 5-7, 16-23 and 28-31,out gio[4]
is used and for index 1-4, 8-15 and 24-27,
out gio[0].
none: No extra logic
inv: The OE signal is inverted
and: The OE signal is and:ed with
out gio[a]
nand: The OE signal is nand:ed with
out gio[a]

none=0
inv=1
and=2
nand=3

19 oe clk inv Invert gated, external clock or 12 MHz
clock before OE out clocking. This field is
only used ifoe clk sel equalsgated, ext or
clk12.
no: Do not invert clock (posedge)
yes: Inverted clock (negedge)

no=0
yes=1

18-17:2 oe gatedclk Select which gated clock to use. This field
is only used ifoe clk selequalsgated.
clk0: Use gated clock 0
clk1: Use gated clock 1
clk2: Use gated clock 2
clk3: Use gated clock 3

clk0=0
clk1=1
clk2=2
clk3=3

16-14:3 oe clk ext External signal used for clocking out OE,
this field is only used ifoe clk sel equals
ext.
in gio5: Usein gio[5]
in gio13: Usein gio[13]
in gio21: Usein gio[21]
in gio29: Usein gio[29]

in gio5=0
in gio13=1
in gio21=2
in gio29=3

1076 CHAPTER 25. INTERNAL REGISTERS

13-11:3 oe clk sel Out-clocking source of OE for GIO out.
none: No flip-flops at all
clk200: Use one 200 MHz flip-flop
clk12: Use one 12 MHz flip-flop
ext: Use one flip-flop, clocked by an exter-
nal source (selected byoe clk ext)
gated: Use one flip-flop, clocked by gated
clock (selected byoe gatedclk)

none=0
clk200=1
clk12=2
ext=3
gated=4

10 out logic Out logic for GIO out signal.
none: No extra logic
inv: The outgio signal is inverted

none=0
inv=1

9 out clk inv Invert gated, external clock or 12 MHz
clock before out clocking. This field is
only used ifout clk selequalsgated, ext or
clk12.
no: Do not invert clock (posedge)
yes: Inverted clock (negedge)

no=0
yes=1

8-7:2 out gatedclk Select which gated clock to use. This field
is only used ifout clk selequalsgated.
clk0: Use gated clock 0
clk1: Use gated clock 1
clk2: Use gated clock 2
clk3: Use gated clock 3

clk0=0
clk1=1
clk2=2
clk3=3

6-3:4 out clk ext Select source for clocking out GIO
(out clk sel equals ext) or Timer source
(out clk selequalstmr).
timer grp0 tmr2: Use timer group 0
timer grp1 tmr2: Use timer group 1
timer grp2 tmr2: Use timer group 2
timer grp3 tmr2: Use timer group 3
gio1 clk: Usein gio[1]
gio5 clk: Usein gio[5]
gio6 clk: Usein gio[6]
gio7 clk: Usein gio[7]
gio13 clk: Usein gio[13]
gio18 clk: Usein gio[18]
gio21 clk: Usein gio[21]
gio29 clk: Usein gio[29]

timer grp0 tmr2=4
timer grp1 tmr2=5
timer grp2 tmr2=6
timer grp3 tmr2=7
gio1 clk=8
gio5 clk=9
gio6 clk=10
gio7 clk=11
gio13 clk=12
gio18 clk=13
gio21 clk=14
gio29 clk=15

25.24. IOP SAP OUT 1077

2-0:3 out clk sel Out-clocking source of GIO out.
none: No flip-flops at all
clk200: Use one 200 MHz flip-flop
clk12: Use one 12 MHz flip-flop
ext: Use one flip-flop, clocked by an exter-
nal source (selected byout clk ext)
gated: Use one flip-flop, clocked by gated
clock (selected byout gatedclk)
tmr: Use one flip-flop, clocked by 200 MHz
+ timer signal (selected byout clk ext)

none=0
clk200=1
clk12=2
ext=3
gated=4
tmr=5

1078 CHAPTER 25. INTERNAL REGISTERS

25.25 iop spu

Instance Base Address
iop spu0 0xb0020f00

iop spu1 0xb0021000

25.25.1 rw r

Address 0x0, 0x4, 0x8, 0xc, 0x10, 0x14, 0x18, 0x1c, 0x20, 0x24, 0x28, 0x2c, 0x30, 0x34, 0x38,
0x3c

Default
Type Read/Write

Description SPU general register. If data is written to the register the corresponding bit inrs wr stat
is set.

25.25. IOP SPU 1079

25.25.2 rw seq pc

Address 0x40

Default
Type Read/Write

Description The program counter (PC) for SPU in sequential mode, 32 bit instruction alignment.

Bit(s) Name Description Value
11-0:12 addr The sequential mode program counter.

1080 CHAPTER 25. INTERNAL REGISTERS

25.25.3 rw fsm pc

Address 0x44

Default
Type Read/Write

Description The program counter (PC) for SPU in FSM mode, 64 bit instruction alignment.

Bit(s) Name Description Value
11-0:12 addr The FSM mode program counter.

25.25. IOP SPU 1081

25.25.4 rw ctrl

Address 0x48

Default 0x00000000

Type Read/Write

Description The SPU control register.

Bit(s) Name Description Value
1 en Used to enable or disable the SPU.

no: Disable the SPU
yes: Enable the SPU

no=0
yes=1

0 fsm The fsm field controls which mode (sequential or FSM) the SPU
will use.
no: Disable SPU FSM mode
yes: Enable SPU FSM mode

no=0
yes=1

1082 CHAPTER 25. INTERNAL REGISTERS

25.25.5 rw fsm inputs3 0

Address 0x4c

Default
Type Read/Write

Description rw fsm inputs30 and rw fsm inputs74 are used to select eight inputs. These eight
inputs are delayed one clock cycle and will thus be 5 ns delayed. Each FSM state then
selects four of these eight inputs.

Bit(s) Name Description Value
31-29:3 src3 Select source forfsm input[3]. val3 is used to select

which bit to use.
gio in: Input is selected fromgio in[31:0]
flag: Input is selected from the four ALU flags
reg hi: Input is selected from bit[0] in general reg
r15..r8
xor: Input is selected from the four xor signals
statinhi: Input is selected fromstat in[31:16] (hi)
gio out: Input is selected fromspu gio out[7:0]
attn hi: Input is selected fromattn[15:8] (hi)
trigger: Input is selected from 32 Trigger strobes

gio in=0
flag=2
reg hi=2
xor=3
statinhi=4
gio out=5
attn hi=5
trigger=6

25.25. IOP SPU 1083

28-24:5 val3 Select bit from source (src3) to use asfsm input[3].
xor bus0r2 0: xor on bus0 and R2 bit 0
xor bus1r3 0: xor on bus1 and R3 bit 0
xor bus0mr2 0: xor on bus0 (masked with R0) and R2
bit 0
xor bus1mr3 0: xor on bus1 (masked with R1) and R3
bit 0
c: ALU c-flag
v: ALU v-flag
z: ALU z-flag
n: ALU n-flag
r8: bit[0] of r8
r9: bit[0] of r9
r10: bit[0] of r10
r11: bit[0] of r11
r12: bit[0] of r12
r13: bit[0] of r13
r14: bit[0] of r14
r15: bit[0] of r15
gio out0: SPUgio out[0]
gio out1: SPUgio out[1]
gio out2: SPUgio out[2]
gio out3: SPUgio out[3]
gio out4: SPUgio out[4]
gio out5: SPUgio out[5]
gio out6: SPUgio out[6]
gio out7: SPUgio out[7]
attn r8: Attention of register R8
attn r9: Attention of register R9
attn r10: Attention of register R10
attn r11: Attention of register R11
attn r12: Attention of register R12
attn r13: Attention of register R13
attn r14: Attention of register R14
attn r15: Attention of register R15

xor bus0r2 0=0
xor bus1r3 0=1
xor bus0mr2 0=2
xor bus1mr3 0=3
c=0
v=1
z=2
n=3
r8=8
r9=9
r10=10
r11=11
r12=12
r13=13
r14=14
r15=15
gio out0=8
gio out1=9
gio out2=10
gio out3=11
gio out4=12
gio out5=13
gio out6=14
gio out7=15
attn r8=0
attn r9=1
attn r10=2
attn r11=3
attn r12=4
attn r13=5
attn r14=6
attn r15=7

23-21:3 src2 Select source forfsm input[2]. val2 is used to select
which bit to use.
gio in: Input is selected fromgio in[31:0]
flag: Input is selected from the four ALU flags
reg hi: Input is selected from bit[0] in general reg
r15..r8
xor: Input is selected from the four xor signals
statinhi: Input is selected fromstat in[31:16] (hi)
gio out: Input is selected fromspu gio out[7:0]
attn hi: Input is selected fromattn[15:8] (hi)
trigger: Input is selected from 32 Trigger strobes

gio in=0
flag=2
reg hi=2
xor=3
statinhi=4
gio out=5
attn hi=5
trigger=6

1084 CHAPTER 25. INTERNAL REGISTERS

20-16:5 val2 Select bit from source (src2) to use asfsm input[2].
xor bus0r2 0: xor on bus0 and R2 bit 0
xor bus1r3 0: xor on bus1 and R3 bit 0
xor bus0mr2 0: xor on bus0 (masked with R0) and R2
bit 0
xor bus1mr3 0: xor on bus1 (masked with R1) and R3
bit 0
c: ALU c-flag
v: ALU v-flag
z: ALU z-flag
n: ALU n-flag
r8: bit[0] of r8
r9: bit[0] of r9
r10: bit[0] of r10
r11: bit[0] of r11
r12: bit[0] of r12
r13: bit[0] of r13
r14: bit[0] of r14
r15: bit[0] of r15
gio out0: SPUgio out[0]
gio out1: SPUgio out[1]
gio out2: SPUgio out[2]
gio out3: SPUgio out[3]
gio out4: SPUgio out[4]
gio out5: SPUgio out[5]
gio out6: SPUgio out[6]
gio out7: SPUgio out[7]
attn r8: Attention of register R8
attn r9: Attention of register R9
attn r10: Attention of register R10
attn r11: Attention of register R11
attn r12: Attention of register R12
attn r13: Attention of register R13
attn r14: Attention of register R14
attn r15: Attention of register R15

xor bus0r2 0=0
xor bus1r3 0=1
xor bus0mr2 0=2
xor bus1mr3 0=3
c=0
v=1
z=2
n=3
r8=8
r9=9
r10=10
r11=11
r12=12
r13=13
r14=14
r15=15
gio out0=8
gio out1=9
gio out2=10
gio out3=11
gio out4=12
gio out5=13
gio out6=14
gio out7=15
attn r8=0
attn r9=1
attn r10=2
attn r11=3
attn r12=4
attn r13=5
attn r14=6
attn r15=7

15-13:3 src1 Select source forfsm input[1]. val1 is used to select
which bit to use.
gio in: Input is selected fromgio in[31:0]
flag: Input is selected from the four ALU flags
reg lo: Input is selected from bit[0] in general reg r7..r0
xor: Input is selected from the four xor signals
statin lo: Input is selected fromstat in[15:0] (lo)
gio out: Input is selected fromspu gio out[7:0]
attn lo: Input is selected fromattn[7:0] (lo)
trigger: Input is selected from 32 Trigger strobes

gio in=0
flag=2
reg lo=2
xor=3
statin lo=4
gio out=5
attn lo=5
trigger=6

25.25. IOP SPU 1085

12-8:5 val1 Select bit from source (src1) to use asfsm input[1].
xor bus0r2 0: xor on bus0 and R2 bit 0
xor bus1r3 0: xor on bus1 and R3 bit 0
xor bus0mr2 0: xor on bus0 (masked with R0) and R2
bit 0
xor bus1mr3 0: xor on bus1 (masked with R1) and R3
bit 0
c: ALU c-flag
v: ALU v-flag
z: ALU z-flag
n: ALU n-flag
r0: bit[0] of r0
r1: bit[0] of r1
r2: bit[0] of r2
r3: bit[0] of r3
r4: bit[0] of r4
r5: bit[0] of r5
r6: bit[0] of r6
r7: bit[0] of r7
gio out0: SPUgio out[0]
gio out1: SPUgio out[1]
gio out2: SPUgio out[2]
gio out3: SPUgio out[3]
gio out4: SPUgio out[4]
gio out5: SPUgio out[5]
gio out6: SPUgio out[6]
gio out7: SPUgio out[7]
attn r0: Attention of register R0
attn r1: Attention of register R1
attn r2: Attention of register R2
attn r3: Attention of register R3
attn r4: Attention of register R4
attn r5: Attention of register R5
attn r6: Attention of register R6
attn r7: Attention of register R7

xor bus0r2 0=0
xor bus1r3 0=1
xor bus0mr2 0=2
xor bus1mr3 0=3
c=0
v=1
z=2
n=3
r0=8
r1=9
r2=10
r3=11
r4=12
r5=13
r6=14
r7=15
gio out0=8
gio out1=9
gio out2=10
gio out3=11
gio out4=12
gio out5=13
gio out6=14
gio out7=15
attn r0=0
attn r1=1
attn r2=2
attn r3=3
attn r4=4
attn r5=5
attn r6=6
attn r7=7

7-5:3 src0 Select source forfsm input[0]. val0 is used to select
which bit to use.
gio in: Input is selected fromgio in[31:0]
flag: Input is selected from the four ALU flags
reg lo: Input is selected from bit[0] in general reg r7..r0
xor: Input is selected from the four xor signals
statin lo: Input is selected fromstat in[15:0] (lo)
gio out: Input is selected fromspu gio out[7:0]
attn lo: Input is selected fromattn[7:0] (lo)
trigger: Input is selected from 32 Trigger strobes

gio in=0
flag=2
reg lo=2
xor=3
statin lo=4
gio out=5
attn lo=5
trigger=6

1086 CHAPTER 25. INTERNAL REGISTERS

4-0:5 val0 Select bit from source (src0) to use asfsm input[0].
xor bus0r2 0: xor on bus0 and R2 bit 0
xor bus1r3 0: xor on bus1 and R3 bit 0
xor bus0mr2 0: xor on bus0 (masked with R0) and R2
bit 0
xor bus1mr3 0: xor on bus1 (masked with R1) and R3
bit 0
c: ALU c-flag
v: ALU v-flag
z: ALU z-flag
n: ALU n-flag
r0: bit[0] of r0
r1: bit[0] of r1
r2: bit[0] of r2
r3: bit[0] of r3
r4: bit[0] of r4
r5: bit[0] of r5
r6: bit[0] of r6
r7: bit[0] of r7
gio out0: SPUgio out[0]
gio out1: SPUgio out[1]
gio out2: SPUgio out[2]
gio out3: SPUgio out[3]
gio out4: SPUgio out[4]
gio out5: SPUgio out[5]
gio out6: SPUgio out[6]
gio out7: SPUgio out[7]
attn r0: Attention of register R0
attn r1: Attention of register R1
attn r2: Attention of register R2
attn r3: Attention of register R3
attn r4: Attention of register R4
attn r5: Attention of register R5
attn r6: Attention of register R6
attn r7: Attention of register R7

xor bus0r2 0=0
xor bus1r3 0=1
xor bus0mr2 0=2
xor bus1mr3 0=3
c=0
v=1
z=2
n=3
r0=8
r1=9
r2=10
r3=11
r4=12
r5=13
r6=14
r7=15
gio out0=8
gio out1=9
gio out2=10
gio out3=11
gio out4=12
gio out5=13
gio out6=14
gio out7=15
attn r0=0
attn r1=1
attn r2=2
attn r3=3
attn r4=4
attn r5=5
attn r6=6
attn r7=7

25.25. IOP SPU 1087

25.25.6 rw fsm inputs7 4

Address 0x50

Default
Type Read/Write

Description rw fsm inputs30 and rw fsm inputs74 are used to select eight inputs. These eight
inputs are delayed one clock cycle and will thus be 5 ns delayed. Each FSM state then
selects four of these eight inputs.

Bit(s) Name Description Value
31-29:3 src7 Select source forfsm input[7]. val7 is used to select

which bit to use.
gio in: Input is selected fromgio in[31:0]
flag: Input is selected from the four ALU flags
reg hi: Input is selected from bit[0] in general reg
r15..r8
xor: Input is selected from the four xor signals
statinhi: Input is selected fromstat in[31:16] (hi)
gio out: Input is selected fromspu gio out[7:0]
attn hi: Input is selected fromattn[15:8] (hi)
trigger: Input is selected from 32 Trigger strobes

gio in=0
flag=2
reg hi=2
xor=3
statinhi=4
gio out=5
attn hi=5
trigger=6

1088 CHAPTER 25. INTERNAL REGISTERS

28-24:5 val7 Select bit from source (src7) to use asfsm input[7].
xor bus0r2 0: xor on bus0 and R2 bit 0
xor bus1r3 0: xor on bus1 and R3 bit 0
xor bus0mr2 0: xor on bus0 (masked with R0) and R2
bit 0
xor bus1mr3 0: xor on bus1 (masked with R1) and R3
bit 0
c: ALU c-flag
v: ALU v-flag
z: ALU z-flag
n: ALU n-flag
r8: bit[0] of r8
r9: bit[0] of r9
r10: bit[0] of r10
r11: bit[0] of r11
r12: bit[0] of r12
r13: bit[0] of r13
r14: bit[0] of r14
r15: bit[0] of r15
gio out0: SPUgio out[0]
gio out1: SPUgio out[1]
gio out2: SPUgio out[2]
gio out3: SPUgio out[3]
gio out4: SPUgio out[4]
gio out5: SPUgio out[5]
gio out6: SPUgio out[6]
gio out7: SPUgio out[7]
attn r8: Attention of register R8
attn r9: Attention of register R9
attn r10: Attention of register R10
attn r11: Attention of register R11
attn r12: Attention of register R12
attn r13: Attention of register R13
attn r14: Attention of register R14
attn r15: Attention of register R15

xor bus0r2 0=0
xor bus1r3 0=1
xor bus0mr2 0=2
xor bus1mr3 0=3
c=0
v=1
z=2
n=3
r8=8
r9=9
r10=10
r11=11
r12=12
r13=13
r14=14
r15=15
gio out0=8
gio out1=9
gio out2=10
gio out3=11
gio out4=12
gio out5=13
gio out6=14
gio out7=15
attn r8=0
attn r9=1
attn r10=2
attn r11=3
attn r12=4
attn r13=5
attn r14=6
attn r15=7

23-21:3 src6 Select source forfsm input[6]. val6 is used to select
which bit to use.
gio in: Input is selected fromgio in[31:0]
flag: Input is selected from the four ALU flags
reg hi: Input is selected from bit[0] in general reg
r15..r8
xor: Input is selected from the four xor signals
statinhi: Input is selected fromstat in[31:16] (hi)
gio out: Input is selected fromspu gio out[7:0]
attn hi: Input is selected fromattn[15:8] (hi)
trigger: Input is selected from 32 Trigger strobes

gio in=0
flag=2
reg hi=2
xor=3
statinhi=4
gio out=5
attn hi=5
trigger=6

25.25. IOP SPU 1089

20-16:5 val6 Select bit from source (src6) to use asfsm input[6].
xor bus0r2 0: xor on bus0 and R2 bit 0
xor bus1r3 0: xor on bus1 and R3 bit 0
xor bus0mr2 0: xor on bus0 (masked with R0) and R2
bit 0
xor bus1mr3 0: xor on bus1 (masked with R1) and R3
bit 0
c: ALU c-flag
v: ALU v-flag
z: ALU z-flag
n: ALU n-flag
r8: bit[0] of r8
r9: bit[0] of r9
r10: bit[0] of r10
r11: bit[0] of r11
r12: bit[0] of r12
r13: bit[0] of r13
r14: bit[0] of r14
r15: bit[0] of r15
gio out0: SPUgio out[0]
gio out1: SPUgio out[1]
gio out2: SPUgio out[2]
gio out3: SPUgio out[3]
gio out4: SPUgio out[4]
gio out5: SPUgio out[5]
gio out6: SPUgio out[6]
gio out7: SPUgio out[7]
attn r8: Attention of register R8
attn r9: Attention of register R9
attn r10: Attention of register R10
attn r11: Attention of register R11
attn r12: Attention of register R12
attn r13: Attention of register R13
attn r14: Attention of register R14
attn r15: Attention of register R15

xor bus0r2 0=0
xor bus1r3 0=1
xor bus0mr2 0=2
xor bus1mr3 0=3
c=0
v=1
z=2
n=3
r8=8
r9=9
r10=10
r11=11
r12=12
r13=13
r14=14
r15=15
gio out0=8
gio out1=9
gio out2=10
gio out3=11
gio out4=12
gio out5=13
gio out6=14
gio out7=15
attn r8=0
attn r9=1
attn r10=2
attn r11=3
attn r12=4
attn r13=5
attn r14=6
attn r15=7

15-13:3 src5 Select source forfsm input[5]. val5 is used to select
which bit to use.
gio in: Input is selected fromgio in[31:0]
flag: Input is selected from the four ALU flags
reg lo: Input is selected from bit[0] in general reg r7..r0
xor: Input is selected from the four xor signals
statin lo: Input is selected fromstat in[15:0] (lo)
gio out: Input is selected fromspu gio out[7:0]
attn lo: Input is selected fromattn[7:0] (lo)
trigger: Input is selected from 32 Trigger strobes

gio in=0
flag=2
reg lo=2
xor=3
statin lo=4
gio out=5
attn lo=5
trigger=6

1090 CHAPTER 25. INTERNAL REGISTERS

12-8:5 val5 Select bit from source (src5) to use asfsm input[5].
xor bus0r2 0: xor on bus0 and R2 bit 0
xor bus1r3 0: xor on bus1 and R3 bit 0
xor bus0mr2 0: xor on bus0 (masked with R0) and R2
bit 0
xor bus1mr3 0: xor on bus1 (masked with R1) and R3
bit 0
c: ALU c-flag
v: ALU v-flag
z: ALU z-flag
n: ALU n-flag
r0: bit[0] of r0
r1: bit[0] of r1
r2: bit[0] of r2
r3: bit[0] of r3
r4: bit[0] of r4
r5: bit[0] of r5
r6: bit[0] of r6
r7: bit[0] of r7
gio out0: SPUgio out[0]
gio out1: SPUgio out[1]
gio out2: SPUgio out[2]
gio out3: SPUgio out[3]
gio out4: SPUgio out[4]
gio out5: SPUgio out[5]
gio out6: SPUgio out[6]
gio out7: SPUgio out[7]
attn r0: Attention of register R0
attn r1: Attention of register R1
attn r2: Attention of register R2
attn r3: Attention of register R3
attn r4: Attention of register R4
attn r5: Attention of register R5
attn r6: Attention of register R6
attn r7: Attention of register R7

xor bus0r2 0=0
xor bus1r3 0=1
xor bus0mr2 0=2
xor bus1mr3 0=3
c=0
v=1
z=2
n=3
r0=8
r1=9
r2=10
r3=11
r4=12
r5=13
r6=14
r7=15
gio out0=8
gio out1=9
gio out2=10
gio out3=11
gio out4=12
gio out5=13
gio out6=14
gio out7=15
attn r0=0
attn r1=1
attn r2=2
attn r3=3
attn r4=4
attn r5=5
attn r6=6
attn r7=7

7-5:3 src4 Select source forfsm input[4]. val4 is used to select
which bit to use.
gio in: Input is selected fromgio in[31:0]
flag: Input is selected from the four ALU flags
reg lo: Input is selected from bit[0] in general reg r7..r0
xor: Input is selected from the four xor signals
statin lo: Input is selected fromstat in[15:0] (lo)
gio out: Input is selected fromspu gio out[7:0]
attn lo: Input is selected fromattn[7:0] (lo)
trigger: Input is selected from 32 Trigger strobes

gio in=0
flag=2
reg lo=2
xor=3
statin lo=4
gio out=5
attn lo=5
trigger=6

25.25. IOP SPU 1091

4-0:5 val4 Select bit from source (src4) to use asfsm input[4].
xor bus0r2 0: xor on bus0 and R2 bit 0
xor bus1r3 0: xor on bus1 and R3 bit 0
xor bus0mr2 0: xor on bus0 (masked with R0) and R2
bit 0
xor bus1mr3 0: xor on bus1 (masked with R1) and R3
bit 0
c: ALU c-flag
v: ALU v-flag
z: ALU z-flag
n: ALU n-flag
r0: bit[0] of r0
r1: bit[0] of r1
r2: bit[0] of r2
r3: bit[0] of r3
r4: bit[0] of r4
r5: bit[0] of r5
r6: bit[0] of r6
r7: bit[0] of r7
gio out0: SPUgio out[0]
gio out1: SPUgio out[1]
gio out2: SPUgio out[2]
gio out3: SPUgio out[3]
gio out4: SPUgio out[4]
gio out5: SPUgio out[5]
gio out6: SPUgio out[6]
gio out7: SPUgio out[7]
attn r0: Attention of register R0
attn r1: Attention of register R1
attn r2: Attention of register R2
attn r3: Attention of register R3
attn r4: Attention of register R4
attn r5: Attention of register R5
attn r6: Attention of register R6
attn r7: Attention of register R7

xor bus0r2 0=0
xor bus1r3 0=1
xor bus0mr2 0=2
xor bus1mr3 0=3
c=0
v=1
z=2
n=3
r0=8
r1=9
r2=10
r3=11
r4=12
r5=13
r6=14
r7=15
gio out0=8
gio out1=9
gio out2=10
gio out3=11
gio out4=12
gio out5=13
gio out6=14
gio out7=15
attn r0=0
attn r1=1
attn r2=2
attn r3=3
attn r4=4
attn r5=5
attn r6=6
attn r7=7

1092 CHAPTER 25. INTERNAL REGISTERS

25.25.7 rw gio out

Address 0x54

Default 0x00000000

Type Read/Write

Description This is the output register for the SPU. SPU uses GOUT (P5).

25.25. IOP SPU 1093

25.25.8 rw bus0 out

Address 0x58

Default
Type Read/Write

Description This is the bus0out register for the SPU. SPU uses B0OUT (P6).

1094 CHAPTER 25. INTERNAL REGISTERS

25.25.9 rw bus1 out

Address 0x5c

Default
Type Read/Write

Description This is the bus1out register for the SPU. SPU uses B1OUT (P7).

25.25. IOP SPU 1095

25.25.10 r gio in

Address 0x60

Default
Type Read

Description The gio in to the SPU, also readable from SPU as GIN (P8).

1096 CHAPTER 25. INTERNAL REGISTERS

25.25.11 r bus0 in

Address 0x64

Default
Type Read

Description The bus0in to the SPU, also readable from SPU as B0IN (P9).

25.25. IOP SPU 1097

25.25.12 r bus1 in

Address 0x68

Default
Type Read

Description The bus1in to the SPU, also readable from SPU as B1IN (P10).

1098 CHAPTER 25. INTERNAL REGISTERS

25.25.13 rw gio out set

Address 0x6c

Default
Type Read/Write

Description Bit mask for setting bits in the SPU gioout.

25.25. IOP SPU 1099

25.25.14 rw gio out clr

Address 0x70

Default
Type Read/Write

Description Bit mask for clearing bits in the SPU gioout.

1100 CHAPTER 25. INTERNAL REGISTERS

25.25.15 rs wr stat/r wr stat

Address 0x74/0x78

Default
Type Read with side effects/Read

Description When SPU owner writes to R0-R15 the corresponding bit is set in this register. The
SPU can clear bits with ALU operation on register WSTS (P13). Readingrs wr stat
clears all bits in it.

Bit(s) Name Description Value
15 r15 Write status for R15.

no: No value has been written to R15
yes: A value has been written to R15

no=0
yes=1

14 r14 Write status for R14.
no: No value has been written to R14
yes: A value has been written to R14

no=0
yes=1

13 r13 Write status for R13.
no: No value has been written to R13
yes: A value has been written to R13

no=0
yes=1

12 r12 Write status for R12.
no: No value has been written to R12
yes: A value has been written to R12

no=0
yes=1

11 r11 Write status for R11.
no: No value has been written to R11
yes: A value has been written to R11

no=0
yes=1

10 r10 Write status for R10.
no: No value has been written to R10
yes: A value has been written to R10

no=0
yes=1

9 r9 Write status for R9.
no: No value has been written to R9
yes: A value has been written to R9

no=0
yes=1

8 r8 Write status for R8.
no: No value has been written to R8
yes: A value has been written to R8

no=0
yes=1

7 r7 Write status for R7.
no: No value has been written to R7
yes: A value has been written to R7

no=0
yes=1

6 r6 Write status for R6.
no: No value has been written to R6
yes: A value has been written to R6

no=0
yes=1

5 r5 Write status for R5.
no: No value has been written to R5
yes: A value has been written to R5

no=0
yes=1

25.25. IOP SPU 1101

4 r4 Write status for R4.
no: No value has been written to R4
yes: A value has been written to R4

no=0
yes=1

3 r3 Write status for R3.
no: No value has been written to R3
yes: A value has been written to R3

no=0
yes=1

2 r2 Write status for R2.
no: No value has been written to R2
yes: A value has been written to R2

no=0
yes=1

1 r1 Write status for R1.
no: No value has been written to R1
yes: A value has been written to R1

no=0
yes=1

0 r0 Write status for R0.
no: No value has been written to R0
yes: A value has been written to R0

no=0
yes=1

1102 CHAPTER 25. INTERNAL REGISTERS

25.25.16 r reg indexed by bus0 in

Address 0x7c

Default
Type Read

Description This register holds the value of general register R0 to R15 depending on the 4 lowest
bits of bus0in. The SPU can read this register using INDEX (P15).

25.25. IOP SPU 1103

25.25.17 r stat in

Address 0x80

Default
Type Read

Description This register holds the value of statusin port connected to the SPU. The SPU can read
this register using STATIN (P11).
spu0stat in[31:30] = mcownedspu0, mcbusyspu0 ## MC
spu0stat in[29] = scrc in0 crc err ## SCRCIN0
spu0stat in[28] = scrcout0 dif out.data ## SCRCOUT0
spu0stat in[27] = syncclk ext ## Sync clk 12
spu0stat in[26:23] = spu1gio out[3:0] ## SPU1
spu0stat in[22:20] = dmcin0 cmd rdy, dmcin0 full, dmc in0 sth ## DMCIN0
spu0stat in[19:16] = timergrp2 strb ## TG2
spu0stat in[15] = crc par0correct ## PCRC0
spu0stat in[14:13] = dmcout0 cmd rdy, dmcout0 cmd rq ## DMC OUT0
spu0stat in[12:8] = dmcout0 dif.last, dmcout0 dv, dmcout0 eop, dmcout0 dth,
dmc out0 all avail ## DMCOUT0
spu0stat in[7] = fifo in0 dif in.rdy ## FIFOIN0
spu0stat in[6:4] = fifo out0 all, fifo out0 dif out.rdy, fifo out0 dif out.last ##
FIFO OUT0
spu0stat in[3:0] = timer grp0 strb ## TG0
spu1stat in[31:30] = mcownedspu1, mcbusyspu1 ## MC
spu1stat in[29] = scrc in1 crc err ## SCRCIN1
spu1stat in[28] = scrcout1 dif out.data ## SCRCOUT1
spu1stat in[27] = syncclk ext ## Sync clk 12
spu1stat in[26:23] = spu0gio out[3:0] ## SPU0
spu1stat in[22:20] = dmcin1 cmd rdy, dmcin1 full, dmc in1 sth ## DMCIN1
spu1stat in[19:16] = timergrp3 strb ## TG3
spu1stat in[15] = crc par1correct ## PCRC1
spu1stat in[14:13] = dmcout1 cmd rdy, dmcout1 cmd rq ## DMC OUT1
spu1stat in[12:8] = dmcout1 dif.last, dmcout1 dv, dmcout1 eop, dmcout1 dth,
dmc out1 all avail ## DMCOUT1
spu1stat in[7] = fifo in1 dif in.rdy ## FIFOIN1
spu1stat in[6:4] = fifo out1 all, fifo out1 dif out.rdy, fifo out1 dif out.last ##
FIFO OUT1
spu1stat in[3:0] = timer grp1 strb ## TG1

Bit(s) Name Description Value
31 mc owned Indicates if the MC is owned by this SPU.

30 mc busy Indicates if the MC is busy performing an operation
issued by this SPU.

29 scrc in err CRC error signal from scrcin (scrc0 to SPU0, scrc1
to SPU1).

28 scrcout data Serial data from scrcout (scrc0 to SPU0, scrc1 to
SPU1).

1104 CHAPTER 25. INTERNAL REGISTERS

27 syncclk12 Synchronized 12 MHz clock.

26-23:4 spugio out gio out signals [3:0] from other SPU.

22 dmc in cmd rdy cmd rdy signal from dmcin (dmc in0 to SPU0,
dmc in1 to SPU1).

21 dmc in full full signal from dmcin (dmc in0 to SPU0, dmcin1
to SPU1).

20 dmc in sth Space threshold (sth) signal from dmcin (dmc in0
to SPU0, dmcin1 to SPU1).

19-16:4 timer grp hi Timer strobe signals from timergrp[3:2] (SPU0
timer grp2, SPU1 timergrp3).

15 pcrc correct crc correct signal from pcrcin (pcrc in0 to SPU0,
pcrc in1 to SPU1).

14 dmc out cmd rdy cmd rdy signal from dmcout (dmcout0 to SPU0,
dmc out1 to SPU1).

13 dmc out cmd rq cmd rq signal from dmcout (dmcout0 to SPU0,
dmc out1 to SPU1).

12 dmc out last dif.last signal from dmcout (dmcout0 to SPU0,
dmc out1 to SPU1).

11 dmc out dv dv signal from dmcout (dmcout0 to SPU0,
dmc out1 to SPU1).

10 dmc out eop eop signal from dmcout (dmcout0 to SPU0,
dmc out1 to SPU1).

9 dmc out dth Data threshold (dth) signal from dmcout (dmcout0
to SPU0, dmcout1 to SPU1).

8 dmc out all all avail signal from dmcout (dmcout0 to SPU0,
dmc out1 to SPU1).

7 fifo in rdy rdy signal from fifo in (fifo in0 to SPU0, fifoin1 to
SPU1).

6 fifo out all all signal from fifoout (fifo out0 to SPU0, fifoout1
to SPU1).

5 fifo out rdy rdy signal from fifoout (fifo out0 to SPU0, fifoout1
to SPU1).

4 fifo out last last signal from fifoout (fifo out0 to SPU0,
fifo out1 to SPU1).

3-0:4 timer grp lo Timer strobe signals from timergrp[1:0] (SPU0
timer grp0, SPU1 timergrp1).

25.25. IOP SPU 1105

25.25.18 r trigger in

Address 0x84

Default
Type Read

Description This register holds the value of triggerin port connected to the SPU. The SPU can read
this register using TRIGGER (P12).

1106 CHAPTER 25. INTERNAL REGISTERS

25.25.19 r special stat

Address 0x88

Default
Type Read

Description This register holds the value of flags, xor signals and selected insignals for FSM mode.
The SPU can read this register using SPECS (P14).

Bit(s) Name Description Value
19 event3 Event 3 signal.

18 event2 Event 2 signal.

17 event1 Event 1 signal.

16 event0 Event 0 signal.

15 fsm in7 Value of selected input for fsmin7 (selected by
rw fsm inputs74.src7andrw fsm inputs74.val7.

14 fsm in6 Value of selected input for fsmin6 (selected by
rw fsm inputs74.src6andrw fsm inputs74.val6.

13 fsm in5 Value of selected input for fsmin5 (selected by
rw fsm inputs74.src5andrw fsm inputs74.val5.

12 fsm in4 Value of selected input for fsmin4 (selected by
rw fsm inputs74.src4andrw fsm inputs74.val4.

11 fsm in3 Value of selected input for fsmin3 (selected by
rw fsm inputs30.src3andrw fsm inputs30.val3.

10 fsm in2 Value of selected input for fsmin2 (selected by
rw fsm inputs30.src2andrw fsm inputs30.val2.

9 fsm in1 Value of selected input for fsmin1 (selected by
rw fsm inputs30.src1andrw fsm inputs30.val1.

8 fsm in0 Value of selected input for fsmin0 (selected by
rw fsm inputs30.src0andrw fsm inputs30.val0.

7 xor bus1mr3 0 Value of xor calculation on spubus1in (masked with
R1) and R3 bit 0.

6 xor bus0mr2 0 Value of xor calculation on spubus0in (masked with
R0) and R2 bit 0.

5 xor bus1r3 0 Value of xor calculation on spubus1in and R3 bit 0.

4 xor bus0r2 0 Value of xor calculation on spubus0in and R2 bit 0.

3 n flag ALU n-flag.

2 z flag ALU z-flag.

1 v flag ALU v-flag.

0 c flag ALU c-flag.

25.25. IOP SPU 1107

25.25.20 rw reg access

Address 0x8c

Default 0x00000000

Type Read/Write

Description This is REGA (P2) special register. Used as address register and also has immhi when
writing with RWQ.

Bit(s) Name Description Value
31-
16:16

imm hi This value is used as immhi value when a RWQ instruction is
performed.

12-0:13 addr Register address.

1108 CHAPTER 25. INTERNAL REGISTERS

25.25.21 rw event cfg

Address 0x90, 0x94, 0x98, 0x9c

Default
Type Read/Write

Description SPU event configuration register.

Bit(s) Name Description Value
17 gt inv Invert result from greater than operator.

16 gt en Use greater than operator.

15 eq inv Invert result from equal operator.

14 eq en Use equal operator.

13-12:2 src Event source.
gio in: SPU gioin signals
wstsgioout spec: wsts[15:8] or wsts[7:0],
gio out[7:0], fsminp[7:0], xor[3:0], event[3:0]
stat in: SPUstatus in signals
trig: Trigger signals

gio in=0
wstsgioout spec=1
stat in=2
trig=3

11-0:12 addr Address to which the event will jump if event is
taken.

25.25. IOP SPU 1109

25.25.22 rw event mask

Address 0xa0, 0xa4, 0xa8, 0xac

Default
Type Read/Write

Description SPU event mask register.

1110 CHAPTER 25. INTERNAL REGISTERS

25.25.23 rw event val

Address 0xb0, 0xb4, 0xb8, 0xbc

Default
Type Read/Write

Description SPU event value register.

25.25. IOP SPU 1111

25.25.24 rw event ret

Address 0xc0

Default
Type Read/Write

Description SPU event return address register. The address to the state where the event is taken is
stored inaddr. It is possible for the SPU to use E12 to jump back to this state, creating
a kind of event subroutine.

Bit(s) Name Description Value
11-0:12 addr Address.

1112 CHAPTER 25. INTERNAL REGISTERS

25.25.25 r trace

Address 0xc4

Default
Type Read

Description Trace register for SPU. This register is only updated whenrw ctrl.enequalsyes.

Bit(s) Name Description Value
31-
20:12

fsm addr The FSM program counter.

17-6:12 seqaddr The sequential program counter.

5 n flag ALU n-flag.

4 z flag ALU z-flag.

3 v flag ALU v-flag.

2 c flag ALU c-flag.

1 en The SPU enable status.

0 fsm The SPU mode.

25.25. IOP SPU 1113

25.25.26 r fsm trace

Address 0xc8

Default
Type Read

Description Trace register for SPU, FSM mode. This register is only updated whenrw ctrl.enequals
yes.

Bit(s) Name Description Value
31-
20:12

fsm addr The FSM program counter.

18-11:8 gio out gio out[7:0] signals from SPU.

10 event3 Event 3 signal.

9 event2 Event 2 signal.

8 event1 Event 1 signal.

7 event0 Event 0 signal.

6 inp3 The selected fsminp[3] signal.

5 inp2 The selected fsminp[2] signal.

4 inp1 The selected fsminp[1] signal.

3 inp0 The selected fsminp[0] signal.

2 tmr done The FSM timer done signal.

1 en The SPU enable status.

0 fsm The SPU mode.

1114 CHAPTER 25. INTERNAL REGISTERS

25.25.27 rw brp

Address 0xcc, 0xd0, 0xd4, 0xd8

Default 0x00000000, 0x00000000, 0x00000000, 0x00000000

Type Read/Write

Description SPU breakpoint register, the SPU will halt if the breakpoint is enabled (en) and when
address (selected byfsm) matchesaddr.

Bit(s) Name Description Value
13 en Enable this breakpoint.

no: The breakpoint is not enabled
yes: The breakpoint is enabled

no=0
yes=1

12 fsm If set, the breakpoint address is a FSM address.
no: The breakpoint is for sequential mode
yes: The breakpoint is for FSM mode

no=0
yes=1

11-0:12 addr The breakpoint address.

25.26. IOP SW CFG 1115

25.26 iop sw cfg

Instance Base Address
iop sw cfg 0xb0021100

25.26.1 rw crc par0 owner

Address 0x0

Default 0x00000000

Type Read/Write

Description This register controls the owner of crcpar0.

Bit(s) Name Description Value
1-0:2 cfg Selects owner of crcpar0.

cpu: cpu is owner
mpu: mpu is owner
spu0: spu0 is owner
spu1: spu1 is owner

cpu=0
mpu=1
spu0=2
spu1=3

1116 CHAPTER 25. INTERNAL REGISTERS

25.26.2 rw crc par1 owner

Address 0x4

Default 0x00000000

Type Read/Write

Description This register controls the owner of crcpar1.

Bit(s) Name Description Value
1-0:2 cfg Selects owner of crcpar1.

cpu: cpu is owner
mpu: mpu is owner
spu0: spu0 is owner
spu1: spu1 is owner

cpu=0
mpu=1
spu0=2
spu1=3

25.26. IOP SW CFG 1117

25.26.3 rw dmc in0 owner

Address 0x8

Default 0x00000000

Type Read/Write

Description This register controls the owner of dmcin0.

Bit(s) Name Description Value
1-0:2 cfg Selects owner of dmcin0.

cpu: cpu is owner
mpu: mpu is owner
spu0: spu0 is owner
spu1: spu1 is owner

cpu=0
mpu=1
spu0=2
spu1=3

1118 CHAPTER 25. INTERNAL REGISTERS

25.26.4 rw dmc in1 owner

Address 0xc

Default 0x00000000

Type Read/Write

Description This register controls the owner of dmcin1.

Bit(s) Name Description Value
1-0:2 cfg Selects owner of dmcin1.

cpu: cpu is owner
mpu: mpu is owner
spu0: spu0 is owner
spu1: spu1 is owner

cpu=0
mpu=1
spu0=2
spu1=3

25.26. IOP SW CFG 1119

25.26.5 rw dmc out0 owner

Address 0x10

Default 0x00000000

Type Read/Write

Description This register controls the owner of dmcout0.

Bit(s) Name Description Value
1-0:2 cfg Selects owner of dmcout0.

cpu: cpu is owner
mpu: mpu is owner
spu0: spu0 is owner
spu1: spu1 is owner

cpu=0
mpu=1
spu0=2
spu1=3

1120 CHAPTER 25. INTERNAL REGISTERS

25.26.6 rw dmc out1 owner

Address 0x14

Default 0x00000000

Type Read/Write

Description This register controls the owner of dmcout1.

Bit(s) Name Description Value
1-0:2 cfg Selects owner of dmcout1.

cpu: cpu is owner
mpu: mpu is owner
spu0: spu0 is owner
spu1: spu1 is owner

cpu=0
mpu=1
spu0=2
spu1=3

25.26. IOP SW CFG 1121

25.26.7 rw fifo in0 owner

Address 0x18

Default 0x00000000

Type Read/Write

Description This register controls the owner of fifoin0.

Bit(s) Name Description Value
1-0:2 cfg Selects owner of fifoin0.

cpu: cpu is owner
mpu: mpu is owner
spu0: spu0 is owner
spu1: spu1 is owner

cpu=0
mpu=1
spu0=2
spu1=3

1122 CHAPTER 25. INTERNAL REGISTERS

25.26.8 rw fifo in0 extra owner

Address 0x1c

Default 0x00000000

Type Read/Write

Description This register controls the owner of fifoin0 extra.

Bit(s) Name Description Value
1-0:2 cfg Selects owner of fifoin0 extra.

cpu: cpu is owner
mpu: mpu is owner
spu0: spu0 is owner
spu1: spu1 is owner

cpu=0
mpu=1
spu0=2
spu1=3

25.26. IOP SW CFG 1123

25.26.9 rw fifo in1 owner

Address 0x20

Default 0x00000000

Type Read/Write

Description This register controls the owner of fifoin1.

Bit(s) Name Description Value
1-0:2 cfg Selects owner of fifoin1.

cpu: cpu is owner
mpu: mpu is owner
spu0: spu0 is owner
spu1: spu1 is owner

cpu=0
mpu=1
spu0=2
spu1=3

1124 CHAPTER 25. INTERNAL REGISTERS

25.26.10 rw fifo in1 extra owner

Address 0x24

Default 0x00000000

Type Read/Write

Description This register controls the owner of fifoin1 extra.

Bit(s) Name Description Value
1-0:2 cfg Selects owner of fifoin1 extra.

cpu: cpu is owner
mpu: mpu is owner
spu0: spu0 is owner
spu1: spu1 is owner

cpu=0
mpu=1
spu0=2
spu1=3

25.26. IOP SW CFG 1125

25.26.11 rw fifo out0 owner

Address 0x28

Default 0x00000000

Type Read/Write

Description This register controls the owner of fifoout0.

Bit(s) Name Description Value
1-0:2 cfg Selects owner of fifoout0.

cpu: cpu is owner
mpu: mpu is owner
spu0: spu0 is owner
spu1: spu1 is owner

cpu=0
mpu=1
spu0=2
spu1=3

1126 CHAPTER 25. INTERNAL REGISTERS

25.26.12 rw fifo out0 extra owner

Address 0x2c

Default 0x00000000

Type Read/Write

Description This register controls the owner of fifoout0 extra.

Bit(s) Name Description Value
1-0:2 cfg Selects owner of fifoout0 extra.

cpu: cpu is owner
mpu: mpu is owner
spu0: spu0 is owner
spu1: spu1 is owner

cpu=0
mpu=1
spu0=2
spu1=3

25.26. IOP SW CFG 1127

25.26.13 rw fifo out1 owner

Address 0x30

Default 0x00000000

Type Read/Write

Description This register controls the owner of fifoout1.

Bit(s) Name Description Value
1-0:2 cfg Selects owner of fifoout1.

cpu: cpu is owner
mpu: mpu is owner
spu0: spu0 is owner
spu1: spu1 is owner

cpu=0
mpu=1
spu0=2
spu1=3

1128 CHAPTER 25. INTERNAL REGISTERS

25.26.14 rw fifo out1 extra owner

Address 0x34

Default 0x00000000

Type Read/Write

Description This register controls the owner of fifoout1 extra.

Bit(s) Name Description Value
1-0:2 cfg Selects owner of fifoout1 extra.

cpu: cpu is owner
mpu: mpu is owner
spu0: spu0 is owner
spu1: spu1 is owner

cpu=0
mpu=1
spu0=2
spu1=3

25.26. IOP SW CFG 1129

25.26.15 rw sap in owner

Address 0x38

Default 0x00000000

Type Read/Write

Description This register controls the owner of sapin.

Bit(s) Name Description Value
1-0:2 cfg Selects owner of sapin.

cpu: cpu is owner
mpu: mpu is owner
spu0: spu0 is owner
spu1: spu1 is owner

cpu=0
mpu=1
spu0=2
spu1=3

1130 CHAPTER 25. INTERNAL REGISTERS

25.26.16 rw sap out owner

Address 0x3c

Default 0x00000000

Type Read/Write

Description This register controls the owner of sapout.

Bit(s) Name Description Value
1-0:2 cfg Selects owner of sapout.

cpu: cpu is owner
mpu: mpu is owner
spu0: spu0 is owner
spu1: spu1 is owner

cpu=0
mpu=1
spu0=2
spu1=3

25.26. IOP SW CFG 1131

25.26.17 rw scrc in0 owner

Address 0x40

Default 0x00000000

Type Read/Write

Description This register controls the owner of scrcin0.

Bit(s) Name Description Value
1-0:2 cfg Selects owner of scrcin0.

cpu: cpu is owner
mpu: mpu is owner
spu0: spu0 is owner
spu1: spu1 is owner

cpu=0
mpu=1
spu0=2
spu1=3

1132 CHAPTER 25. INTERNAL REGISTERS

25.26.18 rw scrc in1 owner

Address 0x44

Default 0x00000000

Type Read/Write

Description This register controls the owner of scrcin1.

Bit(s) Name Description Value
1-0:2 cfg Selects owner of scrcin1.

cpu: cpu is owner
mpu: mpu is owner
spu0: spu0 is owner
spu1: spu1 is owner

cpu=0
mpu=1
spu0=2
spu1=3

25.26. IOP SW CFG 1133

25.26.19 rw scrc out0 owner

Address 0x48

Default 0x00000000

Type Read/Write

Description This register controls the owner of scrcout0.

Bit(s) Name Description Value
1-0:2 cfg Selects owner of scrcout0.

cpu: cpu is owner
mpu: mpu is owner
spu0: spu0 is owner
spu1: spu1 is owner

cpu=0
mpu=1
spu0=2
spu1=3

1134 CHAPTER 25. INTERNAL REGISTERS

25.26.20 rw scrc out1 owner

Address 0x4c

Default 0x00000000

Type Read/Write

Description This register controls the owner of scrcout1.

Bit(s) Name Description Value
1-0:2 cfg Selects owner of scrcout1.

cpu: cpu is owner
mpu: mpu is owner
spu0: spu0 is owner
spu1: spu1 is owner

cpu=0
mpu=1
spu0=2
spu1=3

25.26. IOP SW CFG 1135

25.26.21 rw spu0 owner

Address 0x50

Default 0x00000000

Type Read/Write

Description This register controls the owner of spu0.

Bit(s) Name Description Value
1-0:2 cfg Selects owner of spu0.

cpu: cpu is owner
mpu: mpu is owner
spu1: spu1 is owner

cpu=0
mpu=1
spu1=3

1136 CHAPTER 25. INTERNAL REGISTERS

25.26.22 rw spu1 owner

Address 0x54

Default 0x00000000

Type Read/Write

Description This register controls the owner of spu1.

Bit(s) Name Description Value
1-0:2 cfg Selects owner of spu1.

cpu: cpu is owner
mpu: mpu is owner
spu0: spu0 is owner

cpu=0
mpu=1
spu0=2

25.26. IOP SW CFG 1137

25.26.23 rw timer grp0 owner

Address 0x58

Default 0x00000000

Type Read/Write

Description This register controls the owner of timergrp0.

Bit(s) Name Description Value
1-0:2 cfg Selects owner of timergrp0.

cpu: cpu is owner
mpu: mpu is owner
spu0: spu0 is owner
spu1: spu1 is owner

cpu=0
mpu=1
spu0=2
spu1=3

1138 CHAPTER 25. INTERNAL REGISTERS

25.26.24 rw timer grp1 owner

Address 0x5c

Default 0x00000000

Type Read/Write

Description This register controls the owner of timergrp1.

Bit(s) Name Description Value
1-0:2 cfg Selects owner of timergrp1.

cpu: cpu is owner
mpu: mpu is owner
spu0: spu0 is owner
spu1: spu1 is owner

cpu=0
mpu=1
spu0=2
spu1=3

25.26. IOP SW CFG 1139

25.26.25 rw timer grp2 owner

Address 0x60

Default 0x00000000

Type Read/Write

Description This register controls the owner of timergrp2.

Bit(s) Name Description Value
1-0:2 cfg Selects owner of timergrp2.

cpu: cpu is owner
mpu: mpu is owner
spu0: spu0 is owner
spu1: spu1 is owner

cpu=0
mpu=1
spu0=2
spu1=3

1140 CHAPTER 25. INTERNAL REGISTERS

25.26.26 rw timer grp3 owner

Address 0x64

Default 0x00000000

Type Read/Write

Description This register controls the owner of timergrp3.

Bit(s) Name Description Value
1-0:2 cfg Selects owner of timergrp3.

cpu: cpu is owner
mpu: mpu is owner
spu0: spu0 is owner
spu1: spu1 is owner

cpu=0
mpu=1
spu0=2
spu1=3

25.26. IOP SW CFG 1141

25.26.27 rw trigger grp0 owner

Address 0x68

Default 0x00000000

Type Read/Write

Description This register controls the owner of triggergrp0.

Bit(s) Name Description Value
1-0:2 cfg Selects owner of triggergrp0.

cpu: cpu is owner
mpu: mpu is owner
spu0: spu0 is owner
spu1: spu1 is owner

cpu=0
mpu=1
spu0=2
spu1=3

1142 CHAPTER 25. INTERNAL REGISTERS

25.26.28 rw trigger grp1 owner

Address 0x6c

Default 0x00000000

Type Read/Write

Description This register controls the owner of triggergrp1.

Bit(s) Name Description Value
1-0:2 cfg Selects owner of triggergrp1.

cpu: cpu is owner
mpu: mpu is owner
spu0: spu0 is owner
spu1: spu1 is owner

cpu=0
mpu=1
spu0=2
spu1=3

25.26. IOP SW CFG 1143

25.26.29 rw trigger grp2 owner

Address 0x70

Default 0x00000000

Type Read/Write

Description This register controls the owner of triggergrp2.

Bit(s) Name Description Value
1-0:2 cfg Selects owner of triggergrp2.

cpu: cpu is owner
mpu: mpu is owner
spu0: spu0 is owner
spu1: spu1 is owner

cpu=0
mpu=1
spu0=2
spu1=3

1144 CHAPTER 25. INTERNAL REGISTERS

25.26.30 rw trigger grp3 owner

Address 0x74

Default 0x00000000

Type Read/Write

Description This register controls the owner of triggergrp3.

Bit(s) Name Description Value
1-0:2 cfg Selects owner of triggergrp3.

cpu: cpu is owner
mpu: mpu is owner
spu0: spu0 is owner
spu1: spu1 is owner

cpu=0
mpu=1
spu0=2
spu1=3

25.26. IOP SW CFG 1145

25.26.31 rw trigger grp4 owner

Address 0x78

Default 0x00000000

Type Read/Write

Description This register controls the owner of triggergrp4.

Bit(s) Name Description Value
1-0:2 cfg Selects owner of triggergrp4.

cpu: cpu is owner
mpu: mpu is owner
spu0: spu0 is owner
spu1: spu1 is owner

cpu=0
mpu=1
spu0=2
spu1=3

1146 CHAPTER 25. INTERNAL REGISTERS

25.26.32 rw trigger grp5 owner

Address 0x7c

Default 0x00000000

Type Read/Write

Description This register controls the owner of triggergrp5.

Bit(s) Name Description Value
1-0:2 cfg Selects owner of triggergrp5.

cpu: cpu is owner
mpu: mpu is owner
spu0: spu0 is owner
spu1: spu1 is owner

cpu=0
mpu=1
spu0=2
spu1=3

25.26. IOP SW CFG 1147

25.26.33 rw trigger grp6 owner

Address 0x80

Default 0x00000000

Type Read/Write

Description This register controls the owner of triggergrp6.

Bit(s) Name Description Value
1-0:2 cfg Selects owner of triggergrp6.

cpu: cpu is owner
mpu: mpu is owner
spu0: spu0 is owner
spu1: spu1 is owner

cpu=0
mpu=1
spu0=2
spu1=3

1148 CHAPTER 25. INTERNAL REGISTERS

25.26.34 rw trigger grp7 owner

Address 0x84

Default 0x00000000

Type Read/Write

Description This register controls the owner of triggergrp7.

Bit(s) Name Description Value
1-0:2 cfg Selects owner of triggergrp7.

cpu: cpu is owner
mpu: mpu is owner
spu0: spu0 is owner
spu1: spu1 is owner

cpu=0
mpu=1
spu0=2
spu1=3

25.26. IOP SW CFG 1149

25.26.35 rw bus0 mask

Address 0x88

Default 0x00000000

Type Read/Write

Description Mask register for output BUS0.

Bit(s) Name Description Value
31-24:8 byte3 Mask value.

23-16:8 byte2 Mask value.

15-8:8 byte1 Mask value.

7-0:8 byte0 Mask value.

1150 CHAPTER 25. INTERNAL REGISTERS

25.26.36 rw bus0 oe mask

Address 0x8c

Default 0x00000000

Type Read/Write

Description Mask register for OE, BUS0.

Bit(s) Name Description Value
3 byte3 Mask value.

2 byte2 Mask value.

1 byte1 Mask value.

0 byte0 Mask value.

25.26. IOP SW CFG 1151

25.26.37 rw bus1 mask

Address 0x90

Default 0x00000000

Type Read/Write

Description Mask register for output BUS1.

Bit(s) Name Description Value
31-24:8 byte3 Mask value.

23-16:8 byte2 Mask value.

15-8:8 byte1 Mask value.

7-0:8 byte0 Mask value.

1152 CHAPTER 25. INTERNAL REGISTERS

25.26.38 rw bus1 oe mask

Address 0x94

Default 0x00000000

Type Read/Write

Description Mask register for OE, BUS1.

Bit(s) Name Description Value
3 byte3 Mask value.

2 byte2 Mask value.

1 byte1 Mask value.

0 byte0 Mask value.

25.26. IOP SW CFG 1153

25.26.39 rw gio mask

Address 0x98

Default 0x00000000

Type Read/Write

Description Mask register for output GIO.

Bit(s) Name Description Value
31-0:32 val Mask value.

1154 CHAPTER 25. INTERNAL REGISTERS

25.26.40 rw gio oe mask

Address 0x9c

Default 0x00000000

Type Read/Write

Description Mask register for OE, GIO.

Bit(s) Name Description Value
31-0:32 val Mask value.

25.26. IOP SW CFG 1155

25.26.41 rw pinmapping

Address 0xa0

Default 0x55555555

Type Read/Write

Description This register controls how to map bus0, bus1 and gio to pins.

Bit(s) Name Description Value
31-30:2 gio31 28 Mapping of gio[31:28].

a: Mapping a, port PE[15:12] is selected
b: Mapping b, port PD[7:4] is selected

a=1
b=2

29-28:2 gio27 24 Mapping of gio[27:24].
a: Mapping a, port PC[15:12] is selected
b: Mapping b, port PE[7:4] is selected

a=1
b=2

27-26:2 gio23 20 Mapping of gio[23:20].
a: Mapping a, port PD[15:12] is selected
b: Mapping b, port PC[7:4] is selected

a=1
b=2

25-24:2 gio19 16 Mapping of gio[19:16].
a: Mapping a, port PB[15:12] is selected
b: Mapping b, port PC[3:0] is selected

a=1
b=2

23-22:2 gio15 12 Mapping of gio[15:12].
a: Mapping a, port PE[11:8] is selected
b: Mapping b, port PD[3:0] is selected

a=1
b=2

21-20:2 gio11 8 Mapping of gio[11:8].
a: Mapping a, port PC[11:8] is selected
b: Mapping b, port PE[3:0] is selected

a=1
b=2

19-18:2 gio7 4 Mapping of gio[7:4].
a: Mapping a, port PD[11:8] is selected
b: Mapping b, port PB[17:16], PC[17:16] is selected

a=1
b=2

17-16:2 gio3 0 Mapping of gio[3:0].
a: Mapping a, port PB[11:8] is selected
b: Mapping b, port PD[17:16], PE[17:16] is selected

a=1
b=2

15-14:2 bus1byte3 Mapping of bus1[31:24].
a: Mapping a, port PB[7:0] is selected
b: Mapping b, port PC[15:8] is selected

a=1
b=2

13-12:2 bus1byte2 Mapping of bus1[23:16].
a: Mapping a, port PB[15:8] is selected
b: Mapping b, port PD[15:8] is selected

a=1
b=2

11-10:2 bus1byte1 Mapping of bus1[15:8].
a: Mapping a, port PC[15:8] is selected
b: Mapping b, port PE[15:8] is selected

a=1
b=2

9-8:2 bus1byte0 Mapping of bus1[7:0].
a: Mapping a, port PC[7:0] is selected
b: Mapping b, port PE[7:0] is selected

a=1
b=2

1156 CHAPTER 25. INTERNAL REGISTERS

7-6:2 bus0byte3 Mapping of bus0[31:24].
a: Mapping a, port PE[7:0] is selected
b: Mapping b, port PD[15:8] is selected

a=1
b=2

5-4:2 bus0byte2 Mapping of bus0[23:16].
a: Mapping a, port PD[7:0] is selected
b: Mapping b, port PE[15:8] is selected

a=1
b=2

3-2:2 bus0byte1 Mapping of bus0[15:8].
a: Mapping a, port PC[7:0] is selected
b: Mapping b, port PB[15:8] is selected

a=1
b=2

1-0:2 bus0byte0 Mapping of bus0[7:0].
a: Mapping a, port PB[7:0] is selected
b: Mapping b, port PD[7:0] is selected

a=1
b=2

25.26. IOP SW CFG 1157

25.26.42 rw bus out cfg

Address 0xa4

Default 0x00000000

Type Read/Write

Description This register select HW sources for BUS0, BUS1, BUS0 OE and BUS1 OE.

Bit(s) Name Description Value
23-21:3 bus1hi oe Output enable register for BUS1[31:16].

spu0gio2: Use SPU0 GIO[2] as OE
spu0gio1: Use SPU0 GIO[1] as OE
spu1gio2: Use SPU1 GIO[2] as OE
spu1gio1: Use SPU1 GIO[1] as OE
timer grp0 tmr1: Use Timer group 0, Timer 1
as OE
timer grp1 tmr1: Use Timer group 1, Timer 1
as OE
timer grp2 tmr1: Use Timer group 2, Timer 1
as OE
timer grp3 tmr1: Use Timer group 3, Timer 1
as OE

spu0gio2=0
spu0gio1=1
spu1gio2=2
spu1gio1=3
timer grp0 tmr1=4
timer grp1 tmr1=5
timer grp2 tmr1=6
timer grp3 tmr1=7

20-18:3 bus1lo oe Output enable register for BUS1[15:0].
spu0gio2: Use SPU0 GIO[2] as OE
spu0gio1: Use SPU0 GIO[1] as OE
spu1gio2: Use SPU1 GIO[2] as OE
spu1gio1: Use SPU1 GIO[1] as OE
timer grp0 tmr1: Use Timer group 0, Timer 1
as OE
timer grp1 tmr1: Use Timer group 1, Timer 1
as OE
timer grp2 tmr1: Use Timer group 2, Timer 1
as OE
timer grp3 tmr1: Use Timer group 3, Timer 1
as OE

spu0gio2=0
spu0gio1=1
spu1gio2=2
spu1gio1=3
timer grp0 tmr1=4
timer grp1 tmr1=5
timer grp2 tmr1=6
timer grp3 tmr1=7

17-15:3 bus1hi BUS1[31:16].
pdp out0 lo: Parallel datapath 0 [15:0]
pdp out0 hi: Parallel datapath 0 [31:16]
pdp out1 lo: Parallel datapath 1 [15:0]
pdp out1 hi: Parallel datapath 1 [31:16]
pdp out0 lo rot8: Parallel datapath 0 rotated
8bits [7:0], [15:8]
pdp out1 hi rot8: Parallel datapath 1 rotated
8bits [23:16], [31:24]
spu1busout0 hi: SPU1 BUS0 out [31:16]
spu0busout1 lo: SPU0 BUS1 out [15:0]

pdp out0 lo=0
pdp out0 hi=1
pdp out1 lo=2
pdp out1 hi=3
pdp out0 lo rot8=4
pdp out1 hi rot8=5
spu1busout0 hi=6
spu0busout1 lo=7

1158 CHAPTER 25. INTERNAL REGISTERS

14-12:3 bus1lo BUS1[15:0].
pdp out0 lo: Parallel datapath 0 [15:0]
pdp out0 hi: Parallel datapath 0 [31:16]
pdp out1 lo: Parallel datapath 1 [15:0]
pdp out1 hi: Parallel datapath 1 [31:16]
pdp out1 lo rot8: Parallel datapath 1 rotated
8bits [7:0], [15:8]
pdp out0 hi rot8: Parallel datapath 0 rotated
8bits [23:16], [31:24]
spu1busout0 lo: SPU1 BUS0 out [15:0]
spu0busout1 hi: SPU0 BUS1 out [31:16]

pdp out0 lo=0
pdp out0 hi=1
pdp out1 lo=2
pdp out1 hi=3
pdp out1 lo rot8=4
pdp out0 hi rot8=5
spu1busout0 lo=6
spu0busout1 hi=7

11-9:3 bus0hi oe Output enable register for BUS0[31:16].
spu0gio0: Use SPU0 GIO[0] as OE
spu0gio1: Use SPU0 GIO[1] as OE
spu1gio0: Use SPU1 GIO[0] as OE
spu1gio1: Use SPU1 GIO[1] as OE
timer grp0 tmr0: Use Timer group 0, Timer 0
as OE
timer grp1 tmr0: Use Timer group 1, Timer 0
as OE
timer grp2 tmr0: Use Timer group 2, Timer 0
as OE
timer grp3 tmr0: Use Timer group 3, Timer 0
as OE

spu0gio0=0
spu0gio1=1
spu1gio0=2
spu1gio1=3
timer grp0 tmr0=4
timer grp1 tmr0=5
timer grp2 tmr0=6
timer grp3 tmr0=7

8-6:3 bus0lo oe Output enable register for BUS0[15:0].
spu0gio0: Use SPU0 GIO[0] as OE
spu0gio1: Use SPU0 GIO[1] as OE
spu1gio0: Use SPU1 GIO[0] as OE
spu1gio1: Use SPU1 GIO[1] as OE
timer grp0 tmr0: Use Timer group 0, Timer 0
as OE
timer grp1 tmr0: Use Timer group 1, Timer 0
as OE
timer grp2 tmr0: Use Timer group 2, Timer 0
as OE
timer grp3 tmr0: Use Timer group 3, Timer 0
as OE

spu0gio0=0
spu0gio1=1
spu1gio0=2
spu1gio1=3
timer grp0 tmr0=4
timer grp1 tmr0=5
timer grp2 tmr0=6
timer grp3 tmr0=7

5-3:3 bus0hi BUS0[31:16].
pdp out0 lo: Parallel datapath 0 [15:0]
pdp out0 hi: Parallel datapath 0 [31:16]
pdp out1 lo: Parallel datapath 1 [15:0]
pdp out1 hi: Parallel datapath 1 [31:16]
pdp out1 lo rot8: Parallel datapath 1 rotated
8bits [7:0], [15:8]
pdp out0 hi rot8: Parallel datapath 0 rotated
8bits [23:16], [31:24]
spu0busout0 hi: SPU0 BUS0 out [31:16]
spu1busout1 lo: SPU1 BUS1 out [15:0]

pdp out0 lo=0
pdp out0 hi=1
pdp out1 lo=2
pdp out1 hi=3
pdp out1 lo rot8=4
pdp out0 hi rot8=5
spu0busout0 hi=6
spu1busout1 lo=7

25.26. IOP SW CFG 1159

2-0:3 bus0lo BUS0[15:0].
pdp out0 lo: Parallel datapath 0 [15:0]
pdp out0 hi: Parallel datapath 0 [31:16]
pdp out1 lo: Parallel datapath 1 [15:0]
pdp out1 hi: Parallel datapath 1 [31:16]
pdp out0 lo rot8: Parallel datapath 0 rotated
8bits [7:0], [15:8]
pdp out1 hi rot8: Parallel datapath 1 rotated
8bits [23:16], [31:24]
spu0busout0 lo: SPU0 BUS0 out [15:0]
spu1busout1 hi: SPU1 BUS1 out [31:16]

pdp out0 lo=0
pdp out0 hi=1
pdp out1 lo=2
pdp out1 hi=3
pdp out0 lo rot8=4
pdp out1 hi rot8=5
spu0busout0 lo=6
spu1busout1 hi=7

1160 CHAPTER 25. INTERNAL REGISTERS

25.26.43 rw gio out grp0 cfg

Address 0xa8

Default 0x00000000

Type Read/Write

Description This register select HW sources for GIO[3:0] and GIO[3:0] OE.

Bit(s) Name Description Value
23-22:2 gio3 oe Output enable for GIO[3].

spu0gio0: SPU0 GIO[0] is selected
spu0gio1: SPU0 GIO[1] is selected
spu1gio0: SPU1 GIO[0] is selected
spu1gio1: SPU1 GIO[1] is selected

spu0gio0=0
spu0gio1=1
spu1gio0=2
spu1gio1=3

21-18:4 gio3 GIO[3].
spu0gioout1: SPU0 GIO[1] is selected
spu1gioout1: SPU1 GIO[1] is selected
spu0gioout3: SPU0 GIO[3] is selected
spu1gioout3: SPU1 GIO[3] is selected
spu0gioout5: SPU0 GIO[5] is selected
spu1gioout5: SPU1 GIO[5] is selected
spu0gioout7: SPU0 GIO[7] is selected
spu1gioout7: SPU1 GIO[7] is selected
sdpout0: SDP0 out is selected
sdpout1: SDP1 out is selected
timer grp0 strb3: Timer group 0, Timer 3 is se-
lected
timer grp1 strb3: Timer group 1, Timer 3 is se-
lected
timer grp2 strb3: Timer group 2, Timer 3 is se-
lected
timer grp3 strb3: Timer group 3, Timer 3 is se-
lected
spu0g6: SPU0 GIO[6] is selected
spu1g6: SPU1 GIO[6] is selected

spu0gioout1=0
spu1gioout1=1
spu0gioout3=2
spu1gioout3=3
spu0gioout5=4
spu1gioout5=5
spu0gioout7=6
spu1gioout7=7
sdpout0=8
sdpout1=9
timer grp0 strb3=10
timer grp1 strb3=11
timer grp2 strb3=12
timer grp3 strb3=13
spu0g6=14
spu1g6=15

17-16:2 gio2 oe Output enable for GIO[2].
spu0gio0: SPU0 GIO[0] is selected
spu0gio1: SPU0 GIO[1] is selected
spu1gio0: SPU1 GIO[0] is selected
spu1gio1: SPU1 GIO[1] is selected

spu0gio0=0
spu0gio1=1
spu1gio0=2
spu1gio1=3

25.26. IOP SW CFG 1161

15-12:4 gio2 GIO[2].
spu0gioout0: SPU0 GIO[0] is selected
spu1gioout0: SPU1 GIO[0] is selected
spu0gioout2: SPU0 GIO[2] is selected
spu1gioout2: SPU1 GIO[2] is selected
spu0gioout4: SPU0 GIO[4] is selected
spu1gioout4: SPU1 GIO[4] is selected
spu0gioout6: SPU0 GIO[6] is selected
spu1gioout6: SPU1 GIO[6] is selected
sdpout0: SDP0 out is selected
sdpout1: SDP1 out is selected
timer grp0 strb2: Timer group 0, Timer 2 is se-
lected
timer grp1 strb2: Timer group 1, Timer 2 is se-
lected
timer grp2 strb2: Timer group 2, Timer 2 is se-
lected
timer grp3 strb2: Timer group 3, Timer 2 is se-
lected
spu0g1: SPU0 GIO[1] is selected
spu1g1: SPU1 GIO[1] is selected

spu0gioout0=0
spu1gioout0=1
spu0gioout2=2
spu1gioout2=3
spu0gioout4=4
spu1gioout4=5
spu0gioout6=6
spu1gioout6=7
sdpout0=8
sdpout1=9
timer grp0 strb2=10
timer grp1 strb2=11
timer grp2 strb2=12
timer grp3 strb2=13
spu0g1=14
spu1g1=15

11-10:2 gio1 oe Output enable for GIO[1].
spu0gio0: SPU0 GIO[0] is selected
spu0gio1: SPU0 GIO[1] is selected
spu1gio0: SPU1 GIO[0] is selected
spu1gio1: SPU1 GIO[1] is selected

spu0gio0=0
spu0gio1=1
spu1gio0=2
spu1gio1=3

9-6:4 gio1 GIO[1].
spu0gioout1: SPU0 GIO[1] is selected
spu1gioout1: SPU1 GIO[1] is selected
spu0gioout3: SPU0 GIO[3] is selected
spu1gioout3: SPU1 GIO[3] is selected
spu0gioout5: SPU0 GIO[5] is selected
spu1gioout5: SPU1 GIO[5] is selected
spu0gioout7: SPU0 GIO[7] is selected
spu1gioout7: SPU1 GIO[7] is selected
sdpout0: SDP0 out is selected
sdpout1: SDP1 out is selected
timer grp0 strb1: Timer group 0, Timer 1 is se-
lected
timer grp1 strb1: Timer group 1, Timer 1 is se-
lected
timer grp2 strb1: Timer group 2, Timer 1 is se-
lected
timer grp3 strb1: Timer group 3, Timer 1 is se-
lected
spu0g0: SPU0 GIO[0] is selected
spu1g0: SPU1 GIO[0] is selected

spu0gioout1=0
spu1gioout1=1
spu0gioout3=2
spu1gioout3=3
spu0gioout5=4
spu1gioout5=5
spu0gioout7=6
spu1gioout7=7
sdpout0=8
sdpout1=9
timer grp0 strb1=10
timer grp1 strb1=11
timer grp2 strb1=12
timer grp3 strb1=13
spu0g0=14
spu1g0=15

1162 CHAPTER 25. INTERNAL REGISTERS

5-4:2 gio0 oe Output enable for GIO[0].
spu0gio0: SPU0 GIO[0] is selected
spu0gio1: SPU0 GIO[1] is selected
spu1gio0: SPU1 GIO[0] is selected
spu1gio1: SPU1 GIO[1] is selected

spu0gio0=0
spu0gio1=1
spu1gio0=2
spu1gio1=3

3-0:4 gio0 GIO[0].
spu0gioout0: SPU0 GIO[0] is selected
spu1gioout0: SPU1 GIO[0] is selected
spu0gioout2: SPU0 GIO[2] is selected
spu1gioout2: SPU1 GIO[2] is selected
spu0gioout4: SPU0 GIO[4] is selected
spu1gioout4: SPU1 GIO[4] is selected
spu0gioout6: SPU0 GIO[6] is selected
spu1gioout6: SPU1 GIO[6] is selected
sdpout0: SDP0 out is selected
sdpout1: SDP1 out is selected
timer grp0 strb0: Timer group 0, Timer 0 is se-
lected
timer grp1 strb0: Timer group 1, Timer 0 is se-
lected
timer grp2 strb0: Timer group 2, Timer 0 is se-
lected
timer grp3 strb0: Timer group 3, Timer 0 is se-
lected
spu0g7: SPU0 GIO[7] is selected
spu1g7: SPU1 GIO[7] is selected

spu0gioout0=0
spu1gioout0=1
spu0gioout2=2
spu1gioout2=3
spu0gioout4=4
spu1gioout4=5
spu0gioout6=6
spu1gioout6=7
sdpout0=8
sdpout1=9
timer grp0 strb0=10
timer grp1 strb0=11
timer grp2 strb0=12
timer grp3 strb0=13
spu0g7=14
spu1g7=15

25.26. IOP SW CFG 1163

25.26.44 rw gio out grp1 cfg

Address 0xac

Default 0x00000000

Type Read/Write

Description This register select HW sources for GIO[7:4] and GIO[7:4] OE.

Bit(s) Name Description Value
23-22:2 gio7 oe Output enable for GIO[7].

spu0gio0: SPU0 GIO[0] is selected
spu0gio1: SPU0 GIO[1] is selected
spu1gio0: SPU1 GIO[0] is selected
spu1gio1: SPU1 GIO[1] is selected

spu0gio0=0
spu0gio1=1
spu1gio0=2
spu1gio1=3

21-18:4 gio7 GIO[7].
spu0gioout1: SPU0 GIO[1] is selected
spu1gioout1: SPU1 GIO[1] is selected
spu0gioout3: SPU0 GIO[3] is selected
spu1gioout3: SPU1 GIO[3] is selected
spu0gioout5: SPU0 GIO[5] is selected
spu1gioout5: SPU1 GIO[5] is selected
spu0gioout7: SPU0 GIO[7] is selected
spu1gioout7: SPU1 GIO[7] is selected
sdpout0: SDP0 out is selected
sdpout1: SDP1 out is selected
timer grp0 strb3: Timer group 0, Timer 3 is se-
lected
timer grp1 strb3: Timer group 1, Timer 3 is se-
lected
timer grp2 strb3: Timer group 2, Timer 3 is se-
lected
timer grp3 strb3: Timer group 3, Timer 3 is se-
lected
spu0g4: SPU0 GIO[4] is selected
spu1g4: SPU1 GIO[4] is selected

spu0gioout1=0
spu1gioout1=1
spu0gioout3=2
spu1gioout3=3
spu0gioout5=4
spu1gioout5=5
spu0gioout7=6
spu1gioout7=7
sdpout0=8
sdpout1=9
timer grp0 strb3=10
timer grp1 strb3=11
timer grp2 strb3=12
timer grp3 strb3=13
spu0g4=14
spu1g4=15

17-16:2 gio6 oe Output enable for GIO[6].
spu0gio0: SPU0 GIO[0] is selected
spu0gio1: SPU0 GIO[1] is selected
spu1gio0: SPU1 GIO[0] is selected
spu1gio1: SPU1 GIO[1] is selected

spu0gio0=0
spu0gio1=1
spu1gio0=2
spu1gio1=3

1164 CHAPTER 25. INTERNAL REGISTERS

15-12:4 gio6 GIO[6].
spu0gioout0: SPU0 GIO[0] is selected
spu1gioout0: SPU1 GIO[0] is selected
spu0gioout2: SPU0 GIO[2] is selected
spu1gioout2: SPU1 GIO[2] is selected
spu0gioout4: SPU0 GIO[4] is selected
spu1gioout4: SPU1 GIO[4] is selected
spu0gioout6: SPU0 GIO[6] is selected
spu1gioout6: SPU1 GIO[6] is selected
sdpout0: SDP0 out is selected
sdpout1: SDP1 out is selected
timer grp0 strb2: Timer group 0, Timer 2 is se-
lected
timer grp1 strb2: Timer group 1, Timer 2 is se-
lected
timer grp2 strb2: Timer group 2, Timer 2 is se-
lected
timer grp3 strb2: Timer group 3, Timer 2 is se-
lected
spu0g3: SPU0 GIO[3] is selected
spu1g3: SPU1 GIO[3] is selected

spu0gioout0=0
spu1gioout0=1
spu0gioout2=2
spu1gioout2=3
spu0gioout4=4
spu1gioout4=5
spu0gioout6=6
spu1gioout6=7
sdpout0=8
sdpout1=9
timer grp0 strb2=10
timer grp1 strb2=11
timer grp2 strb2=12
timer grp3 strb2=13
spu0g3=14
spu1g3=15

11-10:2 gio5 oe Output enable for GIO[5].
spu0gio0: SPU0 GIO[0] is selected
spu0gio1: SPU0 GIO[1] is selected
spu1gio0: SPU1 GIO[0] is selected
spu1gio1: SPU1 GIO[1] is selected

spu0gio0=0
spu0gio1=1
spu1gio0=2
spu1gio1=3

9-6:4 gio5 GIO[5].
spu0gioout1: SPU0 GIO[1] is selected
spu1gioout1: SPU1 GIO[1] is selected
spu0gioout3: SPU0 GIO[3] is selected
spu1gioout3: SPU1 GIO[3] is selected
spu0gioout5: SPU0 GIO[5] is selected
spu1gioout5: SPU1 GIO[5] is selected
spu0gioout7: SPU0 GIO[7] is selected
spu1gioout7: SPU1 GIO[7] is selected
sdpout0: SDP0 out is selected
sdpout1: SDP1 out is selected
timer grp0 strb1: Timer group 0, Timer 1 is se-
lected
timer grp1 strb1: Timer group 1, Timer 1 is se-
lected
timer grp2 strb1: Timer group 2, Timer 1 is se-
lected
timer grp3 strb1: Timer group 3, Timer 1 is se-
lected
spu0g2: SPU0 GIO[2] is selected
spu1g2: SPU1 GIO[2] is selected

spu0gioout1=0
spu1gioout1=1
spu0gioout3=2
spu1gioout3=3
spu0gioout5=4
spu1gioout5=5
spu0gioout7=6
spu1gioout7=7
sdpout0=8
sdpout1=9
timer grp0 strb1=10
timer grp1 strb1=11
timer grp2 strb1=12
timer grp3 strb1=13
spu0g2=14
spu1g2=15

25.26. IOP SW CFG 1165

5-4:2 gio4 oe Output enable for GIO[4].
spu0gio0: SPU0 GIO[0] is selected
spu0gio1: SPU0 GIO[1] is selected
spu1gio0: SPU1 GIO[0] is selected
spu1gio1: SPU1 GIO[1] is selected

spu0gio0=0
spu0gio1=1
spu1gio0=2
spu1gio1=3

3-0:4 gio4 GIO[4].
spu0gioout0: SPU0 GIO[0] is selected
spu1gioout0: SPU1 GIO[0] is selected
spu0gioout2: SPU0 GIO[2] is selected
spu1gioout2: SPU1 GIO[2] is selected
spu0gioout4: SPU0 GIO[4] is selected
spu1gioout4: SPU1 GIO[4] is selected
spu0gioout6: SPU0 GIO[6] is selected
spu1gioout6: SPU1 GIO[6] is selected
sdpout0: SDP0 out is selected
sdpout1: SDP1 out is selected
timer grp0 strb0: Timer group 0, Timer 0 is se-
lected
timer grp1 strb0: Timer group 1, Timer 0 is se-
lected
timer grp2 strb0: Timer group 2, Timer 0 is se-
lected
timer grp3 strb0: Timer group 3, Timer 0 is se-
lected
spu0g5: SPU0 GIO[5] is selected
spu1g5: SPU1 GIO[5] is selected

spu0gioout0=0
spu1gioout0=1
spu0gioout2=2
spu1gioout2=3
spu0gioout4=4
spu1gioout4=5
spu0gioout6=6
spu1gioout6=7
sdpout0=8
sdpout1=9
timer grp0 strb0=10
timer grp1 strb0=11
timer grp2 strb0=12
timer grp3 strb0=13
spu0g5=14
spu1g5=15

1166 CHAPTER 25. INTERNAL REGISTERS

25.26.45 rw gio out grp2 cfg

Address 0xb0

Default 0x00000000

Type Read/Write

Description This register select HW sources for GIO[11:8] and GIO[11:8] OE.

Bit(s) Name Description Value
23-22:2 gio11 oe Output enable for GIO[11].

spu0gio0: SPU0 GIO[0] is selected
spu0gio1: SPU0 GIO[1] is selected
spu1gio0: SPU1 GIO[0] is selected
spu1gio1: SPU1 GIO[1] is selected

spu0gio0=0
spu0gio1=1
spu1gio0=2
spu1gio1=3

21-18:4 gio11 GIO[11].
spu0gioout1: SPU0 GIO[1] is selected
spu1gioout1: SPU1 GIO[1] is selected
spu0gioout3: SPU0 GIO[3] is selected
spu1gioout3: SPU1 GIO[3] is selected
spu0gioout5: SPU0 GIO[5] is selected
spu1gioout5: SPU1 GIO[5] is selected
spu0gioout7: SPU0 GIO[7] is selected
spu1gioout7: SPU1 GIO[7] is selected
sdpout0: SDP0 out is selected
sdpout1: SDP1 out is selected
timer grp0 strb3: Timer group 0, Timer 3 is se-
lected
timer grp1 strb3: Timer group 1, Timer 3 is se-
lected
timer grp2 strb3: Timer group 2, Timer 3 is se-
lected
timer grp3 strb3: Timer group 3, Timer 3 is se-
lected
spu0gioout11: SPU0 GIO[11] is selected
spu1gioout11: SPU1 GIO[11] is selected

spu0gioout1=0
spu1gioout1=1
spu0gioout3=2
spu1gioout3=3
spu0gioout5=4
spu1gioout5=5
spu0gioout7=6
spu1gioout7=7
sdpout0=8
sdpout1=9
timer grp0 strb3=10
timer grp1 strb3=11
timer grp2 strb3=12
timer grp3 strb3=13
spu0gioout11=14
spu1gioout11=15

17-16:2 gio10 oe Output enable for GIO[10].
spu0gio0: SPU0 GIO[0] is selected
spu0gio1: SPU0 GIO[1] is selected
spu1gio0: SPU1 GIO[0] is selected
spu1gio1: SPU1 GIO[1] is selected

spu0gio0=0
spu0gio1=1
spu1gio0=2
spu1gio1=3

25.26. IOP SW CFG 1167

15-12:4 gio10 GIO[10].
spu0gioout0: SPU0 GIO[0] is selected
spu1gioout0: SPU1 GIO[0] is selected
spu0gioout2: SPU0 GIO[2] is selected
spu1gioout2: SPU1 GIO[2] is selected
spu0gioout4: SPU0 GIO[4] is selected
spu1gioout4: SPU1 GIO[4] is selected
spu0gioout6: SPU0 GIO[6] is selected
spu1gioout6: SPU1 GIO[6] is selected
sdpout0: SDP0 out is selected
sdpout1: SDP1 out is selected
timer grp0 strb2: Timer group 0, Timer 2 is se-
lected
timer grp1 strb2: Timer group 1, Timer 2 is se-
lected
timer grp2 strb2: Timer group 2, Timer 2 is se-
lected
timer grp3 strb2: Timer group 3, Timer 2 is se-
lected
spu0gioout10: SPU0 GIO[10] is selected
spu1gioout10: SPU1 GIO[10] is selected

spu0gioout0=0
spu1gioout0=1
spu0gioout2=2
spu1gioout2=3
spu0gioout4=4
spu1gioout4=5
spu0gioout6=6
spu1gioout6=7
sdpout0=8
sdpout1=9
timer grp0 strb2=10
timer grp1 strb2=11
timer grp2 strb2=12
timer grp3 strb2=13
spu0gioout10=14
spu1gioout10=15

11-10:2 gio9 oe Output enable for GIO[9].
spu0gio0: SPU0 GIO[0] is selected
spu0gio1: SPU0 GIO[1] is selected
spu1gio0: SPU1 GIO[0] is selected
spu1gio1: SPU1 GIO[1] is selected

spu0gio0=0
spu0gio1=1
spu1gio0=2
spu1gio1=3

9-6:4 gio9 GIO[9].
spu0gioout1: SPU0 GIO[1] is selected
spu1gioout1: SPU1 GIO[1] is selected
spu0gioout3: SPU0 GIO[3] is selected
spu1gioout3: SPU1 GIO[3] is selected
spu0gioout5: SPU0 GIO[5] is selected
spu1gioout5: SPU1 GIO[5] is selected
spu0gioout7: SPU0 GIO[7] is selected
spu1gioout7: SPU1 GIO[7] is selected
sdpout0: SDP0 out is selected
sdpout1: SDP1 out is selected
timer grp0 strb1: Timer group 0, Timer 1 is se-
lected
timer grp1 strb1: Timer group 1, Timer 1 is se-
lected
timer grp2 strb1: Timer group 2, Timer 1 is se-
lected
timer grp3 strb1: Timer group 3, Timer 1 is se-
lected
spu0gioout9: SPU0 GIO[9] is selected
spu1gioout9: SPU1 GIO[9] is selected

spu0gioout1=0
spu1gioout1=1
spu0gioout3=2
spu1gioout3=3
spu0gioout5=4
spu1gioout5=5
spu0gioout7=6
spu1gioout7=7
sdpout0=8
sdpout1=9
timer grp0 strb1=10
timer grp1 strb1=11
timer grp2 strb1=12
timer grp3 strb1=13
spu0gioout9=14
spu1gioout9=15

1168 CHAPTER 25. INTERNAL REGISTERS

5-4:2 gio8 oe Output enable for GIO[8].
spu0gio0: SPU0 GIO[0] is selected
spu0gio1: SPU0 GIO[1] is selected
spu1gio0: SPU1 GIO[0] is selected
spu1gio1: SPU1 GIO[1] is selected

spu0gio0=0
spu0gio1=1
spu1gio0=2
spu1gio1=3

3-0:4 gio8 GIO[8].
spu0gioout0: SPU0 GIO[0] is selected
spu1gioout0: SPU1 GIO[0] is selected
spu0gioout2: SPU0 GIO[2] is selected
spu1gioout2: SPU1 GIO[2] is selected
spu0gioout4: SPU0 GIO[4] is selected
spu1gioout4: SPU1 GIO[4] is selected
spu0gioout6: SPU0 GIO[6] is selected
spu1gioout6: SPU1 GIO[6] is selected
sdpout0: SDP0 out is selected
sdpout1: SDP1 out is selected
timer grp0 strb0: Timer group 0, Timer 0 is se-
lected
timer grp1 strb0: Timer group 1, Timer 0 is se-
lected
timer grp2 strb0: Timer group 2, Timer 0 is se-
lected
timer grp3 strb0: Timer group 3, Timer 0 is se-
lected
spu0gioout8: SPU0 GIO[8] is selected
spu1gioout8: SPU1 GIO[8] is selected

spu0gioout0=0
spu1gioout0=1
spu0gioout2=2
spu1gioout2=3
spu0gioout4=4
spu1gioout4=5
spu0gioout6=6
spu1gioout6=7
sdpout0=8
sdpout1=9
timer grp0 strb0=10
timer grp1 strb0=11
timer grp2 strb0=12
timer grp3 strb0=13
spu0gioout8=14
spu1gioout8=15

25.26. IOP SW CFG 1169

25.26.46 rw gio out grp3 cfg

Address 0xb4

Default 0x00000000

Type Read/Write

Description This register select HW sources for GIO[15:12] and GIO[15:12] OE.

Bit(s) Name Description Value
23-22:2 gio15 oe Output enable for GIO[15].

spu0gio0: SPU0 GIO[0] is selected
spu0gio1: SPU0 GIO[1] is selected
spu1gio0: SPU1 GIO[0] is selected
spu1gio1: SPU1 GIO[1] is selected

spu0gio0=0
spu0gio1=1
spu1gio0=2
spu1gio1=3

21-18:4 gio15 GIO[15].
spu0gioout1: SPU0 GIO[1] is selected
spu1gioout1: SPU1 GIO[1] is selected
spu0gioout3: SPU0 GIO[3] is selected
spu1gioout3: SPU1 GIO[3] is selected
spu0gioout5: SPU0 GIO[5] is selected
spu1gioout5: SPU1 GIO[5] is selected
spu0gioout7: SPU0 GIO[7] is selected
spu1gioout7: SPU1 GIO[7] is selected
sdpout0: SDP0 out is selected
sdpout1: SDP1 out is selected
timer grp0 strb3: Timer group 0, Timer 3 is se-
lected
timer grp1 strb3: Timer group 1, Timer 3 is se-
lected
timer grp2 strb3: Timer group 2, Timer 3 is se-
lected
timer grp3 strb3: Timer group 3, Timer 3 is se-
lected
spu0gioout15: SPU0 GIO[15] is selected
spu1gioout15: SPU1 GIO[15] is selected

spu0gioout1=0
spu1gioout1=1
spu0gioout3=2
spu1gioout3=3
spu0gioout5=4
spu1gioout5=5
spu0gioout7=6
spu1gioout7=7
sdpout0=8
sdpout1=9
timer grp0 strb3=10
timer grp1 strb3=11
timer grp2 strb3=12
timer grp3 strb3=13
spu0gioout15=14
spu1gioout15=15

17-16:2 gio14 oe Output enable for GIO[14].
spu0gio0: SPU0 GIO[0] is selected
spu0gio1: SPU0 GIO[1] is selected
spu1gio0: SPU1 GIO[0] is selected
spu1gio1: SPU1 GIO[1] is selected

spu0gio0=0
spu0gio1=1
spu1gio0=2
spu1gio1=3

1170 CHAPTER 25. INTERNAL REGISTERS

15-12:4 gio14 GIO[14].
spu0gioout0: SPU0 GIO[0] is selected
spu1gioout0: SPU1 GIO[0] is selected
spu0gioout2: SPU0 GIO[2] is selected
spu1gioout2: SPU1 GIO[2] is selected
spu0gioout4: SPU0 GIO[4] is selected
spu1gioout4: SPU1 GIO[4] is selected
spu0gioout6: SPU0 GIO[6] is selected
spu1gioout6: SPU1 GIO[6] is selected
sdpout0: SDP0 out is selected
sdpout1: SDP1 out is selected
timer grp0 strb2: Timer group 0, Timer 2 is se-
lected
timer grp1 strb2: Timer group 1, Timer 2 is se-
lected
timer grp2 strb2: Timer group 2, Timer 2 is se-
lected
timer grp3 strb2: Timer group 3, Timer 2 is se-
lected
spu0gioout14: SPU0 GIO[14] is selected
spu1gioout14: SPU1 GIO[14] is selected

spu0gioout0=0
spu1gioout0=1
spu0gioout2=2
spu1gioout2=3
spu0gioout4=4
spu1gioout4=5
spu0gioout6=6
spu1gioout6=7
sdpout0=8
sdpout1=9
timer grp0 strb2=10
timer grp1 strb2=11
timer grp2 strb2=12
timer grp3 strb2=13
spu0gioout14=14
spu1gioout14=15

11-10:2 gio13 oe Output enable for GIO[13].
spu0gio0: SPU0 GIO[0] is selected
spu0gio1: SPU0 GIO[1] is selected
spu1gio0: SPU1 GIO[0] is selected
spu1gio1: SPU1 GIO[1] is selected

spu0gio0=0
spu0gio1=1
spu1gio0=2
spu1gio1=3

9-6:4 gio13 GIO[13].
spu0gioout1: SPU0 GIO[1] is selected
spu1gioout1: SPU1 GIO[1] is selected
spu0gioout3: SPU0 GIO[3] is selected
spu1gioout3: SPU1 GIO[3] is selected
spu0gioout5: SPU0 GIO[5] is selected
spu1gioout5: SPU1 GIO[5] is selected
spu0gioout7: SPU0 GIO[7] is selected
spu1gioout7: SPU1 GIO[7] is selected
sdpout0: SDP0 out is selected
sdpout1: SDP1 out is selected
timer grp0 strb1: Timer group 0, Timer 1 is se-
lected
timer grp1 strb1: Timer group 1, Timer 1 is se-
lected
timer grp2 strb1: Timer group 2, Timer 1 is se-
lected
timer grp3 strb1: Timer group 3, Timer 1 is se-
lected
spu0gioout13: SPU0 GIO[13] is selected
spu1gioout13: SPU1 GIO[13] is selected

spu0gioout1=0
spu1gioout1=1
spu0gioout3=2
spu1gioout3=3
spu0gioout5=4
spu1gioout5=5
spu0gioout7=6
spu1gioout7=7
sdpout0=8
sdpout1=9
timer grp0 strb1=10
timer grp1 strb1=11
timer grp2 strb1=12
timer grp3 strb1=13
spu0gioout13=14
spu1gioout13=15

25.26. IOP SW CFG 1171

5-4:2 gio12 oe Output enable for GIO[12].
spu0gio0: SPU0 GIO[0] is selected
spu0gio1: SPU0 GIO[1] is selected
spu1gio0: SPU1 GIO[0] is selected
spu1gio1: SPU1 GIO[1] is selected

spu0gio0=0
spu0gio1=1
spu1gio0=2
spu1gio1=3

3-0:4 gio12 GIO[12].
spu0gioout0: SPU0 GIO[0] is selected
spu1gioout0: SPU1 GIO[0] is selected
spu0gioout2: SPU0 GIO[2] is selected
spu1gioout2: SPU1 GIO[2] is selected
spu0gioout4: SPU0 GIO[4] is selected
spu1gioout4: SPU1 GIO[4] is selected
spu0gioout6: SPU0 GIO[6] is selected
spu1gioout6: SPU1 GIO[6] is selected
sdpout0: SDP0 out is selected
sdpout1: SDP1 out is selected
timer grp0 strb0: Timer group 0, Timer 0 is se-
lected
timer grp1 strb0: Timer group 1, Timer 0 is se-
lected
timer grp2 strb0: Timer group 2, Timer 0 is se-
lected
timer grp3 strb0: Timer group 3, Timer 0 is se-
lected
spu0gioout12: SPU0 GIO[12] is selected
spu1gioout12: SPU1 GIO[12] is selected

spu0gioout0=0
spu1gioout0=1
spu0gioout2=2
spu1gioout2=3
spu0gioout4=4
spu1gioout4=5
spu0gioout6=6
spu1gioout6=7
sdpout0=8
sdpout1=9
timer grp0 strb0=10
timer grp1 strb0=11
timer grp2 strb0=12
timer grp3 strb0=13
spu0gioout12=14
spu1gioout12=15

1172 CHAPTER 25. INTERNAL REGISTERS

25.26.47 rw gio out grp4 cfg

Address 0xb8

Default 0x00000000

Type Read/Write

Description This register select HW sources for GIO[19:16] and GIO[19:16] OE.

Bit(s) Name Description Value
23-22:2 gio19 oe Output enable for GIO[19].

spu0gio0: SPU0 GIO[0] is selected
spu0gio1: SPU0 GIO[1] is selected
spu1gio0: SPU1 GIO[0] is selected
spu1gio1: SPU1 GIO[1] is selected

spu0gio0=0
spu0gio1=1
spu1gio0=2
spu1gio1=3

21-18:4 gio19 GIO[19].
spu0gioout1: SPU0 GIO[1] is selected
spu1gioout1: SPU1 GIO[1] is selected
spu0gioout3: SPU0 GIO[3] is selected
spu1gioout3: SPU1 GIO[3] is selected
spu0gioout5: SPU0 GIO[5] is selected
spu1gioout5: SPU1 GIO[5] is selected
spu0gioout7: SPU0 GIO[7] is selected
spu1gioout7: SPU1 GIO[7] is selected
sdpout0: SDP0 out is selected
sdpout1: SDP1 out is selected
timer grp0 strb3: Timer group 0, Timer 3 is se-
lected
timer grp1 strb3: Timer group 1, Timer 3 is se-
lected
timer grp2 strb3: Timer group 2, Timer 3 is se-
lected
timer grp3 strb3: Timer group 3, Timer 3 is se-
lected
spu0gioout19: SPU0 GIO[19] is selected
spu1gioout19: SPU1 GIO[19] is selected

spu0gioout1=0
spu1gioout1=1
spu0gioout3=2
spu1gioout3=3
spu0gioout5=4
spu1gioout5=5
spu0gioout7=6
spu1gioout7=7
sdpout0=8
sdpout1=9
timer grp0 strb3=10
timer grp1 strb3=11
timer grp2 strb3=12
timer grp3 strb3=13
spu0gioout19=14
spu1gioout19=15

17-16:2 gio18 oe Output enable for GIO[18].
spu0gio0: SPU0 GIO[0] is selected
spu0gio1: SPU0 GIO[1] is selected
spu1gio0: SPU1 GIO[0] is selected
spu1gio1: SPU1 GIO[1] is selected

spu0gio0=0
spu0gio1=1
spu1gio0=2
spu1gio1=3

25.26. IOP SW CFG 1173

15-12:4 gio18 GIO[18].
spu0gioout0: SPU0 GIO[0] is selected
spu1gioout0: SPU1 GIO[0] is selected
spu0gioout2: SPU0 GIO[2] is selected
spu1gioout2: SPU1 GIO[2] is selected
spu0gioout4: SPU0 GIO[4] is selected
spu1gioout4: SPU1 GIO[4] is selected
spu0gioout6: SPU0 GIO[6] is selected
spu1gioout6: SPU1 GIO[6] is selected
sdpout0: SDP0 out is selected
sdpout1: SDP1 out is selected
timer grp0 strb2: Timer group 0, Timer 2 is se-
lected
timer grp1 strb2: Timer group 1, Timer 2 is se-
lected
timer grp2 strb2: Timer group 2, Timer 2 is se-
lected
timer grp3 strb2: Timer group 3, Timer 2 is se-
lected
spu0gioout18: SPU0 GIO[18] is selected
spu1gioout18: SPU1 GIO[18] is selected

spu0gioout0=0
spu1gioout0=1
spu0gioout2=2
spu1gioout2=3
spu0gioout4=4
spu1gioout4=5
spu0gioout6=6
spu1gioout6=7
sdpout0=8
sdpout1=9
timer grp0 strb2=10
timer grp1 strb2=11
timer grp2 strb2=12
timer grp3 strb2=13
spu0gioout18=14
spu1gioout18=15

11-10:2 gio17 oe Output enable for GIO[17].
spu0gio0: SPU0 GIO[0] is selected
spu0gio1: SPU0 GIO[1] is selected
spu1gio0: SPU1 GIO[0] is selected
spu1gio1: SPU1 GIO[1] is selected

spu0gio0=0
spu0gio1=1
spu1gio0=2
spu1gio1=3

9-6:4 gio17 GIO[17].
spu0gioout1: SPU0 GIO[1] is selected
spu1gioout1: SPU1 GIO[1] is selected
spu0gioout3: SPU0 GIO[3] is selected
spu1gioout3: SPU1 GIO[3] is selected
spu0gioout5: SPU0 GIO[5] is selected
spu1gioout5: SPU1 GIO[5] is selected
spu0gioout7: SPU0 GIO[7] is selected
spu1gioout7: SPU1 GIO[7] is selected
sdpout0: SDP0 out is selected
sdpout1: SDP1 out is selected
timer grp0 strb1: Timer group 0, Timer 1 is se-
lected
timer grp1 strb1: Timer group 1, Timer 1 is se-
lected
timer grp2 strb1: Timer group 2, Timer 1 is se-
lected
timer grp3 strb1: Timer group 3, Timer 1 is se-
lected
spu0gioout17: SPU0 GIO[17] is selected
spu1gioout17: SPU1 GIO[17] is selected

spu0gioout1=0
spu1gioout1=1
spu0gioout3=2
spu1gioout3=3
spu0gioout5=4
spu1gioout5=5
spu0gioout7=6
spu1gioout7=7
sdpout0=8
sdpout1=9
timer grp0 strb1=10
timer grp1 strb1=11
timer grp2 strb1=12
timer grp3 strb1=13
spu0gioout17=14
spu1gioout17=15

1174 CHAPTER 25. INTERNAL REGISTERS

5-4:2 gio16 oe Output enable for GIO[16].
spu0gio0: SPU0 GIO[0] is selected
spu0gio1: SPU0 GIO[1] is selected
spu1gio0: SPU1 GIO[0] is selected
spu1gio1: SPU1 GIO[1] is selected

spu0gio0=0
spu0gio1=1
spu1gio0=2
spu1gio1=3

3-0:4 gio16 GIO[16].
spu0gioout0: SPU0 GIO[0] is selected
spu1gioout0: SPU1 GIO[0] is selected
spu0gioout2: SPU0 GIO[2] is selected
spu1gioout2: SPU1 GIO[2] is selected
spu0gioout4: SPU0 GIO[4] is selected
spu1gioout4: SPU1 GIO[4] is selected
spu0gioout6: SPU0 GIO[6] is selected
spu1gioout6: SPU1 GIO[6] is selected
sdpout0: SDP0 out is selected
sdpout1: SDP1 out is selected
timer grp0 strb0: Timer group 0, Timer 0 is se-
lected
timer grp1 strb0: Timer group 1, Timer 0 is se-
lected
timer grp2 strb0: Timer group 2, Timer 0 is se-
lected
timer grp3 strb0: Timer group 3, Timer 0 is se-
lected
spu0gioout16: SPU0 GIO[16] is selected
spu1gioout16: SPU1 GIO[16] is selected

spu0gioout0=0
spu1gioout0=1
spu0gioout2=2
spu1gioout2=3
spu0gioout4=4
spu1gioout4=5
spu0gioout6=6
spu1gioout6=7
sdpout0=8
sdpout1=9
timer grp0 strb0=10
timer grp1 strb0=11
timer grp2 strb0=12
timer grp3 strb0=13
spu0gioout16=14
spu1gioout16=15

25.26. IOP SW CFG 1175

25.26.48 rw gio out grp5 cfg

Address 0xbc

Default 0x00000000

Type Read/Write

Description This register select HW sources for GIO[23:20] and GIO[23:20] OE.

Bit(s) Name Description Value
23-22:2 gio23 oe Output enable for GIO[23].

spu0gio0: SPU0 GIO[0] is selected
spu0gio1: SPU0 GIO[1] is selected
spu1gio0: SPU1 GIO[0] is selected
spu1gio1: SPU1 GIO[1] is selected

spu0gio0=0
spu0gio1=1
spu1gio0=2
spu1gio1=3

21-18:4 gio23 GIO[23].
spu0gioout1: SPU0 GIO[1] is selected
spu1gioout1: SPU1 GIO[1] is selected
spu0gioout3: SPU0 GIO[3] is selected
spu1gioout3: SPU1 GIO[3] is selected
spu0gioout5: SPU0 GIO[5] is selected
spu1gioout5: SPU1 GIO[5] is selected
spu0gioout7: SPU0 GIO[7] is selected
spu1gioout7: SPU1 GIO[7] is selected
sdpout0: SDP0 out is selected
sdpout1: SDP1 out is selected
timer grp0 strb3: Timer group 0, Timer 3 is se-
lected
timer grp1 strb3: Timer group 1, Timer 3 is se-
lected
timer grp2 strb3: Timer group 2, Timer 3 is se-
lected
timer grp3 strb3: Timer group 3, Timer 3 is se-
lected
spu0gioout23: SPU0 GIO[23] is selected
spu1gioout23: SPU1 GIO[23] is selected

spu0gioout1=0
spu1gioout1=1
spu0gioout3=2
spu1gioout3=3
spu0gioout5=4
spu1gioout5=5
spu0gioout7=6
spu1gioout7=7
sdpout0=8
sdpout1=9
timer grp0 strb3=10
timer grp1 strb3=11
timer grp2 strb3=12
timer grp3 strb3=13
spu0gioout23=14
spu1gioout23=15

17-16:2 gio22 oe Output enable for GIO[22].
spu0gio0: SPU0 GIO[0] is selected
spu0gio1: SPU0 GIO[1] is selected
spu1gio0: SPU1 GIO[0] is selected
spu1gio1: SPU1 GIO[1] is selected

spu0gio0=0
spu0gio1=1
spu1gio0=2
spu1gio1=3

1176 CHAPTER 25. INTERNAL REGISTERS

15-12:4 gio22 GIO[22].
spu0gioout0: SPU0 GIO[0] is selected
spu1gioout0: SPU1 GIO[0] is selected
spu0gioout2: SPU0 GIO[2] is selected
spu1gioout2: SPU1 GIO[2] is selected
spu0gioout4: SPU0 GIO[4] is selected
spu1gioout4: SPU1 GIO[4] is selected
spu0gioout6: SPU0 GIO[6] is selected
spu1gioout6: SPU1 GIO[6] is selected
sdpout0: SDP0 out is selected
sdpout1: SDP1 out is selected
timer grp0 strb2: Timer group 0, Timer 2 is se-
lected
timer grp1 strb2: Timer group 1, Timer 2 is se-
lected
timer grp2 strb2: Timer group 2, Timer 2 is se-
lected
timer grp3 strb2: Timer group 3, Timer 2 is se-
lected
spu0gioout22: SPU0 GIO[22] is selected
spu1gioout22: SPU1 GIO[22] is selected

spu0gioout0=0
spu1gioout0=1
spu0gioout2=2
spu1gioout2=3
spu0gioout4=4
spu1gioout4=5
spu0gioout6=6
spu1gioout6=7
sdpout0=8
sdpout1=9
timer grp0 strb2=10
timer grp1 strb2=11
timer grp2 strb2=12
timer grp3 strb2=13
spu0gioout22=14
spu1gioout22=15

11-10:2 gio21 oe Output enable for GIO[21].
spu0gio0: SPU0 GIO[0] is selected
spu0gio1: SPU0 GIO[1] is selected
spu1gio0: SPU1 GIO[0] is selected
spu1gio1: SPU1 GIO[1] is selected

spu0gio0=0
spu0gio1=1
spu1gio0=2
spu1gio1=3

9-6:4 gio21 GIO[21].
spu0gioout1: SPU0 GIO[1] is selected
spu1gioout1: SPU1 GIO[1] is selected
spu0gioout3: SPU0 GIO[3] is selected
spu1gioout3: SPU1 GIO[3] is selected
spu0gioout5: SPU0 GIO[5] is selected
spu1gioout5: SPU1 GIO[5] is selected
spu0gioout7: SPU0 GIO[7] is selected
spu1gioout7: SPU1 GIO[7] is selected
sdpout0: SDP0 out is selected
sdpout1: SDP1 out is selected
timer grp0 strb1: Timer group 0, Timer 1 is se-
lected
timer grp1 strb1: Timer group 1, Timer 1 is se-
lected
timer grp2 strb1: Timer group 2, Timer 1 is se-
lected
timer grp3 strb1: Timer group 3, Timer 1 is se-
lected
spu0gioout21: SPU0 GIO[21] is selected
spu1gioout21: SPU1 GIO[21] is selected

spu0gioout1=0
spu1gioout1=1
spu0gioout3=2
spu1gioout3=3
spu0gioout5=4
spu1gioout5=5
spu0gioout7=6
spu1gioout7=7
sdpout0=8
sdpout1=9
timer grp0 strb1=10
timer grp1 strb1=11
timer grp2 strb1=12
timer grp3 strb1=13
spu0gioout21=14
spu1gioout21=15

25.26. IOP SW CFG 1177

5-4:2 gio20 oe Output enable for GIO[20].
spu0gio0: SPU0 GIO[0] is selected
spu0gio1: SPU0 GIO[1] is selected
spu1gio0: SPU1 GIO[0] is selected
spu1gio1: SPU1 GIO[1] is selected

spu0gio0=0
spu0gio1=1
spu1gio0=2
spu1gio1=3

3-0:4 gio20 GIO[20].
spu0gioout0: SPU0 GIO[0] is selected
spu1gioout0: SPU1 GIO[0] is selected
spu0gioout2: SPU0 GIO[2] is selected
spu1gioout2: SPU1 GIO[2] is selected
spu0gioout4: SPU0 GIO[4] is selected
spu1gioout4: SPU1 GIO[4] is selected
spu0gioout6: SPU0 GIO[6] is selected
spu1gioout6: SPU1 GIO[6] is selected
sdpout0: SDP0 out is selected
sdpout1: SDP1 out is selected
timer grp0 strb0: Timer group 0, Timer 0 is se-
lected
timer grp1 strb0: Timer group 1, Timer 0 is se-
lected
timer grp2 strb0: Timer group 2, Timer 0 is se-
lected
timer grp3 strb0: Timer group 3, Timer 0 is se-
lected
spu0gioout20: SPU0 GIO[20] is selected
spu1gioout20: SPU1 GIO[20] is selected

spu0gioout0=0
spu1gioout0=1
spu0gioout2=2
spu1gioout2=3
spu0gioout4=4
spu1gioout4=5
spu0gioout6=6
spu1gioout6=7
sdpout0=8
sdpout1=9
timer grp0 strb0=10
timer grp1 strb0=11
timer grp2 strb0=12
timer grp3 strb0=13
spu0gioout20=14
spu1gioout20=15

1178 CHAPTER 25. INTERNAL REGISTERS

25.26.49 rw gio out grp6 cfg

Address 0xc0

Default 0x00000000

Type Read/Write

Description This register select HW sources for GIO[27:24] and GIO[27:24] OE.

Bit(s) Name Description Value
23-22:2 gio27 oe Output enable for GIO[27].

spu0gio0: SPU0 GIO[0] is selected
spu0gio1: SPU0 GIO[1] is selected
spu1gio0: SPU1 GIO[0] is selected
spu1gio1: SPU1 GIO[1] is selected

spu0gio0=0
spu0gio1=1
spu1gio0=2
spu1gio1=3

21-18:4 gio27 GIO[27].
spu0gioout1: SPU0 GIO[1] is selected
spu1gioout1: SPU1 GIO[1] is selected
spu0gioout3: SPU0 GIO[3] is selected
spu1gioout3: SPU1 GIO[3] is selected
spu0gioout5: SPU0 GIO[5] is selected
spu1gioout5: SPU1 GIO[5] is selected
spu0gioout7: SPU0 GIO[7] is selected
spu1gioout7: SPU1 GIO[7] is selected
sdpout0: SDP0 out is selected
sdpout1: SDP1 out is selected
timer grp0 strb3: Timer group 0, Timer 3 is se-
lected
timer grp1 strb3: Timer group 1, Timer 3 is se-
lected
timer grp2 strb3: Timer group 2, Timer 3 is se-
lected
timer grp3 strb3: Timer group 3, Timer 3 is se-
lected
spu0gioout27: SPU0 GIO[27] is selected
spu1gioout27: SPU1 GIO[27] is selected

spu0gioout1=0
spu1gioout1=1
spu0gioout3=2
spu1gioout3=3
spu0gioout5=4
spu1gioout5=5
spu0gioout7=6
spu1gioout7=7
sdpout0=8
sdpout1=9
timer grp0 strb3=10
timer grp1 strb3=11
timer grp2 strb3=12
timer grp3 strb3=13
spu0gioout27=14
spu1gioout27=15

17-16:2 gio26 oe Output enable for GIO[26].
spu0gio0: SPU0 GIO[0] is selected
spu0gio1: SPU0 GIO[1] is selected
spu1gio0: SPU1 GIO[0] is selected
spu1gio1: SPU1 GIO[1] is selected

spu0gio0=0
spu0gio1=1
spu1gio0=2
spu1gio1=3

25.26. IOP SW CFG 1179

15-12:4 gio26 GIO[26].
spu0gioout0: SPU0 GIO[0] is selected
spu1gioout0: SPU1 GIO[0] is selected
spu0gioout2: SPU0 GIO[2] is selected
spu1gioout2: SPU1 GIO[2] is selected
spu0gioout4: SPU0 GIO[4] is selected
spu1gioout4: SPU1 GIO[4] is selected
spu0gioout6: SPU0 GIO[6] is selected
spu1gioout6: SPU1 GIO[6] is selected
sdpout0: SDP0 out is selected
sdpout1: SDP1 out is selected
timer grp0 strb2: Timer group 0, Timer 2 is se-
lected
timer grp1 strb2: Timer group 1, Timer 2 is se-
lected
timer grp2 strb2: Timer group 2, Timer 2 is se-
lected
timer grp3 strb2: Timer group 3, Timer 2 is se-
lected
spu0gioout26: SPU0 GIO[26] is selected
spu1gioout26: SPU1 GIO[26] is selected

spu0gioout0=0
spu1gioout0=1
spu0gioout2=2
spu1gioout2=3
spu0gioout4=4
spu1gioout4=5
spu0gioout6=6
spu1gioout6=7
sdpout0=8
sdpout1=9
timer grp0 strb2=10
timer grp1 strb2=11
timer grp2 strb2=12
timer grp3 strb2=13
spu0gioout26=14
spu1gioout26=15

11-10:2 gio25 oe Output enable for GIO[25].
spu0gio0: SPU0 GIO[0] is selected
spu0gio1: SPU0 GIO[1] is selected
spu1gio0: SPU1 GIO[0] is selected
spu1gio1: SPU1 GIO[1] is selected

spu0gio0=0
spu0gio1=1
spu1gio0=2
spu1gio1=3

9-6:4 gio25 GIO[25].
spu0gioout1: SPU0 GIO[1] is selected
spu1gioout1: SPU1 GIO[1] is selected
spu0gioout3: SPU0 GIO[3] is selected
spu1gioout3: SPU1 GIO[3] is selected
spu0gioout5: SPU0 GIO[5] is selected
spu1gioout5: SPU1 GIO[5] is selected
spu0gioout7: SPU0 GIO[7] is selected
spu1gioout7: SPU1 GIO[7] is selected
sdpout0: SDP0 out is selected
sdpout1: SDP1 out is selected
timer grp0 strb1: Timer group 0, Timer 1 is se-
lected
timer grp1 strb1: Timer group 1, Timer 1 is se-
lected
timer grp2 strb1: Timer group 2, Timer 1 is se-
lected
timer grp3 strb1: Timer group 3, Timer 1 is se-
lected
spu0gioout25: SPU0 GIO[25] is selected
spu1gioout25: SPU1 GIO[25] is selected

spu0gioout1=0
spu1gioout1=1
spu0gioout3=2
spu1gioout3=3
spu0gioout5=4
spu1gioout5=5
spu0gioout7=6
spu1gioout7=7
sdpout0=8
sdpout1=9
timer grp0 strb1=10
timer grp1 strb1=11
timer grp2 strb1=12
timer grp3 strb1=13
spu0gioout25=14
spu1gioout25=15

1180 CHAPTER 25. INTERNAL REGISTERS

5-4:2 gio24 oe Output enable for GIO[24].
spu0gio0: SPU0 GIO[0] is selected
spu0gio1: SPU0 GIO[1] is selected
spu1gio0: SPU1 GIO[0] is selected
spu1gio1: SPU1 GIO[1] is selected

spu0gio0=0
spu0gio1=1
spu1gio0=2
spu1gio1=3

3-0:4 gio24 GIO[24].
spu0gioout0: SPU0 GIO[0] is selected
spu1gioout0: SPU1 GIO[0] is selected
spu0gioout2: SPU0 GIO[2] is selected
spu1gioout2: SPU1 GIO[2] is selected
spu0gioout4: SPU0 GIO[4] is selected
spu1gioout4: SPU1 GIO[4] is selected
spu0gioout6: SPU0 GIO[6] is selected
spu1gioout6: SPU1 GIO[6] is selected
sdpout0: SDP0 out is selected
sdpout1: SDP1 out is selected
timer grp0 strb0: Timer group 0, Timer 0 is se-
lected
timer grp1 strb0: Timer group 1, Timer 0 is se-
lected
timer grp2 strb0: Timer group 2, Timer 0 is se-
lected
timer grp3 strb0: Timer group 3, Timer 0 is se-
lected
spu0gioout24: SPU0 GIO[24] is selected
spu1gioout24: SPU1 GIO[24] is selected

spu0gioout0=0
spu1gioout0=1
spu0gioout2=2
spu1gioout2=3
spu0gioout4=4
spu1gioout4=5
spu0gioout6=6
spu1gioout6=7
sdpout0=8
sdpout1=9
timer grp0 strb0=10
timer grp1 strb0=11
timer grp2 strb0=12
timer grp3 strb0=13
spu0gioout24=14
spu1gioout24=15

25.26. IOP SW CFG 1181

25.26.50 rw gio out grp7 cfg

Address 0xc4

Default 0x00000000

Type Read/Write

Description This register select HW sources for GIO[31:28] and GIO[31:28] OE.

Bit(s) Name Description Value
23-22:2 gio31 oe Output enable for GIO[31].

spu0gio0: SPU0 GIO[0] is selected
spu0gio1: SPU0 GIO[1] is selected
spu1gio0: SPU1 GIO[0] is selected
spu1gio1: SPU1 GIO[1] is selected

spu0gio0=0
spu0gio1=1
spu1gio0=2
spu1gio1=3

21-18:4 gio31 GIO[31].
spu0gioout1: SPU0 GIO[1] is selected
spu1gioout1: SPU1 GIO[1] is selected
spu0gioout3: SPU0 GIO[3] is selected
spu1gioout3: SPU1 GIO[3] is selected
spu0gioout5: SPU0 GIO[5] is selected
spu1gioout5: SPU1 GIO[5] is selected
spu0gioout7: SPU0 GIO[7] is selected
spu1gioout7: SPU1 GIO[7] is selected
sdpout0: SDP0 out is selected
sdpout1: SDP1 out is selected
timer grp0 strb3: Timer group 0, Timer 3 is se-
lected
timer grp1 strb3: Timer group 1, Timer 3 is se-
lected
timer grp2 strb3: Timer group 2, Timer 3 is se-
lected
timer grp3 strb3: Timer group 3, Timer 3 is se-
lected
spu0gioout31: SPU0 GIO[31] is selected
spu1gioout31: SPU1 GIO[31] is selected

spu0gioout1=0
spu1gioout1=1
spu0gioout3=2
spu1gioout3=3
spu0gioout5=4
spu1gioout5=5
spu0gioout7=6
spu1gioout7=7
sdpout0=8
sdpout1=9
timer grp0 strb3=10
timer grp1 strb3=11
timer grp2 strb3=12
timer grp3 strb3=13
spu0gioout31=14
spu1gioout31=15

17-16:2 gio30 oe Output enable for GIO[30].
spu0gio0: SPU0 GIO[0] is selected
spu0gio1: SPU0 GIO[1] is selected
spu1gio0: SPU1 GIO[0] is selected
spu1gio1: SPU1 GIO[1] is selected

spu0gio0=0
spu0gio1=1
spu1gio0=2
spu1gio1=3

1182 CHAPTER 25. INTERNAL REGISTERS

15-12:4 gio30 GIO[30].
spu0gioout0: SPU0 GIO[0] is selected
spu1gioout0: SPU1 GIO[0] is selected
spu0gioout2: SPU0 GIO[2] is selected
spu1gioout2: SPU1 GIO[2] is selected
spu0gioout4: SPU0 GIO[4] is selected
spu1gioout4: SPU1 GIO[4] is selected
spu0gioout6: SPU0 GIO[6] is selected
spu1gioout6: SPU1 GIO[6] is selected
sdpout0: SDP0 out is selected
sdpout1: SDP1 out is selected
timer grp0 strb2: Timer group 0, Timer 2 is se-
lected
timer grp1 strb2: Timer group 1, Timer 2 is se-
lected
timer grp2 strb2: Timer group 2, Timer 2 is se-
lected
timer grp3 strb2: Timer group 3, Timer 2 is se-
lected
spu0gioout30: SPU0 GIO[30] is selected
spu1gioout30: SPU1 GIO[30] is selected

spu0gioout0=0
spu1gioout0=1
spu0gioout2=2
spu1gioout2=3
spu0gioout4=4
spu1gioout4=5
spu0gioout6=6
spu1gioout6=7
sdpout0=8
sdpout1=9
timer grp0 strb2=10
timer grp1 strb2=11
timer grp2 strb2=12
timer grp3 strb2=13
spu0gioout30=14
spu1gioout30=15

11-10:2 gio29 oe Output enable for GIO[29].
spu0gio0: SPU0 GIO[0] is selected
spu0gio1: SPU0 GIO[1] is selected
spu1gio0: SPU1 GIO[0] is selected
spu1gio1: SPU1 GIO[1] is selected

spu0gio0=0
spu0gio1=1
spu1gio0=2
spu1gio1=3

9-6:4 gio29 GIO[29].
spu0gioout1: SPU0 GIO[1] is selected
spu1gioout1: SPU1 GIO[1] is selected
spu0gioout3: SPU0 GIO[3] is selected
spu1gioout3: SPU1 GIO[3] is selected
spu0gioout5: SPU0 GIO[5] is selected
spu1gioout5: SPU1 GIO[5] is selected
spu0gioout7: SPU0 GIO[7] is selected
spu1gioout7: SPU1 GIO[7] is selected
sdpout0: SDP0 out is selected
sdpout1: SDP1 out is selected
timer grp0 strb1: Timer group 0, Timer 1 is se-
lected
timer grp1 strb1: Timer group 1, Timer 1 is se-
lected
timer grp2 strb1: Timer group 2, Timer 1 is se-
lected
timer grp3 strb1: Timer group 3, Timer 1 is se-
lected
spu0gioout29: SPU0 GIO[29] is selected
spu1gioout29: SPU1 GIO[29] is selected

spu0gioout1=0
spu1gioout1=1
spu0gioout3=2
spu1gioout3=3
spu0gioout5=4
spu1gioout5=5
spu0gioout7=6
spu1gioout7=7
sdpout0=8
sdpout1=9
timer grp0 strb1=10
timer grp1 strb1=11
timer grp2 strb1=12
timer grp3 strb1=13
spu0gioout29=14
spu1gioout29=15

25.26. IOP SW CFG 1183

5-4:2 gio28 oe Output enable for GIO[28].
spu0gio0: SPU0 GIO[0] is selected
spu0gio1: SPU0 GIO[1] is selected
spu1gio0: SPU1 GIO[0] is selected
spu1gio1: SPU1 GIO[1] is selected

spu0gio0=0
spu0gio1=1
spu1gio0=2
spu1gio1=3

3-0:4 gio28 GIO[28].
spu0gioout0: SPU0 GIO[0] is selected
spu1gioout0: SPU1 GIO[0] is selected
spu0gioout2: SPU0 GIO[2] is selected
spu1gioout2: SPU1 GIO[2] is selected
spu0gioout4: SPU0 GIO[4] is selected
spu1gioout4: SPU1 GIO[4] is selected
spu0gioout6: SPU0 GIO[6] is selected
spu1gioout6: SPU1 GIO[6] is selected
sdpout0: SDP0 out is selected
sdpout1: SDP1 out is selected
timer grp0 strb0: Timer group 0, Timer 0 is se-
lected
timer grp1 strb0: Timer group 1, Timer 0 is se-
lected
timer grp2 strb0: Timer group 2, Timer 0 is se-
lected
timer grp3 strb0: Timer group 3, Timer 0 is se-
lected
spu0gioout28: SPU0 GIO[28] is selected
spu1gioout28: SPU1 GIO[28] is selected

spu0gioout0=0
spu1gioout0=1
spu0gioout2=2
spu1gioout2=3
spu0gioout4=4
spu1gioout4=5
spu0gioout6=6
spu1gioout6=7
sdpout0=8
sdpout1=9
timer grp0 strb0=10
timer grp1 strb0=11
timer grp2 strb0=12
timer grp3 strb0=13
spu0gioout28=14
spu1gioout28=15

1184 CHAPTER 25. INTERNAL REGISTERS

25.26.51 rw spu0 cfg

Address 0xc8

Default 0x00000000

Type Read/Write

Description This register controls the source of input buses into SPU0.

Bit(s) Name Description Value
3-2:2 bus1in Select source for BUS1.

bus0: Data from external BUS0
bus1: Data from external BUS1
pdp out0: Parallel datapath 0 (Out)
pdp out1: Parallel datapath 1 (Out)

bus0=0
bus1=1
pdp out0=2
pdp out1=3

1-0:2 bus0in Select source for BUS0.
bus0: Data from external BUS0
bus1: Data from external BUS1
pdp out0: Parallel datapath 0 (Out)
pdp out1: Parallel datapath 1 (Out)

bus0=0
bus1=1
pdp out0=2
pdp out1=3

25.26. IOP SW CFG 1185

25.26.52 rw spu1 cfg

Address 0xcc

Default 0x00000000

Type Read/Write

Description This register controls the source of input buses into SPU1.

Bit(s) Name Description Value
3-2:2 bus1in Select source for BUS1.

bus0: Data from external BUS0
bus1: Data from external BUS1
pdp out0: Parallel datapath 0 (Out)
pdp out1: Parallel datapath 1 (Out)

bus0=0
bus1=1
pdp out0=2
pdp out1=3

1-0:2 bus0in Select source for BUS0.
bus0: Data from external BUS0
bus1: Data from external BUS1
pdp out0: Parallel datapath 0 (Out)
pdp out1: Parallel datapath 1 (Out)

bus0=0
bus1=1
pdp out0=2
pdp out1=3

1186 CHAPTER 25. INTERNAL REGISTERS

25.26.53 rw timer grp0 cfg

Address 0xd0

Default 0x00000000

Type Read/Write

Description This register controls the sources of signals into Timer group 0.

Bit(s) Name Description Value
10 tmr3 dis Select source for Timer 3 disable.

trig0 3: Trigger group 0, Trigger 3, (gioin[3])
trig4 3: Trigger group 4, Trigger 3, (gioin[19])

trig0 3=0
trig4 3=1

9 tmr2 dis Select source for Timer 2 disable.
trig0 2: Trigger group 0, Trigger 2, (gioin[2])
trig4 2: Trigger group 4, Trigger 2, (gioin[18])

trig0 2=0
trig4 2=1

8 tmr1 dis Select source for Timer 1 disable.
trig0 1: Trigger group 0, Trigger 1, (gioin[1])
trig4 1: Trigger group 4, Trigger 1, (gioin[17])

trig0 1=0
trig4 1=1

7 tmr0 dis Select source for Timer 0 disable.
trig0 0: Trigger group 0, Trigger 0, (gioin[0])
trig4 0: Trigger group 4, Trigger 0, (gioin[16])

trig0 0=0
trig4 0=1

6 tmr3 en Select source for Timer 3 enable.
trig0 3: Trigger group 0, Trigger 3, (gioin[3])
trig4 3: Trigger group 4, Trigger 3, (gioin[19])

trig0 3=0
trig4 3=1

5 tmr2 en Select source for Timer 2 enable.
trig0 2: Trigger group 0, Trigger 2, (gioin[2])
trig4 2: Trigger group 4, Trigger 2, (gioin[18])

trig0 2=0
trig4 2=1

4 tmr1 en Select source for Timer 1 enable.
trig0 1: Trigger group 0, Trigger 1, (gioin[1])
trig4 1: Trigger group 4, Trigger 1, (gioin[17])

trig0 1=0
trig4 1=1

3 tmr0 en Select source for Timer 0 enable.
trig0 0: Trigger group 0, Trigger 0 (gioin[0])
trig4 0: Trigger group 4, Trigger 0 (gioin[16])

trig0 0=0
trig4 0=1

2-0:3 ext clk Select source for Timer group 0 ext clock.
clk12: Synchronized 12 MHz clock
gio1: Synchronized gioin[1]
gio3: Synchronized gioin[3]
gio5: Synchronized gioin[5]
gio7: Synchronized gioin[7]
spu0gio5: Use SPU0 GIO[5] as extclk
spu0gio6: Use SPU0 GIO[6] as extclk
spu0gio7: Use SPU0 GIO[7] as extclk

clk12=0
gio1=1
gio3=2
gio5=3
gio7=4
spu0gio5=5
spu0gio6=6
spu0gio7=7

25.26. IOP SW CFG 1187

25.26.54 rw timer grp1 cfg

Address 0xd4

Default 0x00000000

Type Read/Write

Description This register controls the sources of signals into Timer group 1.

Bit(s) Name Description Value
10 tmr3 dis Select source for Timer 3 disable.

trig1 3: Trigger group 1, Trigger 3, (gioin[7])
trig5 3: Trigger group 5, Trigger 3, (gioin[23])

trig1 3=0
trig5 3=1

9 tmr2 dis Select source for Timer 2 disable.
trig1 2: Trigger group 1, Trigger 2, (gioin[6])
trig5 2: Trigger group 5, Trigger 2, (gioin[22])

trig1 2=0
trig5 2=1

8 tmr1 dis Select source for Timer 1 disable.
trig1 1: Trigger group 1, Trigger 1, (gioin[5])
trig5 1: Trigger group 5, Trigger 1, (gioin[21])

trig1 1=0
trig5 1=1

7 tmr0 dis Select source for Timer 0 disable.
trig1 0: Trigger group 1, Trigger 0, (gioin[4])
trig5 0: Trigger group 5, Trigger 0, (gioin[20])

trig1 0=0
trig5 0=1

6 tmr3 en Select source for Timer 3 enable.
trig1 3: Trigger group 1, Trigger 3, (gioin[7])
trig5 3: Trigger group 5, Trigger 3, (gioin[23])

trig1 3=0
trig5 3=1

5 tmr2 en Select source for Timer 2 enable.
trig1 2: Trigger group 1, Trigger 2, (gioin[6])
trig5 2: Trigger group 5, Trigger 2, (gioin[22])

trig1 2=0
trig5 2=1

4 tmr1 en Select source for Timer 1 enable.
trig1 1: Trigger group 1, Trigger 1, (gioin[5])
trig5 1: Trigger group 5, Trigger 1, (gioin[21])

trig1 1=0
trig5 1=1

3 tmr0 en Select source for Timer 0 enable.
trig1 0: Trigger group 1, Trigger 0, (gioin[4])
trig5 0: Trigger group 5, Trigger 0, (gioin[20])

trig1 0=0
trig5 0=1

2-0:3 ext clk Select source for Timer group 1 ext clock.
clk12: Synchronized 12 MHz clock
gio1: Synchronized gioin[1]
gio3: Synchronized gioin[3]
gio5: Synchronized gioin[5]
gio7: Synchronized gioin[7]
spu1gio5: Use SPU1 GIO[5] as extclk
spu1gio6: Use SPU1 GIO[6] as extclk
spu1gio7: Use SPU1 GIO[7] as extclk

clk12=0
gio1=1
gio3=2
gio5=3
gio7=4
spu1gio5=5
spu1gio6=6
spu1gio7=7

1188 CHAPTER 25. INTERNAL REGISTERS

25.26.55 rw timer grp2 cfg

Address 0xd8

Default 0x00000000

Type Read/Write

Description This register controls the sources of signals into Timer group 2.

Bit(s) Name Description Value
10 tmr3 dis Select source for Timer 3 disable.

trig2 3: Trigger group 2, Trigger 3, (gioin[11])
trig6 3: Trigger group 6, Trigger 3, (gioin[27])

trig2 3=0
trig6 3=1

9 tmr2 dis Select source for Timer 2 disable.
trig2 2: Trigger group 2, Trigger 2, (gioin[10])
trig6 2: Trigger group 6, Trigger 2, (gioin[26])

trig2 2=0
trig6 2=1

8 tmr1 dis Select source for Timer 1 disable.
trig2 1: Trigger group 2, Trigger 1, (gioin[9])
trig6 1: Trigger group 6, Trigger 1, (gioin[25])

trig2 1=0
trig6 1=1

7 tmr0 dis Select source for Timer 0 disable.
trig2 0: Trigger group 2, Trigger 0, (gioin[8])
trig6 0: Trigger group 6, Trigger 0, (gioin[24])

trig2 0=0
trig6 0=1

6 tmr3 en Select source for Timer 3 enable.
trig2 3: Trigger group 2, Trigger 3, (gioin[11])
trig6 3: Trigger group 6, Trigger 3, (gioin[27])

trig2 3=0
trig6 3=1

5 tmr2 en Select source for Timer 2 enable.
trig2 2: Trigger group 2, Trigger 2, (gioin[10])
trig6 2: Trigger group 6, Trigger 2, (gioin[26])

trig2 2=0
trig6 2=1

4 tmr1 en Select source for Timer 1 enable.
trig2 1: Trigger group 2, Trigger 1, (gioin[9])
trig6 1: Trigger group 6, Trigger 1, (gioin[25])

trig2 1=0
trig6 1=1

3 tmr0 en Select source for Timer 0 enable.
trig2 0: Trigger group 2, Trigger 0, (gioin[8])
trig6 0: Trigger group 6, Trigger 0, (gioin[24])

trig2 0=0
trig6 0=1

2-0:3 ext clk Select source for Timer group 2 ext clock.
clk12: Synchronized 12 MHz clock
gio1: Synchronized gioin[1]
gio3: Synchronized gioin[3]
gio5: Synchronized gioin[5]
gio7: Synchronized gioin[7]
spu0gio5: Use SPU0 GIO[5] as extclk
spu0gio6: Use SPU0 GIO[6] as extclk
spu0gio7: Use SPU0 GIO[7] as extclk

clk12=0
gio1=1
gio3=2
gio5=3
gio7=4
spu0gio5=5
spu0gio6=6
spu0gio7=7

25.26. IOP SW CFG 1189

25.26.56 rw timer grp3 cfg

Address 0xdc

Default 0x00000000

Type Read/Write

Description This register controls the sources of signals into Timer group 3.

Bit(s) Name Description Value
10 tmr3 dis Select source for Timer 3 disable.

trig3 3: Trigger group 3, Trigger 3, (gioin[15])
trig7 3: Trigger group 7, Trigger 3, (gioin[31])

trig3 3=0
trig7 3=1

9 tmr2 dis Select source for Timer 2 disable.
trig3 2: Trigger group 3, Trigger 2, (gioin[14])
trig7 2: Trigger group 7, Trigger 2, (gioin[30])

trig3 2=0
trig7 2=1

8 tmr1 dis Select source for Timer 1 disable.
trig3 1: Trigger group 3, Trigger 1, (gioin[13])
trig7 1: Trigger group 7, Trigger 1, (gioin[29])

trig3 1=0
trig7 1=1

7 tmr0 dis Select source for Timer 0 disable.
trig3 0: Trigger group 3, Trigger 0, (gioin[12])
trig7 0: Trigger group 7, Trigger 0, (gioin[28])

trig3 0=0
trig7 0=1

6 tmr3 en Select source for Timer 3 enable.
trig3 3: Trigger group 3, Trigger 3, (gioin[15])
trig7 3: Trigger group 7, Trigger 3, (gioin[31])

trig3 3=0
trig7 3=1

5 tmr2 en Select source for Timer 2 enable.
trig3 2: Trigger group 3, Trigger 2, (gioin[14])
trig7 2: Trigger group 7, Trigger 2, (gioin[30])

trig3 2=0
trig7 2=1

4 tmr1 en Select source for Timer 1 enable.
trig3 1: Trigger group 3, Trigger 1, (gioin[13])
trig7 1: Trigger group 7, Trigger 1, (gioin[29])

trig3 1=0
trig7 1=1

3 tmr0 en Select source for Timer 0 enable.
trig3 0: Trigger group 3, Trigger 0, (gioin[12])
trig7 0: Trigger group 7, Trigger 0, (gioin[28])

trig3 0=0
trig7 0=1

2-0:3 ext clk Select source for Timer group 3 ext clock.
clk12: Synchronized 12 MHz clock
gio1: Synchronized gioin[1]
gio3: Synchronized gioin[3]
gio5: Synchronized gioin[5]
gio7: Synchronized gioin[7]
spu1gio5: Use SPU1 GIO[5] as extclk
spu1gio6: Use SPU1 GIO[6] as extclk
spu1gio7: Use SPU1 GIO[7] as extclk

clk12=0
gio1=1
gio3=2
gio5=3
gio7=4
spu1gio5=5
spu1gio6=6
spu1gio7=7

1190 CHAPTER 25. INTERNAL REGISTERS

25.26.57 rw trigger grps cfg

Address 0xe0

Default 0x00000000

Type Read/Write

Description This register configures the Triggers.

Bit(s) Name Description Value
15 grp7 en Selects source of group 7 enable signals.

timer grp3: Timer group 3, timer 3-0
timer grp3 rot: Timer group 3, timer 0-1

timer grp3=0
timer grp3 rot=1

14 grp7 dis Selects source of group 7 disable signals.
timer grp3: Timer group 3, timer 3-0
timer grp3 rot: Timer group 3, timer 0-1

timer grp3=0
timer grp3 rot=1

13 grp6 en Selects source of group 6 enable signals.
timer grp2: Timer group 2, timer 3-0
timer grp2 rot: Timer group 2, timer 0-1

timer grp2=0
timer grp2 rot=1

12 grp6 dis Selects source of group 6 disable signals.
timer grp2: Timer group 2, timer 3-0
timer grp2 rot: Timer group 2, timer 0-1

timer grp2=0
timer grp2 rot=1

11 grp5 en Selects source of group 5 enable signals.
timer grp1: Timer group 1, timer 3-0
timer grp1 rot: Timer group 1, timer 0-1

timer grp1=0
timer grp1 rot=1

10 grp5 dis Selects source of group 5 disable signals.
timer grp1: Timer group 1, timer 3-0
timer grp1 rot: Timer group 1, timer 0-1

timer grp1=0
timer grp1 rot=1

9 grp4 en Selects source of group 4 enable signals.
timer grp0: Timer group 0, timer 3-0
timer grp0 rot: Timer group 0, timer 0-1

timer grp0=0
timer grp0 rot=1

8 grp4 dis Selects source of group 4 disable signals.
timer grp0: Timer group 0, timer 3-0
timer grp0 rot: Timer group 0, timer 0-1

timer grp0=0
timer grp0 rot=1

7 grp3 en Selects source of group 3 enable signals.
timer grp3: Timer group 3, timer 3-0
timer grp3 rot: Timer group 3, timer 0-1

timer grp3=0
timer grp3 rot=1

6 grp3 dis Selects source of group 3 disable signals.
timer grp3: Timer group 3, timer 3-0
timer grp3 rot: Timer group 3, timer 0-1

timer grp3=0
timer grp3 rot=1

5 grp2 en Selects source of group 2 enable signals.
timer grp2: Timer group 2, timer 3-0
timer grp2 rot: Timer group 2, timer 0-1

timer grp2=0
timer grp2 rot=1

4 grp2 dis Selects source of group 2 disable signals.
timer grp2: Timer group 2, timer 3-0
timer grp2 rot: Timer group 2, timer 0-1

timer grp2=0
timer grp2 rot=1

25.26. IOP SW CFG 1191

3 grp1 en Selects source of group 1 enable signals.
timer grp1: Timer group 1, timer 3-0
timer grp1 rot: Timer group 1, timer 0-1

timer grp1=0
timer grp1 rot=1

2 grp1 dis Selects source of group 1 disable signals.
timer grp1: Timer group 1, timer 3-0
timer grp1 rot: Timer group 1, timer 0-1

timer grp1=0
timer grp1 rot=1

1 grp0 en Selects source of group 0 enable signals.
timer grp0: Timer group 0, timer 3-0
timer grp0 rot: Timer group 0, timer 0-1

timer grp0=0
timer grp0 rot=1

0 grp0 dis Selects source of group 0 disable signals.
timer grp0: Timer group 0, timer 3-0
timer grp0 rot: Timer group 0, timer 0-1

timer grp0=0
timer grp0 rot=1

1192 CHAPTER 25. INTERNAL REGISTERS

25.26.58 rw pdp0 cfg

Address 0xe4

Default 0x00000000

Type Read/Write

Description This register configures the parallel datapath (DMC, FIFO, CRC).

Bit(s) Name Description Value
18 out src Selects source for PDP out 0.

dmc0: Data from DMC 0
dmc1: Data from DMC 1

dmc0=0
dmc1=1

17-14:4 in strb Select source for PDP in 0 strobe signal.
none: No strobe source
strb timer grp0 tmr0: Timer group 0, timer
0
strb timer grp2 tmr1: Timer group 2, timer
1
strb timer grp2 tmr0: Timer group 2, timer
0
gio0: Synchronized gio in 0
gio2: Synchronized gio in 2
gio4: Synchronized gio in 4
gio6: Synchronized gio in 6
spu0gio out0: Use SPU0 GIO[0] as strobe
spu0gio out1: Use SPU0 GIO[1] as strobe
spu0gio out2: Use SPU0 GIO[2] as strobe
spu0gio out3: Use SPU0 GIO[3] as strobe
spu0gio out4: Use SPU0 GIO[4] as strobe
spu0gio out5: Use SPU0 GIO[5] as strobe
spu0gio out6: Use SPU0 GIO[6] as strobe
spu0gio out7: Use SPU0 GIO[7] as strobe

none=0
strb timer grp0 tmr0=1
strb timer grp2 tmr1=2
strb timer grp2 tmr0=3
gio0=4
gio2=5
gio4=6
gio6=7
spu0gio out0=8
spu0gio out1=9
spu0gio out2=10
spu0gio out3=11
spu0gio out4=12
spu0gio out5=13
spu0gio out6=14
spu0gio out7=15

13-12:2 in last Select source for PDP in 0 last signal.
none: No last source
last timer grp0 tmr2: Timer group 0, timer
2
last timer grp2 tmr2: Timer group 2, timer
2
last timer grp2 tmr3: Timer group 2, timer
3

none=0
last timer grp0 tmr2=1
last timer grp2 tmr2=2
last timer grp2 tmr3=3

11-9:3 in size Select size for PDP in 0.
none: Bus size is 0
size8: Bus size is 8
size16: Bus size is 16
size24: Bus size is 24
size32: Bus size is 32

none=0
size8=1
size16=2
size24=3
size32=4

25.26. IOP SW CFG 1193

8-6:3 in src Selects source for PDP in 0.
bus0: Data from external bus0
bus1: Data from external bus1
bus0rot8: Data from external bus0 rotated
8 bits ([7:0], [31:8])
bus1rot8: Data from external bus1 rotated
8 bits ([7:0], [31:8])
bus0rot16: Data from external bus0 rotated
16 bits ([15:0], [31:16])
bus1rot16: Data from external bus1 rotated
16 bits ([15:0], [31:16])
bus0rot24: Data from external bus0 rotated
24 bits ([23:0], [31:24])
bus1rot24: Data from external bus1 rotated
24 bits ([23:0], [31:24])

bus0=0
bus1=1
bus0rot8=2
bus1rot8=3
bus0rot16=4
bus1rot16=5
bus0rot24=6
bus1rot24=7

5-1:5 out strb Selects source for PDP out 0 strobe signal.
none: No strobe source
strb timer grp0 tmr0: Timer group 0, timer
0
strb timer grp0 tmr1: Timer group 0, timer
1
strb timer grp2 tmr0: Timer group 2, timer
0
gio0: Synchronized gio in 0
gio2: Synchronized gio in 2
gio4: Synchronized gio in 4
gio6: Synchronized gio in 6
spu0gio out0: Use SPU0 GIO[0] as strobe
spu0gio out1: Use SPU0 GIO[1] as strobe
spu0gio out2: Use SPU0 GIO[2] as strobe
spu0gio out3: Use SPU0 GIO[3] as strobe
spu0gio out4: Use SPU0 GIO[4] as strobe
spu0gio out5: Use SPU0 GIO[5] as strobe
spu0gio out6: Use SPU0 GIO[6] as strobe
spu0gio out7: Use SPU0 GIO[7] as strobe
gatedclk0: Use gated clock 0 from SAP out
as strobe
gatedclk1: Use gated clock 1 from SAP out
as strobe
gatedclk2: Use gated clock 2 from SAP out
as strobe
gatedclk3: Use gated clock 3 from SAP out
as strobe

none=0
strb timer grp0 tmr0=1
strb timer grp0 tmr1=2
strb timer grp2 tmr0=3
gio0=4
gio2=5
gio4=6
gio6=7
spu0gio out0=8
spu0gio out1=9
spu0gio out2=10
spu0gio out3=11
spu0gio out4=12
spu0gio out5=13
spu0gio out6=14
spu0gio out7=15
gatedclk0=16
gatedclk1=17
gatedclk2=18
gatedclk3=19

0 dmc0usr Selects user of DMC OUT 0.
par0: Parallel datapath 0
par1: Parallel datapath 1

par0=0
par1=1

1194 CHAPTER 25. INTERNAL REGISTERS

25.26.59 rw pdp1 cfg

Address 0xe8

Default 0x00000000

Type Read/Write

Description This register configures the parallel datapath (DMC, FIFO, CRC).

Bit(s) Name Description Value
18 out src Selects source for PDP out 1.

dmc0: Data from DMC 0
dmc1: Data from DMC 1

dmc0=0
dmc1=1

17-14:4 in strb Select source for PDP in 1 strobe signal.
none: No strobe source
strb timer grp1 tmr0: Timer group 1, timer
0
strb timer grp3 tmr1: Timer group 3, timer
1
strb timer grp3 tmr0: Timer group 3, timer
0
gio0: Synchronized gio in 0
gio2: Synchronized gio in 2
gio4: Synchronized gio in 4
gio6: Synchronized gio in 6
spu1gio out0: Use SPU1 GIO[0] as strobe
spu1gio out1: Use SPU1 GIO[1] as strobe
spu1gio out2: Use SPU1 GIO[2] as strobe
spu1gio out3: Use SPU1 GIO[3] as strobe
spu1gio out4: Use SPU1 GIO[4] as strobe
spu1gio out5: Use SPU1 GIO[5] as strobe
spu1gio out6: Use SPU1 GIO[6] as strobe
spu1gio out7: Use SPU1 GIO[7] as strobe

none=0
strb timer grp1 tmr0=1
strb timer grp3 tmr1=2
strb timer grp3 tmr0=3
gio0=4
gio2=5
gio4=6
gio6=7
spu1gio out0=8
spu1gio out1=9
spu1gio out2=10
spu1gio out3=11
spu1gio out4=12
spu1gio out5=13
spu1gio out6=14
spu1gio out7=15

13-12:2 in last Select source for PDP in 1 last signal.
none: No last source
last timer grp1 tmr2: Timer group 1, timer
2
last timer grp3 tmr2: Timer group 3, timer
2
last timer grp3 tmr3: Timer group 3, timer
3

none=0
last timer grp1 tmr2=1
last timer grp3 tmr2=2
last timer grp3 tmr3=3

11-9:3 in size Select size for PDP in 1.
none: Bus size is 0
size8: Bus size is 8
size16: Bus size is 16
size24: Bus size is 24
size32: Bus size is 32

none=0
size8=1
size16=2
size24=3
size32=4

25.26. IOP SW CFG 1195

8-6:3 in src Selects source for PDP in 1.
bus0: Data from external bus0
bus1: Data from external bus1
bus0rot8: Data from external bus0 rotated
8 bits ([7:0], [31:8])
bus1rot8: Data from external bus1 rotated
8 bits ([7:0], [31:8])
bus0rot16: Data from external bus0 rotated
16 bits ([15:0], [31:16])
bus1rot16: Data from external bus1 rotated
16 bits ([15:0], [31:16])
bus0rot24: Data from external bus0 rotated
24 bits ([23:0], [31:24])
bus1rot24: Data from external bus1 rotated
24 bits ([23:0], [31:24])

bus0=0
bus1=1
bus0rot8=2
bus1rot8=3
bus0rot16=4
bus1rot16=5
bus0rot24=6
bus1rot24=7

5-1:5 out strb Selects source for PDP out 1 strobe signal.
none: No strobe source
strb timer grp1 tmr0: Timer group 1, timer
0
strb timer grp1 tmr1: Timer group 1, timer
1
strb timer grp3 tmr0: Timer group 3, timer
0
gio0: Synchronized gio in 0
gio2: Synchronized gio in 2
gio4: Synchronized gio in 4
gio6: Synchronized gio in 6
spu1gio out0: Use SPU1 GIO[0] as strobe
spu1gio out1: Use SPU1 GIO[1] as strobe
spu1gio out2: Use SPU1 GIO[2] as strobe
spu1gio out3: Use SPU1 GIO[3] as strobe
spu1gio out4: Use SPU1 GIO[4] as strobe
spu1gio out5: Use SPU1 GIO[5] as strobe
spu1gio out6: Use SPU1 GIO[6] as strobe
spu1gio out7: Use SPU1 GIO[7] as strobe
gatedclk0: Use gated clock 0 from SAP out
as strobe
gatedclk1: Use gated clock 1 from SAP out
as strobe
gatedclk2: Use gated clock 2 from SAP out
as strobe
gatedclk3: Use gated clock 3 from SAP out
as strobe

none=0
strb timer grp1 tmr0=1
strb timer grp1 tmr1=2
strb timer grp3 tmr0=3
gio0=4
gio2=5
gio4=6
gio6=7
spu1gio out0=8
spu1gio out1=9
spu1gio out2=10
spu1gio out3=11
spu1gio out4=12
spu1gio out5=13
spu1gio out6=14
spu1gio out7=15
gatedclk0=16
gatedclk1=17
gatedclk2=18
gatedclk3=19

0 dmc1usr Selects user of DMC OUT 1.
par0: Parallel datapath 0
par1: Parallel datapath 1

par0=0
par1=1

1196 CHAPTER 25. INTERNAL REGISTERS

25.26.60 rw sdp cfg

Address 0xec

Default 0x00000000

Type Read/Write

Description This register configures the serial datapath (Serial CRC In/Out) .

Bit(s) Name Description Value
21-19:3 sdp in1 strb Select source for SDP in 1 strobe sig-

nal.
none: No strobe source
strb timer grp1 tmr0: Timer group 1,
timer 0
strb timer grp3 tmr1: Timer group 3,
timer 1
strb timer grp3 tmr0: Timer group 3,
timer 0
gio0: Synchronized gio in 0
gio2: Synchronized gio in 2
gio4: Synchronized gio in 4
gio6: Synchronized gio in 6

none=0
strb timer grp1 tmr0=1
strb timer grp3 tmr1=2
strb timer grp3 tmr0=3
gio0=4
gio2=5
gio4=6
gio6=7

18-17:2 sdp in1 last Select source for SDP in 1 last signal.
none: No last source
last timer grp1 tmr2: Timer group 1,
timer 2
last timer grp3 tmr2: Timer group 3,
timer 2
last timer grp3 tmr3: Timer group 3,
timer 3

none=0
last timer grp1 tmr2=1
last timer grp3 tmr2=2
last timer grp3 tmr3=3

16-14:3 sdp in1 data Select source for SDP in 1 data.
gio in0: Synchronized gio in 0
gio in1: Synchronized gio in 1
gio in10: Synchronized gio in 10
gio in11: Synchronized gio in 11
gio in14: Synchronized gio in 14
gio in15: Synchronized gio in 15
gio in28: Synchronized gio in 28
gio in29: Synchronized gio in 29

gio in0=0
gio in1=1
gio in10=2
gio in11=3
gio in14=4
gio in15=5
gio in28=6
gio in29=7

25.26. IOP SW CFG 1197

13-11:3 sdp in0 strb Select source for SDP in 0 strobe sig-
nal.
none: No strobe source
strb timer grp0 tmr0: Timer group 0,
timer 0
strb timer grp2 tmr1: Timer group 2,
timer 1
strb timer grp2 tmr0: Timer group 2,
timer 0
gio0: Synchronized gio in 0
gio2: Synchronized gio in 2
gio4: Synchronized gio in 4
gio6: Synchronized gio in 6

none=0
strb timer grp0 tmr0=1
strb timer grp2 tmr1=2
strb timer grp2 tmr0=3
gio0=4
gio2=5
gio4=6
gio6=7

10-9:2 sdp in0 last Select source for SDP in 0 last signal.
none: No last source
last timer grp0 tmr2: Timer group 0,
timer 2
last timer grp2 tmr2: Timer group 2,
timer 2
last timer grp2 tmr3: Timer group 2,
timer 3

none=0
last timer grp0 tmr2=1
last timer grp2 tmr2=2
last timer grp2 tmr3=3

8-6:3 sdp in0 data Select source for SDP in 0 data.
gio in4: Synchronized gio in 4
gio in5: Synchronized gio in 5
gio in18: Synchronized gio in 18
gio in19: Synchronized gio in 19
gio in20: Synchronized gio in 20
gio in21: Synchronized gio in 21
gio in26: Synchronized gio in 26
gio in27: Synchronized gio in 27

gio in4=0
gio in5=1
gio in18=2
gio in19=3
gio in20=4
gio in21=5
gio in26=6
gio in27=7

5-3:3 sdpout1 strb Select source for SDP out 1 strobe sig-
nal.
none: No strobe source
strb timer grp1 tmr0: Timer group 1,
timer 0
strb timer grp1 tmr1: Timer group 1,
timer 1
strb timer grp3 tmr0: Timer group 3,
timer 0
gio0: Synchronized gio in 0
gio2: Synchronized gio in 2
gio4: Synchronized gio in 4
gio6: Synchronized gio in 6

none=0
strb timer grp1 tmr0=1
strb timer grp1 tmr1=2
strb timer grp3 tmr0=3
gio0=4
gio2=5
gio4=6
gio6=7

1198 CHAPTER 25. INTERNAL REGISTERS

2-0:3 sdpout0 strb Select source for SDP out 0 strobe sig-
nal.
none: No strobe source
strb timer grp0 tmr0: Timer group 0,
timer 0
strb timer grp0 tmr1: Timer group 0,
timer 1
strb timer grp2 tmr0: Timer group 2,
timer 0
gio0: Synchronized gio in 0
gio2: Synchronized gio in 2
gio4: Synchronized gio in 4
gio6: Synchronized gio in 6

none=0
strb timer grp0 tmr0=1
strb timer grp0 tmr1=2
strb timer grp2 tmr0=3
gio0=4
gio2=5
gio4=6
gio6=7

25.27. IOP SW CPU 1199

25.27 iop sw cpu

Instance Base Address
iop sw cpu 0xb0021200

25.27.1 rw mc ctrl

Address 0x0

Default
Type Read/Write

Description Control register for the MC. A write to this register requests ownership of MC.

Bit(s) Name Description Value
7 wr spu1mem Enable writes to SPU1 memory.

no: No writes to SPU1 memory
yes: Write to SPU1 memory

no=0
yes=1

6 wr spu0mem Enable writes to SPU0 memory.
no: No writes to SPU0 memory
yes: Write to SPU0 memory

no=0
yes=1

5-3:3 size Size (in bytes) of data to read or write. MC can
read/write at most four bytes.

2-1:2 cmd Command to perform.
copy: Copy data from SMIF and write to I/O memory
reg copy: Data from mcdata is written to I/O memory
rd: Read from SMIF tor mc data
wr: Write rw mc datato SMIF

copy=0
reg copy=1
rd=2
wr=3

0 keepowner Enables ownership to be kept after finished operation.
no: Ownerships is automatically released
yes: Ownership is kept

no=0
yes=1

1200 CHAPTER 25. INTERNAL REGISTERS

25.27.2 rw mc data

Address 0x4

Default
Type Read/Write

Description Data for write to system memory. Depending on size inrw mc ctrl some parts of value
can be don’t care. Ifrw mc ctrl.cmdis set toreg copythe write to this register performs
the write to I/O memory. Ifrw mc ctrl.keepowneris not set the ownership of MC will
be released.

Bit(s) Name Description Value
31-0:32 val Data value to be written to system memory.

25.27. IOP SW CPU 1201

25.27.3 rw mc addr

Address 0x8

Default
Type Read/Write

Description The system memory address to perform operation on.rw mc addrstates the address
which will be used by the selected command inrw mc ctrl.cmd. A write to this register
starts the memory operation. If operation iswr or copyandrw mc ctrl.keepownerisn’t
set the ownership will be lost when operation is done.

1202 CHAPTER 25. INTERNAL REGISTERS

25.27.4 rs mc data/r mc data

Address 0xc/0x10

Default
Type Read with side effects/Read

Description Data read from system memory at addressrw mc addr. When readingrs mc dataown-
ership of MC is released.

25.27. IOP SW CPU 1203

25.27.5 r mc stat

Address 0x14

Default
Type Read

Description Status of the MC.

Bit(s) Name Description Value
7 ownedby spu1 MC is owned by SPU1.

no: Not owned by SPU1
yes: Owned by SPU1

no=0
yes=1

6 ownedby spu0 MC is owned by SPU0.
no: Not owned by SPU0
yes: Owned by SPU0

no=0
yes=1

5 ownedby mpu MC is owned by MPU.
no: Not owned by MPU
yes: Owned by MPU

no=0
yes=1

4 ownedby cpu MC is owned by CPU.
no: Not owned by CPU
yes: Owned by CPU

no=0
yes=1

3 busyspu1 MC is busy performing command for SPU1.
no: Not busy
yes: Busy

no=0
yes=1

2 busyspu0 MC is busy performing command for SPU0.
no: Not busy
yes: Busy

no=0
yes=1

1 busympu MC is busy performing command for MPU.
no: Not busy
yes: Busy

no=0
yes=1

0 busycpu MC is busy performing command for CPU.
no: Not busy
yes: Busy

no=0
yes=1

1204 CHAPTER 25. INTERNAL REGISTERS

25.27.6 rw bus0 clr mask

Address 0x18

Default 0x00000000

Type Read/Write

Description Clear bits in BUS0.

Bit(s) Name Description Value
31-24:8 byte3 Used to clear bits in BUS0[31:24].

23-16:8 byte2 Used to clear bits in BUS0[23:16].

15-8:8 byte1 Used to clear bits in BUS0[15:8].

7-0:8 byte0 Used to clear bits in BUS0[7:0].

25.27. IOP SW CPU 1205

25.27.7 rw bus0 set mask

Address 0x1c

Default 0x00000000

Type Read/Write

Description Set bits in BUS0.

Bit(s) Name Description Value
31-24:8 byte3 Used to set bits in BUS0[31:24].

23-16:8 byte2 Used to set bits in BUS0[23:16].

15-8:8 byte1 Used to set bits in BUS0[15:8].

7-0:8 byte0 Used to set bits in BUS0[7:0].

1206 CHAPTER 25. INTERNAL REGISTERS

25.27.8 rw bus0 oe clr mask

Address 0x20

Default 0x00000000

Type Read/Write

Description Clear OE signals for BUS0.

Bit(s) Name Description Value
3 byte3 Used to clear OE for BUS0[31:24].

2 byte2 Used to clear OE for BUS0[23:16].

1 byte1 Used to clear OE for BUS0[15:8].

0 byte0 Used to clear OE for BUS0[7:0].

25.27. IOP SW CPU 1207

25.27.9 rw bus0 oe set mask

Address 0x24

Default 0x00000000

Type Read/Write

Description Set OE signals for BUS0.

Bit(s) Name Description Value
3 byte3 Used to set OE for BUS0[31:24].

2 byte2 Used to set OE for BUS0[23:16].

1 byte1 Used to set OE for BUS0[15:8].

0 byte0 Used to set OE for BUS0[7:0].

1208 CHAPTER 25. INTERNAL REGISTERS

25.27.10 r bus0 in

Address 0x28

Default
Type Read

Description Read register for BUS0.

25.27. IOP SW CPU 1209

25.27.11 rw bus1 clr mask

Address 0x2c

Default 0x00000000

Type Read/Write

Description Clear bits in BUS1.

Bit(s) Name Description Value
31-24:8 byte3 Used to clear bits in BUS1[31:24].

23-16:8 byte2 Used to clear bits in BUS1[23:16].

15-8:8 byte1 Used to clear bits in BUS1[15:8].

7-0:8 byte0 Used to clear bits in BUS1[7:0].

1210 CHAPTER 25. INTERNAL REGISTERS

25.27.12 rw bus1 set mask

Address 0x30

Default 0x00000000

Type Read/Write

Description Set bits in BUS1.

Bit(s) Name Description Value
31-24:8 byte3 Used to set bits in BUS1[31:24].

23-16:8 byte2 Used to set bits in BUS1[23:16].

15-8:8 byte1 Used to set bits in BUS1[15:8].

7-0:8 byte0 Used to set bits in BUS1[7:0].

25.27. IOP SW CPU 1211

25.27.13 rw bus1 oe clr mask

Address 0x34

Default 0x00000000

Type Read/Write

Description Clear OE signals for BUS1.

Bit(s) Name Description Value
3 byte3 Used to clear OE for BUS1[31:24].

2 byte2 Used to clear OE for BUS1[23:16].

1 byte1 Used to clear OE for BUS1[15:8].

0 byte0 Used to clear OE for BUS1[7:0].

1212 CHAPTER 25. INTERNAL REGISTERS

25.27.14 rw bus1 oe set mask

Address 0x38

Default 0x00000000

Type Read/Write

Description Set OE signals for BUS1.

Bit(s) Name Description Value
3 byte3 Used to set OE for BUS1[31:24].

2 byte2 Used to set OE for BUS1[23:16].

1 byte1 Used to set OE for BUS1[15:8].

0 byte0 Used to set OE for BUS1[7:0].

25.27. IOP SW CPU 1213

25.27.15 r bus1 in

Address 0x3c

Default
Type Read

Description Read register for BUS1.

1214 CHAPTER 25. INTERNAL REGISTERS

25.27.16 rw gio clr mask

Address 0x40

Default 0x00000000

Type Read/Write

Description Clear bits in GIO.

Bit(s) Name Description Value
31-0:32 val Used to clear bits in GIO.

25.27. IOP SW CPU 1215

25.27.17 rw gio set mask

Address 0x44

Default 0x00000000

Type Read/Write

Description Set bits in GIO.

Bit(s) Name Description Value
31-0:32 val Used to set bits in GIO.

1216 CHAPTER 25. INTERNAL REGISTERS

25.27.18 rw gio oe clr mask

Address 0x48

Default 0x00000000

Type Read/Write

Description Clear OE signals for GIO.

Bit(s) Name Description Value
31-0:32 val Used to clear OE for GIO.

25.27. IOP SW CPU 1217

25.27.19 rw gio oe set mask

Address 0x4c

Default 0x00000000

Type Read/Write

Description Set OE signals for GIO.

Bit(s) Name Description Value
31-0:32 val Used to set OE for GIO.

1218 CHAPTER 25. INTERNAL REGISTERS

25.27.20 r gio in

Address 0x50

Default
Type Read

Description Read register for GIO.

25.27. IOP SW CPU 1219

25.27.21 rw intr0 mask

Address 0x54

Default 0x00000000

Type Read/Write

Description Interrupt mask. Interrupts to CPU.

Bit(s) Name Description Value
31 spu115 Enable/disable spu115 interrupt. Interrupt from SPU1 soft-

ware, bit 15.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

30 spu114 Enable/disable spu114 interrupt. Interrupt from SPU1 soft-
ware, bit 14.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

29 spu113 Enable/disable spu113 interrupt. Interrupt from SPU1 soft-
ware, bit 13.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

28 spu112 Enable/disable spu112 interrupt. Interrupt from SPU1 soft-
ware, bit 12.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

27 spu111 Enable/disable spu111 interrupt. Interrupt from SPU1 soft-
ware, bit 11.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

26 spu110 Enable/disable spu110 interrupt. Interrupt from SPU1 soft-
ware, bit 10.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

25 spu19 Enable/disable spu19 interrupt. Interrupt from SPU1 soft-
ware, bit 9.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

24 spu18 Enable/disable spu18 interrupt. Interrupt from SPU1 soft-
ware, bit 8.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

23 spu07 Enable/disable spu07 interrupt. Interrupt from SPU0 soft-
ware, bit 7.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

1220 CHAPTER 25. INTERNAL REGISTERS

22 spu06 Enable/disable spu06 interrupt. Interrupt from SPU0 soft-
ware, bit 6.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

21 spu05 Enable/disable spu05 interrupt. Interrupt from SPU0 soft-
ware, bit 5.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

20 spu04 Enable/disable spu04 interrupt. Interrupt from SPU0 soft-
ware, bit 4.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

19 spu03 Enable/disable spu03 interrupt. Interrupt from SPU0 soft-
ware, bit 3.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

18 spu02 Enable/disable spu02 interrupt. Interrupt from SPU0 soft-
ware, bit 2.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

17 spu01 Enable/disable spu01 interrupt. Interrupt from SPU0 soft-
ware, bit 1.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

16 spu00 Enable/disable spu00 interrupt. Interrupt from SPU0 soft-
ware, bit 0.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

15 mpu 15 Enable/disable mpu15 interrupt. Interrupt from MPU soft-
ware, bit 15.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

14 mpu 14 Enable/disable mpu14 interrupt. Interrupt from MPU soft-
ware, bit 14.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

13 mpu 13 Enable/disable mpu13 interrupt. Interrupt from MPU soft-
ware, bit 13.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

12 mpu 12 Enable/disable mpu12 interrupt. Interrupt from MPU soft-
ware, bit 12.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

25.27. IOP SW CPU 1221

11 mpu 11 Enable/disable mpu11 interrupt. Interrupt from MPU soft-
ware, bit 11.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

10 mpu 10 Enable/disable mpu10 interrupt. Interrupt from MPU soft-
ware, bit 10.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

9 mpu 9 Enable/disable mpu9 interrupt. Interrupt from MPU soft-
ware, bit 9.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

8 mpu 8 Enable/disable mpu8 interrupt. Interrupt from MPU soft-
ware, bit 8.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

7 mpu 7 Enable/disable mpu7 interrupt. Interrupt from MPU soft-
ware, bit 7.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

6 mpu 6 Enable/disable mpu6 interrupt. Interrupt from MPU soft-
ware, bit 6.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

5 mpu 5 Enable/disable mpu5 interrupt. Interrupt from MPU soft-
ware, bit 5.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

4 mpu 4 Enable/disable mpu4 interrupt. Interrupt from MPU soft-
ware, bit 4.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

3 mpu 3 Enable/disable mpu3 interrupt. Interrupt from MPU soft-
ware, bit 3.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

2 mpu 2 Enable/disable mpu2 interrupt. Interrupt from MPU soft-
ware, bit 2.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

1 mpu 1 Enable/disable mpu1 interrupt. Interrupt from MPU soft-
ware, bit 1.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

1222 CHAPTER 25. INTERNAL REGISTERS

0 mpu 0 Enable/disable mpu0 interrupt. Interrupt from MPU soft-
ware, bit 0.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

25.27. IOP SW CPU 1223

25.27.22 rw ack intr0

Address 0x58

Default
Type Read/Write

Description Acknowledge interrupts. Interrupts to CPU.

Bit(s) Name Description Value
31 spu115 Acknowledge spu115 interrupt.

yes: Acknowledge interrupt
no: No operation

yes=1
no=0

30 spu114 Acknowledge spu114 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

29 spu113 Acknowledge spu113 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

28 spu112 Acknowledge spu112 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

27 spu111 Acknowledge spu111 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

26 spu110 Acknowledge spu110 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

25 spu19 Acknowledge spu19 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

24 spu18 Acknowledge spu18 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

23 spu07 Acknowledge spu07 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

22 spu06 Acknowledge spu06 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

21 spu05 Acknowledge spu05 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

20 spu04 Acknowledge spu04 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

1224 CHAPTER 25. INTERNAL REGISTERS

19 spu03 Acknowledge spu03 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

18 spu02 Acknowledge spu02 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

17 spu01 Acknowledge spu01 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

16 spu00 Acknowledge spu00 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

15 mpu 15 Acknowledge mpu15 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

14 mpu 14 Acknowledge mpu14 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

13 mpu 13 Acknowledge mpu13 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

12 mpu 12 Acknowledge mpu12 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

11 mpu 11 Acknowledge mpu11 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

10 mpu 10 Acknowledge mpu10 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

9 mpu 9 Acknowledge mpu9 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

8 mpu 8 Acknowledge mpu8 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

7 mpu 7 Acknowledge mpu7 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

6 mpu 6 Acknowledge mpu6 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

5 mpu 5 Acknowledge mpu5 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

25.27. IOP SW CPU 1225

4 mpu 4 Acknowledge mpu4 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

3 mpu 3 Acknowledge mpu3 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

2 mpu 2 Acknowledge mpu2 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

1 mpu 1 Acknowledge mpu1 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

0 mpu 0 Acknowledge mpu0 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

1226 CHAPTER 25. INTERNAL REGISTERS

25.27.23 r intr0

Address 0x5c

Default
Type Read

Description Unmasked interrupts. Interrupts to CPU.

Bit(s) Name Description Value
31 spu115 Interrupt spu115 active.

yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

30 spu114 Interrupt spu114 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

29 spu113 Interrupt spu113 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

28 spu112 Interrupt spu112 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

27 spu111 Interrupt spu111 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

26 spu110 Interrupt spu110 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

25 spu19 Interrupt spu19 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

24 spu18 Interrupt spu18 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

23 spu07 Interrupt spu07 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

22 spu06 Interrupt spu06 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

21 spu05 Interrupt spu05 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

20 spu04 Interrupt spu04 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

25.27. IOP SW CPU 1227

19 spu03 Interrupt spu03 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

18 spu02 Interrupt spu02 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

17 spu01 Interrupt spu01 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

16 spu00 Interrupt spu00 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

15 mpu 15 Interrupt mpu15 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

14 mpu 14 Interrupt mpu14 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

13 mpu 13 Interrupt mpu13 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

12 mpu 12 Interrupt mpu12 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

11 mpu 11 Interrupt mpu11 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

10 mpu 10 Interrupt mpu10 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

9 mpu 9 Interrupt mpu9 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

8 mpu 8 Interrupt mpu8 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

7 mpu 7 Interrupt mpu7 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

6 mpu 6 Interrupt mpu6 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

5 mpu 5 Interrupt mpu5 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1228 CHAPTER 25. INTERNAL REGISTERS

4 mpu 4 Interrupt mpu4 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

3 mpu 3 Interrupt mpu3 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

2 mpu 2 Interrupt mpu2 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1 mpu 1 Interrupt mpu1 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

0 mpu 0 Interrupt mpu0 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

25.27. IOP SW CPU 1229

25.27.24 r masked intr0

Address 0x60

Default
Type Read

Description Masked interrupts. Interrupts to CPU.

Bit(s) Name Description Value
31 spu115 Interrupt spu115 active and enabled.

yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

30 spu114 Interrupt spu114 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

29 spu113 Interrupt spu113 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

28 spu112 Interrupt spu112 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

27 spu111 Interrupt spu111 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

26 spu110 Interrupt spu110 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

25 spu19 Interrupt spu19 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

24 spu18 Interrupt spu18 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

23 spu07 Interrupt spu07 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

22 spu06 Interrupt spu06 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

21 spu05 Interrupt spu05 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

20 spu04 Interrupt spu04 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1230 CHAPTER 25. INTERNAL REGISTERS

19 spu03 Interrupt spu03 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

18 spu02 Interrupt spu02 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

17 spu01 Interrupt spu01 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

16 spu00 Interrupt spu00 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

15 mpu 15 Interrupt mpu15 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

14 mpu 14 Interrupt mpu14 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

13 mpu 13 Interrupt mpu13 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

12 mpu 12 Interrupt mpu12 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

11 mpu 11 Interrupt mpu11 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

10 mpu 10 Interrupt mpu10 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

9 mpu 9 Interrupt mpu9 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

8 mpu 8 Interrupt mpu8 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

7 mpu 7 Interrupt mpu7 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

6 mpu 6 Interrupt mpu6 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

5 mpu 5 Interrupt mpu5 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

25.27. IOP SW CPU 1231

4 mpu 4 Interrupt mpu4 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

3 mpu 3 Interrupt mpu3 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

2 mpu 2 Interrupt mpu2 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1 mpu 1 Interrupt mpu1 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

0 mpu 0 Interrupt mpu0 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1232 CHAPTER 25. INTERNAL REGISTERS

25.27.25 rw intr1 mask

Address 0x64

Default 0x00000000

Type Read/Write

Description Interrupt mask. Interrupts to CPU.

Bit(s) Name Description Value
31 spu17 Enable/disable spu17 interrupt. Interrupt from SPU1 soft-

ware, bit 7.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

30 spu16 Enable/disable spu16 interrupt. Interrupt from SPU1 soft-
ware, bit 6.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

29 spu15 Enable/disable spu15 interrupt. Interrupt from SPU1 soft-
ware, bit 5.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

28 spu14 Enable/disable spu14 interrupt. Interrupt from SPU1 soft-
ware, bit 4.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

27 spu13 Enable/disable spu13 interrupt. Interrupt from SPU1 soft-
ware, bit 3.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

26 spu12 Enable/disable spu12 interrupt. Interrupt from SPU1 soft-
ware, bit 2.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

25 spu11 Enable/disable spu11 interrupt. Interrupt from SPU1 soft-
ware, bit 1.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

24 spu10 Enable/disable spu10 interrupt. Interrupt from SPU1 soft-
ware, bit 0.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

23 spu015 Enable/disable spu015 interrupt. Interrupt from SPU0 soft-
ware, bit 15.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

25.27. IOP SW CPU 1233

22 spu014 Enable/disable spu014 interrupt. Interrupt from SPU0 soft-
ware, bit 14.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

21 spu013 Enable/disable spu013 interrupt. Interrupt from SPU0 soft-
ware, bit 13.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

20 spu012 Enable/disable spu012 interrupt. Interrupt from SPU0 soft-
ware, bit 12.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

19 spu011 Enable/disable spu011 interrupt. Interrupt from SPU0 soft-
ware, bit 11.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

18 spu010 Enable/disable spu010 interrupt. Interrupt from SPU0 soft-
ware, bit 10.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

17 spu09 Enable/disable spu09 interrupt. Interrupt from SPU0 soft-
ware, bit 9.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

16 spu08 Enable/disable spu08 interrupt. Interrupt from SPU0 soft-
ware, bit 8.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

15 mpu 31 Enable/disable mpu31 interrupt. Interrupt from MPU soft-
ware, bit 31.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

14 mpu 30 Enable/disable mpu30 interrupt. Interrupt from MPU soft-
ware, bit 30.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

13 mpu 29 Enable/disable mpu29 interrupt. Interrupt from MPU soft-
ware, bit 29.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

12 mpu 28 Enable/disable mpu28 interrupt. Interrupt from MPU soft-
ware, bit 28.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

1234 CHAPTER 25. INTERNAL REGISTERS

11 mpu 27 Enable/disable mpu27 interrupt. Interrupt from MPU soft-
ware, bit 27.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

10 mpu 26 Enable/disable mpu26 interrupt. Interrupt from MPU soft-
ware, bit 26.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

9 mpu 25 Enable/disable mpu25 interrupt. Interrupt from MPU soft-
ware, bit 25.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

8 mpu 24 Enable/disable mpu24 interrupt. Interrupt from MPU soft-
ware, bit 24.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

7 mpu 23 Enable/disable mpu23 interrupt. Interrupt from MPU soft-
ware, bit 23.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

6 mpu 22 Enable/disable mpu22 interrupt. Interrupt from MPU soft-
ware, bit 22.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

5 mpu 21 Enable/disable mpu21 interrupt. Interrupt from MPU soft-
ware, bit 21.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

4 mpu 20 Enable/disable mpu20 interrupt. Interrupt from MPU soft-
ware, bit 20.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

3 mpu 19 Enable/disable mpu19 interrupt. Interrupt from MPU soft-
ware, bit 19.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

2 mpu 18 Enable/disable mpu18 interrupt. Interrupt from MPU soft-
ware, bit 18.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

1 mpu 17 Enable/disable mpu17 interrupt. Interrupt from MPU soft-
ware, bit 17.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

25.27. IOP SW CPU 1235

0 mpu 16 Enable/disable mpu16 interrupt. Interrupt from MPU soft-
ware, bit 16.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

1236 CHAPTER 25. INTERNAL REGISTERS

25.27.26 rw ack intr1

Address 0x68

Default
Type Read/Write

Description Acknowledge interrupts. Interrupts to CPU.

Bit(s) Name Description Value
31 spu17 Acknowledge spu17 interrupt.

yes: Acknowledge interrupt
no: No operation

yes=1
no=0

30 spu16 Acknowledge spu16 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

29 spu15 Acknowledge spu15 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

28 spu14 Acknowledge spu14 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

27 spu13 Acknowledge spu13 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

26 spu12 Acknowledge spu12 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

25 spu11 Acknowledge spu11 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

24 spu10 Acknowledge spu10 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

23 spu015 Acknowledge spu015 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

22 spu014 Acknowledge spu014 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

21 spu013 Acknowledge spu013 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

20 spu012 Acknowledge spu012 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

25.27. IOP SW CPU 1237

19 spu011 Acknowledge spu011 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

18 spu010 Acknowledge spu010 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

17 spu09 Acknowledge spu09 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

16 spu08 Acknowledge spu08 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

15 mpu 31 Acknowledge mpu31 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

14 mpu 30 Acknowledge mpu30 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

13 mpu 29 Acknowledge mpu29 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

12 mpu 28 Acknowledge mpu28 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

11 mpu 27 Acknowledge mpu27 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

10 mpu 26 Acknowledge mpu26 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

9 mpu 25 Acknowledge mpu25 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

8 mpu 24 Acknowledge mpu24 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

7 mpu 23 Acknowledge mpu23 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

6 mpu 22 Acknowledge mpu22 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

5 mpu 21 Acknowledge mpu21 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

1238 CHAPTER 25. INTERNAL REGISTERS

4 mpu 20 Acknowledge mpu20 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

3 mpu 19 Acknowledge mpu19 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

2 mpu 18 Acknowledge mpu18 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

1 mpu 17 Acknowledge mpu17 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

0 mpu 16 Acknowledge mpu16 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

25.27. IOP SW CPU 1239

25.27.27 r intr1

Address 0x6c

Default
Type Read

Description Unmasked interrupts. Interrupts to CPU.

Bit(s) Name Description Value
31 spu17 Interrupt spu17 active.

yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

30 spu16 Interrupt spu16 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

29 spu15 Interrupt spu15 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

28 spu14 Interrupt spu14 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

27 spu13 Interrupt spu13 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

26 spu12 Interrupt spu12 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

25 spu11 Interrupt spu11 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

24 spu10 Interrupt spu10 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

23 spu015 Interrupt spu015 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

22 spu014 Interrupt spu014 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

21 spu013 Interrupt spu013 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

20 spu012 Interrupt spu012 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1240 CHAPTER 25. INTERNAL REGISTERS

19 spu011 Interrupt spu011 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

18 spu010 Interrupt spu010 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

17 spu09 Interrupt spu09 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

16 spu08 Interrupt spu08 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

15 mpu 31 Interrupt mpu31 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

14 mpu 30 Interrupt mpu30 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

13 mpu 29 Interrupt mpu29 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

12 mpu 28 Interrupt mpu28 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

11 mpu 27 Interrupt mpu27 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

10 mpu 26 Interrupt mpu26 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

9 mpu 25 Interrupt mpu25 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

8 mpu 24 Interrupt mpu24 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

7 mpu 23 Interrupt mpu23 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

6 mpu 22 Interrupt mpu22 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

5 mpu 21 Interrupt mpu21 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

25.27. IOP SW CPU 1241

4 mpu 20 Interrupt mpu20 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

3 mpu 19 Interrupt mpu19 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

2 mpu 18 Interrupt mpu18 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1 mpu 17 Interrupt mpu17 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

0 mpu 16 Interrupt mpu16 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1242 CHAPTER 25. INTERNAL REGISTERS

25.27.28 r masked intr1

Address 0x70

Default
Type Read

Description Masked interrupts. Interrupts to CPU.

Bit(s) Name Description Value
31 spu17 Interrupt spu17 active and enabled.

yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

30 spu16 Interrupt spu16 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

29 spu15 Interrupt spu15 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

28 spu14 Interrupt spu14 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

27 spu13 Interrupt spu13 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

26 spu12 Interrupt spu12 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

25 spu11 Interrupt spu11 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

24 spu10 Interrupt spu10 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

23 spu015 Interrupt spu015 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

22 spu014 Interrupt spu014 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

21 spu013 Interrupt spu013 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

20 spu012 Interrupt spu012 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

25.27. IOP SW CPU 1243

19 spu011 Interrupt spu011 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

18 spu010 Interrupt spu010 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

17 spu09 Interrupt spu09 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

16 spu08 Interrupt spu08 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

15 mpu 31 Interrupt mpu31 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

14 mpu 30 Interrupt mpu30 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

13 mpu 29 Interrupt mpu29 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

12 mpu 28 Interrupt mpu28 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

11 mpu 27 Interrupt mpu27 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

10 mpu 26 Interrupt mpu26 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

9 mpu 25 Interrupt mpu25 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

8 mpu 24 Interrupt mpu24 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

7 mpu 23 Interrupt mpu23 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

6 mpu 22 Interrupt mpu22 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

5 mpu 21 Interrupt mpu21 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1244 CHAPTER 25. INTERNAL REGISTERS

4 mpu 20 Interrupt mpu20 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

3 mpu 19 Interrupt mpu19 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

2 mpu 18 Interrupt mpu18 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1 mpu 17 Interrupt mpu17 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

0 mpu 16 Interrupt mpu16 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

25.27. IOP SW CPU 1245

25.27.29 rw intr2 mask

Address 0x74

Default 0x00000000

Type Read/Write

Description Interrupt mask. Interrupts to CPU.

Bit(s) Name Description Value
31 timer grp1 Enable/disable timergrp1 interrupt. Interrupt from

Timer group 1.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

30 timer grp0 Enable/disable timergrp0 interrupt. Interrupt from
Timer group 0.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

29 trigger grp7 Enable/disable triggergrp7 interrupt. Interrupt from
Trigger group 7.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

28 trigger grp6 Enable/disable triggergrp6 interrupt. Interrupt from
Trigger group 6.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

27 trigger grp5 Enable/disable triggergrp5 interrupt. Interrupt from
Trigger group 5.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

26 trigger grp4 Enable/disable triggergrp4 interrupt. Interrupt from
Trigger group 4.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

25 trigger grp3 Enable/disable triggergrp3 interrupt. Interrupt from
Trigger group 3.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

24 trigger grp2 Enable/disable triggergrp2 interrupt. Interrupt from
Trigger group 2.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

23 trigger grp1 Enable/disable triggergrp1 interrupt. Interrupt from
Trigger group 1.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

1246 CHAPTER 25. INTERNAL REGISTERS

22 trigger grp0 Enable/disable triggergrp0 interrupt. Interrupt from
Trigger group 0.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

21 fifo out0 extra Enable/disable fifoextraout0 interrupt. Interrupt
from fifo extraout0.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

20 fifo in0 extra Enable/disable fifoextra in0 interrupt. Interrupt
from fifo extra in0.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

19 fifo out0 Enable/disable fifoout0 interrupt. Interrupt from
fifo out0.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

18 fifo in0 Enable/disable fifoin0 interrupt. Interrupt from
fifo in0.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

17 dmc out0 Enable/disable dmcout0 interrupt. Interrupt from
dmc out0.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

16 dmc in0 Enable/disable dmcin0 interrupt. Interrupt from
dmc in0.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

15 spu07 Enable/disable spu07 interrupt. Interrupt from
SPU0 software, bit 7.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

14 spu06 Enable/disable spu06 interrupt. Interrupt from
SPU0 software, bit 6.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

13 spu05 Enable/disable spu05 interrupt. Interrupt from
SPU0 software, bit 5.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

12 spu04 Enable/disable spu04 interrupt. Interrupt from
SPU0 software, bit 4.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

25.27. IOP SW CPU 1247

11 spu03 Enable/disable spu03 interrupt. Interrupt from
SPU0 software, bit 3.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

10 spu02 Enable/disable spu02 interrupt. Interrupt from
SPU0 software, bit 2.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

9 spu01 Enable/disable spu01 interrupt. Interrupt from
SPU0 software, bit 1.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

8 spu00 Enable/disable spu00 interrupt. Interrupt from
SPU0 software, bit 0.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

7 mpu 7 Enable/disable mpu7 interrupt. Interrupt from MPU
software, bit 7.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

6 mpu 6 Enable/disable mpu6 interrupt. Interrupt from MPU
software, bit 6.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

5 mpu 5 Enable/disable mpu5 interrupt. Interrupt from MPU
software, bit 5.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

4 mpu 4 Enable/disable mpu4 interrupt. Interrupt from MPU
software, bit 4.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

3 mpu 3 Enable/disable mpu3 interrupt. Interrupt from MPU
software, bit 3.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

2 mpu 2 Enable/disable mpu2 interrupt. Interrupt from MPU
software, bit 2.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

1 mpu 1 Enable/disable mpu1 interrupt. Interrupt from MPU
software, bit 1.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

1248 CHAPTER 25. INTERNAL REGISTERS

0 mpu 0 Enable/disable mpu0 interrupt. Interrupt from MPU
software, bit 0.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

25.27. IOP SW CPU 1249

25.27.30 rw ack intr2

Address 0x78

Default
Type Read/Write

Description Acknowledge interrupts. Interrupts to CPU.

Bit(s) Name Description Value
15 spu07 Acknowledge spu07 interrupt.

yes: Acknowledge interrupt
no: No operation

yes=1
no=0

14 spu06 Acknowledge spu06 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

13 spu05 Acknowledge spu05 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

12 spu04 Acknowledge spu04 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

11 spu03 Acknowledge spu03 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

10 spu02 Acknowledge spu02 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

9 spu01 Acknowledge spu01 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

8 spu00 Acknowledge spu00 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

7 mpu 7 Acknowledge mpu7 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

6 mpu 6 Acknowledge mpu6 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

5 mpu 5 Acknowledge mpu5 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

4 mpu 4 Acknowledge mpu4 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

1250 CHAPTER 25. INTERNAL REGISTERS

3 mpu 3 Acknowledge mpu3 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

2 mpu 2 Acknowledge mpu2 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

1 mpu 1 Acknowledge mpu1 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

0 mpu 0 Acknowledge mpu0 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

25.27. IOP SW CPU 1251

25.27.31 r intr2

Address 0x7c

Default
Type Read

Description Unmasked interrupts. Interrupts to CPU.

Bit(s) Name Description Value
31 timer grp1 Interrupt timergrp1 active.

yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

30 timer grp0 Interrupt timergrp0 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

29 trigger grp7 Interrupt triggergrp7 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

28 trigger grp6 Interrupt triggergrp6 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

27 trigger grp5 Interrupt triggergrp5 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

26 trigger grp4 Interrupt triggergrp4 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

25 trigger grp3 Interrupt triggergrp3 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

24 trigger grp2 Interrupt triggergrp2 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

23 trigger grp1 Interrupt triggergrp1 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

22 trigger grp0 Interrupt triggergrp0 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

21 fifo out0 extra Interrupt fifo extraout0 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

20 fifo in0 extra Interrupt fifo extra in0 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1252 CHAPTER 25. INTERNAL REGISTERS

19 fifo out0 Interrupt fifo out0 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

18 fifo in0 Interrupt fifo in0 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

17 dmc out0 Interrupt dmcout0 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

16 dmc in0 Interrupt dmcin0 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

15 spu07 Interrupt spu07 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

14 spu06 Interrupt spu06 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

13 spu05 Interrupt spu05 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

12 spu04 Interrupt spu04 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

11 spu03 Interrupt spu03 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

10 spu02 Interrupt spu02 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

9 spu01 Interrupt spu01 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

8 spu00 Interrupt spu00 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

7 mpu 7 Interrupt mpu7 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

6 mpu 6 Interrupt mpu6 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

5 mpu 5 Interrupt mpu5 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

25.27. IOP SW CPU 1253

4 mpu 4 Interrupt mpu4 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

3 mpu 3 Interrupt mpu3 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

2 mpu 2 Interrupt mpu2 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1 mpu 1 Interrupt mpu1 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

0 mpu 0 Interrupt mpu0 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1254 CHAPTER 25. INTERNAL REGISTERS

25.27.32 r masked intr2

Address 0x80

Default
Type Read

Description Masked interrupts. Interrupts to CPU.

Bit(s) Name Description Value
31 timer grp1 Interrupt timergrp1 active and enabled.

yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

30 timer grp0 Interrupt timergrp0 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

29 trigger grp7 Interrupt triggergrp7 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

28 trigger grp6 Interrupt triggergrp6 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

27 trigger grp5 Interrupt triggergrp5 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

26 trigger grp4 Interrupt triggergrp4 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

25 trigger grp3 Interrupt triggergrp3 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

24 trigger grp2 Interrupt triggergrp2 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

23 trigger grp1 Interrupt triggergrp1 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

22 trigger grp0 Interrupt triggergrp0 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

21 fifo out0 extra Interrupt fifo out0 extra active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

20 fifo in0 extra Interrupt fifo in0 extra active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

25.27. IOP SW CPU 1255

19 fifo out0 Interrupt fifo out0 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

18 fifo in0 Interrupt fifo in0 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

17 dmc out0 Interrupt dmcout0 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

16 dmc in0 Interrupt dmcin0 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

15 spu07 Interrupt spu07 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

14 spu06 Interrupt spu06 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

13 spu05 Interrupt spu05 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

12 spu04 Interrupt spu04 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

11 spu03 Interrupt spu03 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

10 spu02 Interrupt spu02 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

9 spu01 Interrupt spu01 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

8 spu00 Interrupt spu00 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

7 mpu 7 Interrupt mpu7 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

6 mpu 6 Interrupt mpu6 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

5 mpu 5 Interrupt mpu5 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1256 CHAPTER 25. INTERNAL REGISTERS

4 mpu 4 Interrupt mpu4 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

3 mpu 3 Interrupt mpu3 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

2 mpu 2 Interrupt mpu2 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1 mpu 1 Interrupt mpu1 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

0 mpu 0 Interrupt mpu0 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

25.27. IOP SW CPU 1257

25.27.33 rw intr3 mask

Address 0x84

Default 0x00000000

Type Read/Write

Description Interrupt mask. Interrupts to CPU.

Bit(s) Name Description Value
31 timer grp3 Enable/disable timergrp3 interrupt. Interrupt from

Timer group 3.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

30 timer grp2 Enable/disable timergrp2 interrupt. Interrupt from
Timer group 2.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

29 trigger grp7 Enable/disable triggergrp7 interrupt. Interrupt from
Trigger group 7.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

28 trigger grp6 Enable/disable triggergrp6 interrupt. Interrupt from
Trigger group 6.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

27 trigger grp5 Enable/disable triggergrp5 interrupt. Interrupt from
Trigger group 5.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

26 trigger grp4 Enable/disable triggergrp4 interrupt. Interrupt from
Trigger group 4.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

25 trigger grp3 Enable/disable triggergrp3 interrupt. Interrupt from
Trigger group 3.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

24 trigger grp2 Enable/disable triggergrp2 interrupt. Interrupt from
Trigger group 2.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

23 trigger grp1 Enable/disable triggergrp1 interrupt. Interrupt from
Trigger group 1.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

1258 CHAPTER 25. INTERNAL REGISTERS

22 trigger grp0 Enable/disable triggergrp0 interrupt. Interrupt from
Trigger group 0.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

21 fifo out1 extra Enable/disable fifoextraout1 interrupt. Interrupt
from fifo extraout1.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

20 fifo in1 extra Enable/disable fifoextra in1 interrupt. Interrupt
from fifo extra in1.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

19 fifo out1 Enable/disable fifoout1 interrupt. Interrupt from
fifo out1.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

18 fifo in1 Enable/disable fifoin1 interrupt. Interrupt from
fifo in1.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

17 dmc out1 Enable/disable dmcout1 interrupt. Interrupt from
dmc out1.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

16 dmc in1 Enable/disable dmcin1 interrupt. Interrupt from
dmc in1.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

15 spu17 Enable/disable spu17 interrupt. Interrupt from
SPU1 software, bit 7.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

14 spu16 Enable/disable spu16 interrupt. Interrupt from
SPU1 software, bit 6.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

13 spu15 Enable/disable spu15 interrupt. Interrupt from
SPU1 software, bit 5.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

12 spu14 Enable/disable spu14 interrupt. Interrupt from
SPU1 software, bit 4.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

25.27. IOP SW CPU 1259

11 spu13 Enable/disable spu13 interrupt. Interrupt from
SPU1 software, bit 3.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

10 spu12 Enable/disable spu12 interrupt. Interrupt from
SPU1 software, bit 2.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

9 spu11 Enable/disable spu11 interrupt. Interrupt from
SPU1 software, bit 1.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

8 spu10 Enable/disable spu10 interrupt. Interrupt from
SPU1 software, bit 0.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

7 mpu 23 Enable/disable mpu23 interrupt. Interrupt from
MPU software, bit 23.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

6 mpu 22 Enable/disable mpu22 interrupt. Interrupt from
MPU software, bit 22.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

5 mpu 21 Enable/disable mpu21 interrupt. Interrupt from
MPU software, bit 21.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

4 mpu 20 Enable/disable mpu20 interrupt. Interrupt from
MPU software, bit 20.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

3 mpu 19 Enable/disable mpu19 interrupt. Interrupt from
MPU software, bit 19.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

2 mpu 18 Enable/disable mpu18 interrupt. Interrupt from
MPU software, bit 18.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

1 mpu 17 Enable/disable mpu17 interrupt. Interrupt from
MPU software, bit 17.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

1260 CHAPTER 25. INTERNAL REGISTERS

0 mpu 16 Enable/disable mpu16 interrupt. Interrupt from
MPU software, bit 16.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

25.27. IOP SW CPU 1261

25.27.34 rw ack intr3

Address 0x88

Default
Type Read/Write

Description Acknowledge interrupts. Interrupts to CPU.

Bit(s) Name Description Value
15 spu17 Acknowledge spu17 interrupt.

yes: Acknowledge interrupt
no: No operation

yes=1
no=0

14 spu16 Acknowledge spu16 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

13 spu15 Acknowledge spu15 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

12 spu14 Acknowledge spu14 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

11 spu13 Acknowledge spu13 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

10 spu12 Acknowledge spu12 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

9 spu11 Acknowledge spu11 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

8 spu10 Acknowledge spu10 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

7 mpu 23 Acknowledge mpu23 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

6 mpu 22 Acknowledge mpu22 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

5 mpu 21 Acknowledge mpu21 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

4 mpu 20 Acknowledge mpu20 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

1262 CHAPTER 25. INTERNAL REGISTERS

3 mpu 19 Acknowledge mpu19 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

2 mpu 18 Acknowledge mpu18 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

1 mpu 17 Acknowledge mpu17 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

0 mpu 16 Acknowledge mpu16 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

25.27. IOP SW CPU 1263

25.27.35 r intr3

Address 0x8c

Default
Type Read

Description Unmasked interrupts. Interrupts to CPU.

Bit(s) Name Description Value
31 timer grp3 Interrupt timergrp3 active.

yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

30 timer grp2 Interrupt timergrp2 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

29 trigger grp7 Interrupt triggergrp7 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

28 trigger grp6 Interrupt triggergrp6 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

27 trigger grp5 Interrupt triggergrp5 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

26 trigger grp4 Interrupt triggergrp4 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

25 trigger grp3 Interrupt triggergrp3 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

24 trigger grp2 Interrupt triggergrp2 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

23 trigger grp1 Interrupt triggergrp1 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

22 trigger grp0 Interrupt triggergrp0 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

21 fifo out1 extra Interrupt fifo extraout1 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

20 fifo in1 extra Interrupt fifo extra in1 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1264 CHAPTER 25. INTERNAL REGISTERS

19 fifo out1 Interrupt fifo out1 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

18 fifo in1 Interrupt fifo in1 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

17 dmc out1 Interrupt dmcout1 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

16 dmc in1 Interrupt dmcin1 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

15 spu17 Interrupt spu17 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

14 spu16 Interrupt spu16 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

13 spu15 Interrupt spu15 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

12 spu14 Interrupt spu14 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

11 spu13 Interrupt spu13 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

10 spu12 Interrupt spu12 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

9 spu11 Interrupt spu11 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

8 spu10 Interrupt spu10 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

7 mpu 23 Interrupt mpu23 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

6 mpu 22 Interrupt mpu22 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

5 mpu 21 Interrupt mpu21 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

25.27. IOP SW CPU 1265

4 mpu 20 Interrupt mpu20 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

3 mpu 19 Interrupt mpu19 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

2 mpu 18 Interrupt mpu18 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1 mpu 17 Interrupt mpu17 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

0 mpu 16 Interrupt mpu16 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1266 CHAPTER 25. INTERNAL REGISTERS

25.27.36 r masked intr3

Address 0x90

Default
Type Read

Description Masked interrupts. Interrupts to CPU.

Bit(s) Name Description Value
31 timer grp3 Interrupt timergrp3 active and enabled.

yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

30 timer grp2 Interrupt timergrp2 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

29 trigger grp7 Interrupt triggergrp7 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

28 trigger grp6 Interrupt triggergrp6 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

27 trigger grp5 Interrupt triggergrp5 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

26 trigger grp4 Interrupt triggergrp4 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

25 trigger grp3 Interrupt triggergrp3 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

24 trigger grp2 Interrupt triggergrp2 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

23 trigger grp1 Interrupt triggergrp1 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

22 trigger grp0 Interrupt triggergrp0 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

21 fifo out1 extra Interrupt fifo out1 extra active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

20 fifo in1 extra Interrupt fifo in1 extra active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

25.27. IOP SW CPU 1267

19 fifo out1 Interrupt fifo out1 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

18 fifo in1 Interrupt fifo in1 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

17 dmc out1 Interrupt dmcout1 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

16 dmc in1 Interrupt dmcin1 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

15 spu17 Interrupt spu17 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

14 spu16 Interrupt spu16 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

13 spu15 Interrupt spu15 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

12 spu14 Interrupt spu14 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

11 spu13 Interrupt spu13 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

10 spu12 Interrupt spu12 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

9 spu11 Interrupt spu11 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

8 spu10 Interrupt spu10 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

7 mpu 23 Interrupt mpu23 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

6 mpu 22 Interrupt mpu22 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

5 mpu 21 Interrupt mpu21 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1268 CHAPTER 25. INTERNAL REGISTERS

4 mpu 20 Interrupt mpu20 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

3 mpu 19 Interrupt mpu19 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

2 mpu 18 Interrupt mpu18 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1 mpu 17 Interrupt mpu17 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

0 mpu 16 Interrupt mpu16 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

25.28. IOP SW MPU 1269

25.28 iop sw mpu

Instance Base Address
iop sw mpu 0xb0021300

25.28.1 rw sw cfg owner

Address 0x0

Default 0x00000000

Type Read/Write

Description This register controls the owner of the Switch configuration registerbank.

Bit(s) Name Description Value
1-0:2 cfg Selects owner of swcfg.

cpu: cpu is owner
mpu: mpu is owner
spu0: spu0 is owner
spu1: spu1 is owner

cpu=0
mpu=1
spu0=2
spu1=3

1270 CHAPTER 25. INTERNAL REGISTERS

25.28.2 rw mc ctrl

Address 0x4

Default
Type Read/Write

Description Control register for the MC. A write to this register requests ownership of MC.

Bit(s) Name Description Value
7 wr spu1mem Enable writes to SPU1 memory.

no: No writes to SPU1 memory
yes: Write to SPU1 memory

no=0
yes=1

6 wr spu0mem Enable writes to SPU0 memory.
no: No writes to SPU0 memory
yes: Write to SPU0 memory

no=0
yes=1

5-3:3 size Size (in bytes) of data to read or write. MC can
read/write at most four bytes.

2-1:2 cmd Command to perform.
copy: Copy data from SMIF and write to I/O memory
reg copy: Data from mcdata is written to I/O memory
rd: Read from SMIF tor mc data
wr: Write rw mc datato SMIF

copy=0
reg copy=1
rd=2
wr=3

0 keepowner Enables ownership to be kept after finished operation.
no: Ownerships is automatically released
yes: Ownership is kept

no=0
yes=1

25.28. IOP SW MPU 1271

25.28.3 rw mc data

Address 0x8

Default
Type Read/Write

Description Data for write to system memory. Depending on size inrw mc ctrl some parts of value
can be don’t care. Ifrw mc ctrl.cmdis set toreg copythe write to this register performs
the write to I/O memory. Ifrw mc ctrl.keepowneris not set the ownership of MC will
be released.

Bit(s) Name Description Value
31-0:32 val Data value to be written to system memory.

1272 CHAPTER 25. INTERNAL REGISTERS

25.28.4 rw mc addr

Address 0xc

Default
Type Read/Write

Description The system memory address to perform operation on.rw mc addrstates the address
which will be used by the selected command inrw mc ctrl.cmd. A write to this register
starts the memory operation. If operation iswr or copyandrw mc ctrl.keepownerisn’t
set the ownership will be lost when operation is done.

25.28. IOP SW MPU 1273

25.28.5 rs mc data/r mc data

Address 0x10/0x14

Default
Type Read with side effects/Read

Description Data read from system memory at addressrw mc addr. When readingrs mc dataown-
ership of MC is released.

1274 CHAPTER 25. INTERNAL REGISTERS

25.28.6 r mc stat

Address 0x18

Default
Type Read

Description Status of the MC.

Bit(s) Name Description Value
7 ownedby spu1 MC is owned by SPU1.

no: Not owned by SPU1
yes: Owned by SPU1

no=0
yes=1

6 ownedby spu0 MC is owned by SPU0.
no: Not owned by SPU0
yes: Owned by SPU0

no=0
yes=1

5 ownedby mpu MC is owned by MPU.
no: Not owned by MPU
yes: Owned by MPU

no=0
yes=1

4 ownedby cpu MC is owned by CPU.
no: Not owned by CPU
yes: Owned by CPU

no=0
yes=1

3 busyspu1 MC is busy performing command for SPU1.
no: Not busy
yes: Busy

no=0
yes=1

2 busyspu0 MC is busy performing command for SPU0.
no: Not busy
yes: Busy

no=0
yes=1

1 busympu MC is busy performing command for MPU.
no: Not busy
yes: Busy

no=0
yes=1

0 busycpu MC is busy performing command for CPU.
no: Not busy
yes: Busy

no=0
yes=1

25.28. IOP SW MPU 1275

25.28.7 rw bus0 clr mask

Address 0x1c

Default 0x00000000

Type Read/Write

Description Clear bits in BUS0.

Bit(s) Name Description Value
31-24:8 byte3 Used to clear bits in BUS0[31:24].

23-16:8 byte2 Used to clear bits in BUS0[23:16].

15-8:8 byte1 Used to clear bits in BUS0[15:8].

7-0:8 byte0 Used to clear bits in BUS0[7:0].

1276 CHAPTER 25. INTERNAL REGISTERS

25.28.8 rw bus0 set mask

Address 0x20

Default 0x00000000

Type Read/Write

Description Set bits in BUS0.

Bit(s) Name Description Value
31-24:8 byte3 Used to set bits in BUS0[31:24].

23-16:8 byte2 Used to set bits in BUS0[23:16].

15-8:8 byte1 Used to set bits in BUS0[15:8].

7-0:8 byte0 Used to set bits in BUS0[7:0].

25.28. IOP SW MPU 1277

25.28.9 rw bus0 oe clr mask

Address 0x24

Default 0x00000000

Type Read/Write

Description Clear OE signals for BUS0.

Bit(s) Name Description Value
3 byte3 Used to clear OE for BUS0[31:24].

2 byte2 Used to clear OE for BUS0[23:16].

1 byte1 Used to clear OE for BUS0[15:8].

0 byte0 Used to clear OE for BUS0[7:0].

1278 CHAPTER 25. INTERNAL REGISTERS

25.28.10 rw bus0 oe set mask

Address 0x28

Default 0x00000000

Type Read/Write

Description Set OE signals for BUS0.

Bit(s) Name Description Value
3 byte3 Used to set OE for BUS0[31:24].

2 byte2 Used to set OE for BUS0[23:16].

1 byte1 Used to set OE for BUS0[15:8].

0 byte0 Used to set OE for BUS0[7:0].

25.28. IOP SW MPU 1279

25.28.11 r bus0 in

Address 0x2c

Default
Type Read

Description Read register for BUS0.

1280 CHAPTER 25. INTERNAL REGISTERS

25.28.12 rw bus1 clr mask

Address 0x30

Default 0x00000000

Type Read/Write

Description Clear bits in BUS1.

Bit(s) Name Description Value
31-24:8 byte3 Used to clear bits in BUS1[31:24].

23-16:8 byte2 Used to clear bits in BUS1[23:16].

15-8:8 byte1 Used to clear bits in BUS1[15:8].

7-0:8 byte0 Used to clear bits in BUS1[7:0].

25.28. IOP SW MPU 1281

25.28.13 rw bus1 set mask

Address 0x34

Default 0x00000000

Type Read/Write

Description Set bits in BUS1.

Bit(s) Name Description Value
31-24:8 byte3 Used to set bits in BUS1[31:24].

23-16:8 byte2 Used to set bits in BUS1[23:16].

15-8:8 byte1 Used to set bits in BUS1[15:8].

7-0:8 byte0 Used to set bits in BUS1[7:0].

1282 CHAPTER 25. INTERNAL REGISTERS

25.28.14 rw bus1 oe clr mask

Address 0x38

Default 0x00000000

Type Read/Write

Description Clear OE signals for BUS1.

Bit(s) Name Description Value
3 byte3 Used to clear OE for BUS1[31:24].

2 byte2 Used to clear OE for BUS1[23:16].

1 byte1 Used to clear OE for BUS1[15:8].

0 byte0 Used to clear OE for BUS1[7:0].

25.28. IOP SW MPU 1283

25.28.15 rw bus1 oe set mask

Address 0x3c

Default 0x00000000

Type Read/Write

Description Set OE signals for BUS1.

Bit(s) Name Description Value
3 byte3 Used to set OE for BUS1[31:24].

2 byte2 Used to set OE for BUS1[23:16].

1 byte1 Used to set OE for BUS1[15:8].

0 byte0 Used to set OE for BUS1[7:0].

1284 CHAPTER 25. INTERNAL REGISTERS

25.28.16 r bus1 in

Address 0x40

Default
Type Read

Description Read register for BUS1.

25.28. IOP SW MPU 1285

25.28.17 rw gio clr mask

Address 0x44

Default 0x00000000

Type Read/Write

Description Clear bits in GIO.

Bit(s) Name Description Value
31-0:32 val Used to clear bits in GIO.

1286 CHAPTER 25. INTERNAL REGISTERS

25.28.18 rw gio set mask

Address 0x48

Default 0x00000000

Type Read/Write

Description Set bits in GIO.

Bit(s) Name Description Value
31-0:32 val Used to set bits in GIO.

25.28. IOP SW MPU 1287

25.28.19 rw gio oe clr mask

Address 0x4c

Default 0x00000000

Type Read/Write

Description Clear OE signals for GIO.

Bit(s) Name Description Value
31-0:32 val Used to clear OE for GIO.

1288 CHAPTER 25. INTERNAL REGISTERS

25.28.20 rw gio oe set mask

Address 0x50

Default 0x00000000

Type Read/Write

Description Set OE signals for GIO.

Bit(s) Name Description Value
31-0:32 val Used to set OE for GIO.

25.28. IOP SW MPU 1289

25.28.21 r gio in

Address 0x54

Default
Type Read

Description Read register for GIO.

1290 CHAPTER 25. INTERNAL REGISTERS

25.28.22 rw cpu intr

Address 0x58

Default
Type Read/Write

Description This is used to set interrupts to CPU.

Bit(s) Name Description Value
31 intr31 Set software interrupt 31, to CPU.

set: Set interrupt
nop: No operation

set=1
nop=0

30 intr30 Set software interrupt 30, to CPU.
set: Set interrupt
nop: No operation

set=1
nop=0

29 intr29 Set software interrupt 29, to CPU.
set: Set interrupt
nop: No operation

set=1
nop=0

28 intr28 Set software interrupt 28, to CPU.
set: Set interrupt
nop: No operation

set=1
nop=0

27 intr27 Set software interrupt 27, to CPU.
set: Set interrupt
nop: No operation

set=1
nop=0

26 intr26 Set software interrupt 26, to CPU.
set: Set interrupt
nop: No operation

set=1
nop=0

25 intr25 Set software interrupt 25, to CPU.
set: Set interrupt
nop: No operation

set=1
nop=0

24 intr24 Set software interrupt 24, to CPU.
set: Set interrupt
nop: No operation

set=1
nop=0

23 intr23 Set software interrupt 23, to CPU.
set: Set interrupt
nop: No operation

set=1
nop=0

22 intr22 Set software interrupt 22, to CPU.
set: Set interrupt
nop: No operation

set=1
nop=0

21 intr21 Set software interrupt 21, to CPU.
set: Set interrupt
nop: No operation

set=1
nop=0

20 intr20 Set software interrupt 20, to CPU.
set: Set interrupt
nop: No operation

set=1
nop=0

25.28. IOP SW MPU 1291

19 intr19 Set software interrupt 19, to CPU.
set: Set interrupt
nop: No operation

set=1
nop=0

18 intr18 Set software interrupt 18, to CPU.
set: Set interrupt
nop: No operation

set=1
nop=0

17 intr17 Set software interrupt 17, to CPU.
set: Set interrupt
nop: No operation

set=1
nop=0

16 intr16 Set software interrupt 16, to CPU.
set: Set interrupt
nop: No operation

set=1
nop=0

15 intr15 Set software interrupt 15, to CPU.
set: Set interrupt
nop: No operation

set=1
nop=0

14 intr14 Set software interrupt 14, to CPU.
set: Set interrupt
nop: No operation

set=1
nop=0

13 intr13 Set software interrupt 13, to CPU.
set: Set interrupt
nop: No operation

set=1
nop=0

12 intr12 Set software interrupt 12, to CPU.
set: Set interrupt
nop: No operation

set=1
nop=0

11 intr11 Set software interrupt 11, to CPU.
set: Set interrupt
nop: No operation

set=1
nop=0

10 intr10 Set software interrupt 10, to CPU.
set: Set interrupt
nop: No operation

set=1
nop=0

9 intr9 Set software interrupt 9, to CPU.
set: Set interrupt
nop: No operation

set=1
nop=0

8 intr8 Set software interrupt 8, to CPU.
set: Set interrupt
nop: No operation

set=1
nop=0

7 intr7 Set software interrupt 7, to CPU.
set: Set interrupt
nop: No operation

set=1
nop=0

6 intr6 Set software interrupt 6, to CPU.
set: Set interrupt
nop: No operation

set=1
nop=0

5 intr5 Set software interrupt 5, to CPU.
set: Set interrupt
nop: No operation

set=1
nop=0

1292 CHAPTER 25. INTERNAL REGISTERS

4 intr4 Set software interrupt 4, to CPU.
set: Set interrupt
nop: No operation

set=1
nop=0

3 intr3 Set software interrupt 3, to CPU.
set: Set interrupt
nop: No operation

set=1
nop=0

2 intr2 Set software interrupt 2, to CPU.
set: Set interrupt
nop: No operation

set=1
nop=0

1 intr1 Set software interrupt 1, to CPU.
set: Set interrupt
nop: No operation

set=1
nop=0

0 intr0 Set software interrupt 0, to CPU.
set: Set interrupt
nop: No operation

set=1
nop=0

25.28. IOP SW MPU 1293

25.28.23 r cpu intr

Address 0x5c

Default
Type Read

Description This is used to check which MPU software interrupts are set to CPU (unmasked).

Bit(s) Name Description Value
31 intr31 MPU software interrupt 31, to CPU.

yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

30 intr30 MPU software interrupt 30, to CPU.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

29 intr29 MPU software interrupt 29, to CPU.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

28 intr28 MPU software interrupt 28, to CPU.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

27 intr27 MPU software interrupt 27, to CPU.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

26 intr26 MPU software interrupt 26, to CPU.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

25 intr25 MPU software interrupt 25, to CPU.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

24 intr24 MPU software interrupt 24, to CPU.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

23 intr23 MPU software interrupt 23, to CPU.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

22 intr22 MPU software interrupt 22, to CPU.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

21 intr21 MPU software interrupt 21, to CPU.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

20 intr20 MPU software interrupt 20, to CPU.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1294 CHAPTER 25. INTERNAL REGISTERS

19 intr19 MPU software interrupt 19, to CPU.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

18 intr18 MPU software interrupt 18, to CPU.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

17 intr17 MPU software interrupt 17, to CPU.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

16 intr16 MPU software interrupt 16, to CPU.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

15 intr15 MPU software interrupt 15, to CPU.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

14 intr14 MPU software interrupt 14, to CPU.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

13 intr13 MPU software interrupt 13, to CPU.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

12 intr12 MPU software interrupt 12, to CPU.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

11 intr11 MPU software interrupt 11, to CPU.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

10 intr10 MPU software interrupt 10, to CPU.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

9 intr9 MPU software interrupt 9, to CPU.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

8 intr8 MPU software interrupt 8, to CPU.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

7 intr7 MPU software interrupt 7, to CPU.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

6 intr6 MPU software interrupt 6, to CPU.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

5 intr5 MPU software interrupt 5, to CPU.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

25.28. IOP SW MPU 1295

4 intr4 MPU software interrupt 4, to CPU.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

3 intr3 MPU software interrupt 3, to CPU.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

2 intr2 MPU software interrupt 2, to CPU.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1 intr1 MPU software interrupt 1, to CPU.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

0 intr0 MPU software interrupt 0, to CPU.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1296 CHAPTER 25. INTERNAL REGISTERS

25.28.24 rw intr grp0 mask

Address 0x60

Default 0x00000000

Type Read/Write

Description Interrupt mask. Interrupt group0, containing intr[3:0].

Bit(s) Name Description Value
31 dmc in1 Enable/disable dmcin1 interrupt. Interrupt from

dmc in1.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

30 fifo in1 extra Enable/disable fifoin1 extra interrupt. Interrupt
from extra register bank of fifoin1.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

29 fifo in1 Enable/disable fifoin1 interrupt. Interrupt from
fifo in1.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

28 timer grp3 Enable/disable timergrp3 interrupt. Interrupt from
Timer group 3.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

27 trigger grp7 Enable/disable triggergrp7 interrupt. Interrupt from
Trigger group 7.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

26 trigger grp3 Enable/disable triggergrp3 interrupt. Interrupt from
Trigger group 3.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

25 spu1intr3 Enable/disable spu1intr3 interrupt. Interrupt from
SPU1 software, bit 3.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

24 spu0intr3 Enable/disable spu0intr3 interrupt. Interrupt from
SPU0 software, bit 3.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

23 dmc out1 Enable/disable dmcout1 interrupt. Interrupt from
dmc out1.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

25.28. IOP SW MPU 1297

22 fifo out1 extra Enable/disable fifoout1 extra interrupt. Interrupt
from extra register bank of fifoout1.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

21 fifo out1 Enable/disable fifoout1 interrupt. Interrupt from
fifo out1.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

20 timer grp2 Enable/disable timergrp2 interrupt. Interrupt from
Timer group 2.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

19 trigger grp6 Enable/disable triggergrp6 interrupt. Interrupt from
Trigger group 6.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

18 trigger grp2 Enable/disable triggergrp2 interrupt. Interrupt from
Trigger group 2.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

17 spu1intr2 Enable/disable spu1intr2 interrupt. Interrupt from
SPU1 software, bit 2.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

16 spu0intr2 Enable/disable spu0intr2 interrupt. Interrupt from
SPU0 software, bit 2.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

15 dmc in0 Enable/disable dmcin0 interrupt. Interrupt from
dmc in0.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

14 fifo in0 extra Enable/disable fifoin0 extra interrupt. Interrupt
from extra register bank of fifoin0.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

13 fifo in0 Enable/disable fifoin0 interrupt. Interrupt from
fifo in0.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

12 timer grp1 Enable/disable timergrp1 interrupt. Interrupt from
Timer group 1.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

1298 CHAPTER 25. INTERNAL REGISTERS

11 trigger grp5 Enable/disable triggergrp5 interrupt. Interrupt from
Trigger group 5.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

10 trigger grp1 Enable/disable triggergrp1 interrupt. Interrupt from
Trigger group 1.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

9 spu1intr1 Enable/disable spu1intr1 interrupt. Interrupt from
SPU1 software, bit 1.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

8 spu0intr1 Enable/disable spu0intr1 interrupt. Interrupt from
SPU0 software, bit 1.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

7 dmc out0 Enable/disable dmcout0 interrupt. Interrupt from
dmc out0.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

6 fifo out0 extra Enable/disable fifoout0 extra interrupt. Interrupt
from extra register bank of fifoout0.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

5 fifo out0 Enable/disable fifoout0 interrupt. Interrupt from
fifo out0.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

4 timer grp0 Enable/disable timergrp0 interrupt. Interrupt from
Timer group 0.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

3 trigger grp4 Enable/disable triggergrp4 interrupt. Interrupt from
Trigger group 4.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

2 trigger grp0 Enable/disable triggergrp0 interrupt. Interrupt from
Trigger group 0.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

1 spu1intr0 Enable/disable spu1intr0 interrupt. Interrupt from
SPU1 software, bit 0.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

25.28. IOP SW MPU 1299

0 spu0intr0 Enable/disable spu0intr0 interrupt. Interrupt from
SPU0 software, bit 0.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

1300 CHAPTER 25. INTERNAL REGISTERS

25.28.25 rw ack intr grp0

Address 0x64

Default
Type Read/Write

Description Acknowledge interrupts. Interrupt group0, containing intr[3:0].

Bit(s) Name Description Value
25 spu1intr3 Acknowledge spu1intr3 interrupt.

yes: Acknowledge interrupt
no: No operation

yes=1
no=0

24 spu0intr3 Acknowledge spu0intr3 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

17 spu1intr2 Acknowledge spu1intr2 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

16 spu0intr2 Acknowledge spu0intr2 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

9 spu1intr1 Acknowledge spu1intr1 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

8 spu0intr1 Acknowledge spu0intr1 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

1 spu1intr0 Acknowledge spu1intr0 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

0 spu0intr0 Acknowledge spu0intr0 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

25.28. IOP SW MPU 1301

25.28.26 r intr grp0

Address 0x68

Default
Type Read

Description Unmasked interrupts. Interrupt group0, containing intr[3:0].

Bit(s) Name Description Value
31 dmc in1 Interrupt dmcin1 active.

yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

30 fifo in1 extra Interrupt fifo in1 extra active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

29 fifo in1 Interrupt fifo in1 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

28 timer grp3 Interrupt timergrp3 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

27 trigger grp7 Interrupt triggergrp7 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

26 trigger grp3 Interrupt triggergrp3 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

25 spu1intr3 Interrupt spu1intr3 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

24 spu0intr3 Interrupt spu0intr3 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

23 dmc out1 Interrupt dmcout1 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

22 fifo out1 extra Interrupt fifo out1 extra active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

21 fifo out1 Interrupt fifo out1 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

20 timer grp2 Interrupt timergrp2 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1302 CHAPTER 25. INTERNAL REGISTERS

19 trigger grp6 Interrupt triggergrp6 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

18 trigger grp2 Interrupt triggergrp2 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

17 spu1intr2 Interrupt spu1intr2 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

16 spu0intr2 Interrupt spu0intr2 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

15 dmc in0 Interrupt dmcin0 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

14 fifo in0 extra Interrupt fifo in0 extra active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

13 fifo in0 Interrupt fifo in0 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

12 timer grp1 Interrupt timergrp1 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

11 trigger grp5 Interrupt triggergrp5 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

10 trigger grp1 Interrupt triggergrp1 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

9 spu1intr1 Interrupt spu1intr1 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

8 spu0intr1 Interrupt spu0intr1 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

7 dmc out0 Interrupt dmcout0 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

6 fifo out0 extra Interrupt fifo out0 extra active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

5 fifo out0 Interrupt fifo out0 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

25.28. IOP SW MPU 1303

4 timer grp0 Interrupt timergrp0 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

3 trigger grp4 Interrupt triggergrp4 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

2 trigger grp0 Interrupt triggergrp0 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1 spu1intr0 Interrupt spu1intr0 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

0 spu0intr0 Interrupt spu0intr0 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1304 CHAPTER 25. INTERNAL REGISTERS

25.28.27 r masked intr grp0

Address 0x6c

Default
Type Read

Description Masked interrupts. Interrupt group0, containing intr[3:0].

Bit(s) Name Description Value
31 dmc in1 Interrupt dmcin1 active and enabled.

yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

30 fifo in1 extra Interrupt fifo in1 extra active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

29 fifo in1 Interrupt fifo in1 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

28 timer grp3 Interrupt timergrp3 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

27 trigger grp7 Interrupt triggergrp7 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

26 trigger grp3 Interrupt triggergrp3 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

25 spu1intr3 Interrupt spu1intr3 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

24 spu0intr3 Interrupt spu0intr3 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

23 dmc out1 Interrupt dmcout1 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

22 fifo out1 extra Interrupt fifo out1 extra active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

21 fifo out1 Interrupt fifo out1 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

20 timer grp2 Interrupt timergrp2 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

25.28. IOP SW MPU 1305

19 trigger grp6 Interrupt triggergrp6 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

18 trigger grp2 Interrupt triggergrp2 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

17 spu1intr2 Interrupt spu1intr2 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

16 spu0intr2 Interrupt spu0intr2 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

15 dmc in0 Interrupt dmcin0 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

14 fifo in0 extra Interrupt fifo in0 extra active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

13 fifo in0 Interrupt fifo in0 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

12 timer grp1 Interrupt timergrp1 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

11 trigger grp5 Interrupt triggergrp5 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

10 trigger grp1 Interrupt triggergrp1 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

9 spu1intr1 Interrupt spu1intr1 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

8 spu0intr1 Interrupt spu0intr1 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

7 dmc out0 Interrupt dmcout0 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

6 fifo out0 extra Interrupt fifo out0 extra active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

5 fifo out0 Interrupt fifo out0 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1306 CHAPTER 25. INTERNAL REGISTERS

4 timer grp0 Interrupt timergrp0 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

3 trigger grp4 Interrupt triggergrp4 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

2 trigger grp0 Interrupt triggergrp0 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1 spu1intr0 Interrupt spu1intr0 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

0 spu0intr0 Interrupt spu0intr0 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

25.28. IOP SW MPU 1307

25.28.28 rw intr grp1 mask

Address 0x70

Default 0x00000000

Type Read/Write

Description Interrupt mask. Interrupt group1, containing intr[7:4].

Bit(s) Name Description Value
31 dmc in1 Enable/disable dmcin1 interrupt. Interrupt from

dmc in1.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

30 fifo out1 extra Enable/disable fifoout1 extra interrupt. Interrupt
from extra register bank of fifoout1.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

29 fifo out0 Enable/disable fifoout0 interrupt. Interrupt from
fifo out0.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

28 timer grp3 Enable/disable timergrp3 interrupt. Interrupt from
Timer group 3.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

27 trigger grp4 Enable/disable triggergrp4 interrupt. Interrupt from
Trigger group 4.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

26 trigger grp3 Enable/disable triggergrp3 interrupt. Interrupt from
Trigger group 3.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

25 spu1intr7 Enable/disable spu1intr7 interrupt. Interrupt from
SPU1 software, bit 7.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

24 spu0intr7 Enable/disable spu0intr7 interrupt. Interrupt from
SPU0 software, bit 7.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

23 dmc out1 Enable/disable dmcout1 interrupt. Interrupt from
dmc out1.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

1308 CHAPTER 25. INTERNAL REGISTERS

22 fifo in1 extra Enable/disable fifoin1 extra interrupt. Interrupt
from extra register bank of fifoin1.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

21 fifo in1 Enable/disable fifoin1 interrupt. Interrupt from
fifo in1.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

20 timer grp2 Enable/disable timergrp2 interrupt. Interrupt from
Timer group 2.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

19 trigger grp7 Enable/disable triggergrp7 interrupt. Interrupt from
Trigger group 7.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

18 trigger grp2 Enable/disable triggergrp2 interrupt. Interrupt from
Trigger group 2.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

17 spu1intr6 Enable/disable spu1intr6 interrupt. Interrupt from
SPU1 software, bit 6.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

16 spu0intr6 Enable/disable spu0intr6 interrupt. Interrupt from
SPU0 software, bit 6.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

15 dmc in0 Enable/disable dmcin0 interrupt. Interrupt from
dmc in0.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

14 fifo out0 extra Enable/disable fifoout0 extra interrupt. Interrupt
from extra register bank of fifoout0.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

13 fifo out1 Enable/disable fifoout1 interrupt. Interrupt from
fifo out1.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

12 timer grp1 Enable/disable timergrp1 interrupt. Interrupt from
Timer group 1.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

25.28. IOP SW MPU 1309

11 trigger grp6 Enable/disable triggergrp6 interrupt. Interrupt from
Trigger group 6.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

10 trigger grp1 Enable/disable triggergrp1 interrupt. Interrupt from
Trigger group 1.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

9 spu1intr5 Enable/disable spu1intr5 interrupt. Interrupt from
SPU1 software, bit 5.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

8 spu0intr5 Enable/disable spu0intr5 interrupt. Interrupt from
SPU0 software, bit 5.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

7 dmc out0 Enable/disable dmcout0 interrupt. Interrupt from
dmc out0.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

6 fifo in0 extra Enable/disable fifoin0 extra interrupt. Interrupt
from extra register bank of fifoin0.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

5 fifo in0 Enable/disable fifoin0 interrupt. Interrupt from
fifo in0.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

4 timer grp0 Enable/disable timergrp0 interrupt. Interrupt from
Timer group 0.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

3 trigger grp5 Enable/disable triggergrp5 interrupt. Interrupt from
Trigger group 5.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

2 trigger grp0 Enable/disable triggergrp0 interrupt. Interrupt from
Trigger group 0.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

1 spu1intr4 Enable/disable spu1intr4 interrupt. Interrupt from
SPU1 software, bit 4.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

1310 CHAPTER 25. INTERNAL REGISTERS

0 spu0intr4 Enable/disable spu0intr4 interrupt. Interrupt from
SPU0 software, bit 4.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

25.28. IOP SW MPU 1311

25.28.29 rw ack intr grp1

Address 0x74

Default
Type Read/Write

Description Acknowledge interrupts. Interrupt group1, containing intr[7:4].

Bit(s) Name Description Value
25 spu1intr7 Acknowledge spu1intr7 interrupt.

yes: Acknowledge interrupt
no: No operation

yes=1
no=0

24 spu0intr7 Acknowledge spu0intr7 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

17 spu1intr6 Acknowledge spu1intr6 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

16 spu0intr6 Acknowledge spu0intr6 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

9 spu1intr5 Acknowledge spu1intr5 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

8 spu0intr5 Acknowledge spu0intr5 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

1 spu1intr4 Acknowledge spu1intr4 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

0 spu0intr4 Acknowledge spu0intr4 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

1312 CHAPTER 25. INTERNAL REGISTERS

25.28.30 r intr grp1

Address 0x78

Default
Type Read

Description Unmasked interrupts. Interrupt group1, containing intr[7:4].

Bit(s) Name Description Value
31 dmc in1 Interrupt dmcin1 active.

yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

30 fifo out1 extra Interrupt fifo out1 extra active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

29 fifo out0 Interrupt fifo out0 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

28 timer grp3 Interrupt timergrp3 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

27 trigger grp4 Interrupt triggergrp4 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

26 trigger grp3 Interrupt triggergrp3 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

25 spu1intr7 Interrupt spu1intr7 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

24 spu0intr7 Interrupt spu0intr7 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

23 dmc out1 Interrupt dmcout1 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

22 fifo in1 extra Interrupt fifo in1 extra active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

21 fifo in1 Interrupt fifo in1 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

20 timer grp2 Interrupt timergrp2 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

25.28. IOP SW MPU 1313

19 trigger grp7 Interrupt triggergrp7 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

18 trigger grp2 Interrupt triggergrp2 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

17 spu1intr6 Interrupt spu1intr6 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

16 spu0intr6 Interrupt spu0intr6 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

15 dmc in0 Interrupt dmcin0 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

14 fifo out0 extra Interrupt fifo out0 extra active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

13 fifo out1 Interrupt fifo out1 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

12 timer grp1 Interrupt timergrp1 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

11 trigger grp6 Interrupt triggergrp6 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

10 trigger grp1 Interrupt triggergrp1 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

9 spu1intr5 Interrupt spu1intr5 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

8 spu0intr5 Interrupt spu0intr5 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

7 dmc out0 Interrupt dmcout0 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

6 fifo in0 extra Interrupt fifo in0 extra active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

5 fifo in0 Interrupt fifo in0 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1314 CHAPTER 25. INTERNAL REGISTERS

4 timer grp0 Interrupt timergrp0 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

3 trigger grp5 Interrupt triggergrp5 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

2 trigger grp0 Interrupt triggergrp0 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1 spu1intr4 Interrupt spu1intr4 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

0 spu0intr4 Interrupt spu0intr4 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

25.28. IOP SW MPU 1315

25.28.31 r masked intr grp1

Address 0x7c

Default
Type Read

Description Masked interrupts. Interrupt group1, containing intr[7:4].

Bit(s) Name Description Value
31 dmc in1 Interrupt dmcin1 active and enabled.

yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

30 fifo out1 extra Interrupt fifo out1 extra active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

29 fifo out0 Interrupt fifo out0 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

28 timer grp3 Interrupt timergrp3 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

27 trigger grp4 Interrupt triggergrp4 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

26 trigger grp3 Interrupt triggergrp3 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

25 spu1intr7 Interrupt spu1intr7 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

24 spu0intr7 Interrupt spu0intr7 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

23 dmc out1 Interrupt dmcout1 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

22 fifo in1 extra Interrupt fifo in1 extra active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

21 fifo in1 Interrupt fifo in1 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

20 timer grp2 Interrupt timergrp2 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1316 CHAPTER 25. INTERNAL REGISTERS

19 trigger grp7 Interrupt triggergrp7 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

18 trigger grp2 Interrupt triggergrp2 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

17 spu1intr6 Interrupt spu1intr6 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

16 spu0intr6 Interrupt spu0intr6 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

15 dmc in0 Interrupt dmcin0 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

14 fifo out0 extra Interrupt fifo out0 extra active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

13 fifo out1 Interrupt fifo out1 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

12 timer grp1 Interrupt timergrp1 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

11 trigger grp6 Interrupt triggergrp6 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

10 trigger grp1 Interrupt triggergrp1 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

9 spu1intr5 Interrupt spu1intr5 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

8 spu0intr5 Interrupt spu0intr5 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

7 dmc out0 Interrupt dmcout0 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

6 fifo in0 extra Interrupt fifo in0 extra active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

5 fifo in0 Interrupt fifo in0 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

25.28. IOP SW MPU 1317

4 timer grp0 Interrupt timergrp0 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

3 trigger grp5 Interrupt triggergrp5 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

2 trigger grp0 Interrupt triggergrp0 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1 spu1intr4 Interrupt spu1intr4 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

0 spu0intr4 Interrupt spu0intr4 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1318 CHAPTER 25. INTERNAL REGISTERS

25.28.32 rw intr grp2 mask

Address 0x80

Default 0x00000000

Type Read/Write

Description Interrupt mask. Interrupt group2, containing intr[11:8].

Bit(s) Name Description Value
31 dmc in1 Enable/disable dmcin1 interrupt. Interrupt from

dmc in1.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

30 fifo in0 extra Enable/disable fifoin0 extra interrupt. Interrupt
from extra register bank of fifoin0.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

29 fifo in0 Enable/disable fifoin0 interrupt. Interrupt from
fifo in0.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

28 timer grp3 Enable/disable timergrp3 interrupt. Interrupt from
Timer group 3.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

27 trigger grp5 Enable/disable triggergrp5 interrupt. Interrupt from
Trigger group 5.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

26 trigger grp3 Enable/disable triggergrp3 interrupt. Interrupt from
Trigger group 3.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

25 spu1intr11 Enable/disable spu1intr11 interrupt. Interrupt from
SPU1 software, bit 11.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

24 spu0intr11 Enable/disable spu0intr11 interrupt. Interrupt from
SPU0 software, bit 11.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

23 dmc out1 Enable/disable dmcout1 interrupt. Interrupt from
dmc out1.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

25.28. IOP SW MPU 1319

22 fifo out0 extra Enable/disable fifoout0 extra interrupt. Interrupt
from extra register bank of fifoout0.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

21 fifo out0 Enable/disable fifoout0 interrupt. Interrupt from
fifo out0.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

20 timer grp2 Enable/disable timergrp2 interrupt. Interrupt from
Timer group 2.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

19 trigger grp4 Enable/disable triggergrp4 interrupt. Interrupt from
Trigger group 4.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

18 trigger grp2 Enable/disable triggergrp2 interrupt. Interrupt from
Trigger group 2.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

17 spu1intr10 Enable/disable spu1intr10 interrupt. Interrupt from
SPU1 software, bit 10.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

16 spu0intr10 Enable/disable spu0intr10 interrupt. Interrupt from
SPU0 software, bit 10.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

15 dmc in0 Enable/disable dmcin0 interrupt. Interrupt from
dmc in0.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

14 fifo in1 extra Enable/disable fifoin1 extra interrupt. Interrupt
from extra register bank of fifoin1.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

13 fifo in1 Enable/disable fifoin1 interrupt. Interrupt from
fifo in1.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

12 timer grp1 Enable/disable timergrp1 interrupt. Interrupt from
Timer group 1.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

1320 CHAPTER 25. INTERNAL REGISTERS

11 trigger grp7 Enable/disable triggergrp7 interrupt. Interrupt from
Trigger group 7.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

10 trigger grp1 Enable/disable triggergrp1 interrupt. Interrupt from
Trigger group 1.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

9 spu1intr9 Enable/disable spu1intr9 interrupt. Interrupt from
SPU1 software, bit 9.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

8 spu0intr9 Enable/disable spu0intr9 interrupt. Interrupt from
SPU0 software, bit 9.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

7 dmc out0 Enable/disable dmcout0 interrupt. Interrupt from
dmc out0.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

6 fifo out1 extra Enable/disable fifoout1 extra interrupt. Interrupt
from extra register bank of fifoout1.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

5 fifo out1 Enable/disable fifoout1 interrupt. Interrupt from
fifo out1.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

4 timer grp0 Enable/disable timergrp0 interrupt. Interrupt from
Timer group 0.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

3 trigger grp6 Enable/disable triggergrp6 interrupt. Interrupt from
Trigger group 6.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

2 trigger grp0 Enable/disable triggergrp0 interrupt. Interrupt from
Trigger group 0.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

1 spu1intr8 Enable/disable spu1intr8 interrupt. Interrupt from
SPU1 software, bit 8.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

25.28. IOP SW MPU 1321

0 spu0intr8 Enable/disable spu0intr8 interrupt. Interrupt from
SPU0 software, bit 8.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

1322 CHAPTER 25. INTERNAL REGISTERS

25.28.33 rw ack intr grp2

Address 0x84

Default
Type Read/Write

Description Acknowledge interrupts. Interrupt group2, containing intr[11:8].

Bit(s) Name Description Value
25 spu1intr11 Acknowledge spu1intr11 interrupt.

yes: Acknowledge interrupt
no: No operation

yes=1
no=0

24 spu0intr11 Acknowledge spu0intr11 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

17 spu1intr10 Acknowledge spu1intr10 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

16 spu0intr10 Acknowledge spu0intr10 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

9 spu1intr9 Acknowledge spu1intr9 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

8 spu0intr9 Acknowledge spu0intr9 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

1 spu1intr8 Acknowledge spu1intr8 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

0 spu0intr8 Acknowledge spu0intr8 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

25.28. IOP SW MPU 1323

25.28.34 r intr grp2

Address 0x88

Default
Type Read

Description Unmasked interrupts. Interrupt group2, containing intr[11:8].

Bit(s) Name Description Value
31 dmc in1 Interrupt dmcin1 active.

yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

30 fifo in0 extra Interrupt fifo in0 extra active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

29 fifo in0 Interrupt fifo in0 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

28 timer grp3 Interrupt timergrp3 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

27 trigger grp5 Interrupt triggergrp5 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

26 trigger grp3 Interrupt triggergrp3 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

25 spu1intr11 Interrupt spu1intr11 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

24 spu0intr11 Interrupt spu0intr11 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

23 dmc out1 Interrupt dmcout1 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

22 fifo out0 extra Interrupt fifo out0 extra active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

21 fifo out0 Interrupt fifo out0 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

20 timer grp2 Interrupt timergrp2 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1324 CHAPTER 25. INTERNAL REGISTERS

19 trigger grp4 Interrupt triggergrp4 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

18 trigger grp2 Interrupt triggergrp2 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

17 spu1intr10 Interrupt spu1intr10 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

16 spu0intr10 Interrupt spu0intr10 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

15 dmc in0 Interrupt dmcin0 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

14 fifo in1 extra Interrupt fifo in1 extra active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

13 fifo in1 Interrupt fifo in1 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

12 timer grp1 Interrupt timergrp1 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

11 trigger grp7 Interrupt triggergrp7 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

10 trigger grp1 Interrupt triggergrp1 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

9 spu1intr9 Interrupt spu1intr9 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

8 spu0intr9 Interrupt spu0intr9 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

7 dmc out0 Interrupt dmcout0 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

6 fifo out1 extra Interrupt fifo out1 extra active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

5 fifo out1 Interrupt fifo out1 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

25.28. IOP SW MPU 1325

4 timer grp0 Interrupt timergrp0 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

3 trigger grp6 Interrupt triggergrp6 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

2 trigger grp0 Interrupt triggergrp0 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1 spu1intr8 Interrupt spu1intr8 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

0 spu0intr8 Interrupt spu0intr8 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1326 CHAPTER 25. INTERNAL REGISTERS

25.28.35 r masked intr grp2

Address 0x8c

Default
Type Read

Description Masked interrupts. Interrupt group2, containing intr[11:8].

Bit(s) Name Description Value
31 dmc in1 Interrupt dmcin1 active and enabled.

yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

30 fifo in0 extra Interrupt fifo in0 extra active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

29 fifo in0 Interrupt fifo in0 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

28 timer grp3 Interrupt timergrp3 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

27 trigger grp5 Interrupt triggergrp5 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

26 trigger grp3 Interrupt triggergrp3 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

25 spu1intr11 Interrupt spu1intr11 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

24 spu0intr11 Interrupt spu0intr11 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

23 dmc out1 Interrupt dmcout1 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

22 fifo out0 extra Interrupt fifo out0 extra active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

21 fifo out0 Interrupt fifo out0 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

20 timer grp2 Interrupt timergrp2 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

25.28. IOP SW MPU 1327

19 trigger grp4 Interrupt triggergrp4 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

18 trigger grp2 Interrupt triggergrp2 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

17 spu1intr10 Interrupt spu1intr10 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

16 spu0intr10 Interrupt spu0intr10 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

15 dmc in0 Interrupt dmcin0 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

14 fifo in1 extra Interrupt fifo in1 extra active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

13 fifo in1 Interrupt fifo in1 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

12 timer grp1 Interrupt timergrp1 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

11 trigger grp7 Interrupt triggergrp7 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

10 trigger grp1 Interrupt triggergrp1 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

9 spu1intr9 Interrupt spu1intr9 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

8 spu0intr9 Interrupt spu0intr9 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

7 dmc out0 Interrupt dmcout0 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

6 fifo out1 extra Interrupt fifo out1 extra active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

5 fifo out1 Interrupt fifo out1 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1328 CHAPTER 25. INTERNAL REGISTERS

4 timer grp0 Interrupt timergrp0 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

3 trigger grp6 Interrupt triggergrp6 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

2 trigger grp0 Interrupt triggergrp0 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1 spu1intr8 Interrupt spu1intr8 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

0 spu0intr8 Interrupt spu0intr8 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

25.28. IOP SW MPU 1329

25.28.36 rw intr grp3 mask

Address 0x90

Default 0x00000000

Type Read/Write

Description Interrupt mask. Interrupt group3, containing intr[15:12].

Bit(s) Name Description Value
31 dmc in1 Enable/disable dmcin1 interrupt. Interrupt from

dmc in1.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

30 fifo out1 extra Enable/disable fifoout1 extra interrupt. Interrupt
from extra register bank of fifoout1.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

29 fifo out1 Enable/disable fifoout1 interrupt. Interrupt from
fifo out1.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

28 timer grp3 Enable/disable timergrp3 interrupt. Interrupt from
Timer group 3.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

27 trigger grp6 Enable/disable triggergrp6 interrupt. Interrupt from
Trigger group 6.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

26 trigger grp3 Enable/disable triggergrp3 interrupt. Interrupt from
Trigger group 3.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

25 spu1intr15 Enable/disable spu1intr15 interrupt. Interrupt from
SPU1 software, bit 15.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

24 spu0intr15 Enable/disable spu0intr15 interrupt. Interrupt from
SPU0 software, bit 15.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

23 dmc out1 Enable/disable dmcout1 interrupt. Interrupt from
dmc out1.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

1330 CHAPTER 25. INTERNAL REGISTERS

22 fifo in0 extra Enable/disable fifoin0 extra interrupt. Interrupt
from extra register bank of fifoin0.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

21 fifo in0 Enable/disable fifoin0 interrupt. Interrupt from
fifo in0.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

20 timer grp2 Enable/disable timergrp2 interrupt. Interrupt from
Timer group 2.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

19 trigger grp5 Enable/disable triggergrp5 interrupt. Interrupt from
Trigger group 5.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

18 trigger grp2 Enable/disable triggergrp2 interrupt. Interrupt from
Trigger group 2.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

17 spu1intr14 Enable/disable spu1intr14 interrupt. Interrupt from
SPU1 software, bit 14.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

16 spu0intr14 Enable/disable spu0intr14 interrupt. Interrupt from
SPU0 software, bit 14.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

15 dmc in0 Enable/disable dmcin0 interrupt. Interrupt from
dmc in0.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

14 fifo out0 extra Enable/disable fifoout0 extra interrupt. Interrupt
from extra register bank of fifoout0.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

13 fifo out0 Enable/disable fifoout0 interrupt. Interrupt from
fifo out0.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

12 timer grp1 Enable/disable timergrp1 interrupt. Interrupt from
Timer group 1.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

25.28. IOP SW MPU 1331

11 trigger grp4 Enable/disable triggergrp4 interrupt. Interrupt from
Trigger group 4.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

10 trigger grp1 Enable/disable triggergrp1 interrupt. Interrupt from
Trigger group 1.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

9 spu1intr13 Enable/disable spu1intr13 interrupt. Interrupt from
SPU1 software, bit 13.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

8 spu0intr13 Enable/disable spu0intr13 interrupt. Interrupt from
SPU0 software, bit 13.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

7 dmc out0 Enable/disable dmcout0 interrupt. Interrupt from
dmc out0.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

6 fifo in1 extra Enable/disable fifoin1 extra interrupt. Interrupt
from extra register bank of fifoin1.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

5 fifo in1 Enable/disable fifoin1 interrupt. Interrupt from
fifo in1.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

4 timer grp0 Enable/disable timergrp0 interrupt. Interrupt from
Timer group 0.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

3 trigger grp7 Enable/disable triggergrp7 interrupt. Interrupt from
Trigger group 7.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

2 trigger grp0 Enable/disable triggergrp0 interrupt. Interrupt from
Trigger group 0.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

1 spu1intr12 Enable/disable spu1intr12 interrupt. Interrupt from
SPU1 software, bit 12.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

1332 CHAPTER 25. INTERNAL REGISTERS

0 spu0intr12 Enable/disable spu0intr12 interrupt. Interrupt from
SPU0 software, bit 12.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

25.28. IOP SW MPU 1333

25.28.37 rw ack intr grp3

Address 0x94

Default
Type Read/Write

Description Acknowledge interrupts. Interrupt group3, containing intr[15:12].

Bit(s) Name Description Value
25 spu1intr15 Acknowledge spu1intr15 interrupt.

yes: Acknowledge interrupt
no: No operation

yes=1
no=0

24 spu0intr15 Acknowledge spu0intr15 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

17 spu1intr14 Acknowledge spu1intr14 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

16 spu0intr14 Acknowledge spu0intr14 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

9 spu1intr13 Acknowledge spu1intr13 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

8 spu0intr13 Acknowledge spu0intr13 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

1 spu1intr12 Acknowledge spu1intr12 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

0 spu0intr12 Acknowledge spu0intr12 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

1334 CHAPTER 25. INTERNAL REGISTERS

25.28.38 r intr grp3

Address 0x98

Default
Type Read

Description Unmasked interrupts. Interrupt group3, containing intr[15:12].

Bit(s) Name Description Value
31 dmc in1 Interrupt dmcin1 active.

yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

30 fifo out1 extra Interrupt fifo out1 extra active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

29 fifo out1 Interrupt fifo out1 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

28 timer grp3 Interrupt timergrp3 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

27 trigger grp6 Interrupt triggergrp6 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

26 trigger grp3 Interrupt triggergrp3 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

25 spu1intr15 Interrupt spu1intr15 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

24 spu0intr15 Interrupt spu0intr15 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

23 dmc out1 Interrupt dmcout1 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

22 fifo in0 extra Interrupt fifo in0 extra active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

21 fifo in0 Interrupt fifo in0 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

20 timer grp2 Interrupt timergrp2 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

25.28. IOP SW MPU 1335

19 trigger grp5 Interrupt triggergrp5 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

18 trigger grp2 Interrupt triggergrp2 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

17 spu1intr14 Interrupt spu1intr14 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

16 spu0intr14 Interrupt spu0intr14 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

15 dmc in0 Interrupt dmcin0 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

14 fifo out0 extra Interrupt fifo out0 extra active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

13 fifo out0 Interrupt fifo out0 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

12 timer grp1 Interrupt timergrp1 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

11 trigger grp4 Interrupt triggergrp4 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

10 trigger grp1 Interrupt triggergrp1 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

9 spu1intr13 Interrupt spu1intr13 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

8 spu0intr13 Interrupt spu0intr13 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

7 dmc out0 Interrupt dmcout0 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

6 fifo in1 extra Interrupt fifo in1 extra active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

5 fifo in1 Interrupt fifo in1 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1336 CHAPTER 25. INTERNAL REGISTERS

4 timer grp0 Interrupt timergrp0 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

3 trigger grp7 Interrupt triggergrp7 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

2 trigger grp0 Interrupt triggergrp0 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1 spu1intr12 Interrupt spu1intr12 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

0 spu0intr12 Interrupt spu0intr12 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

25.28. IOP SW MPU 1337

25.28.39 r masked intr grp3

Address 0x9c

Default
Type Read

Description Masked interrupts. Interrupt group3, containing intr[15:12].

Bit(s) Name Description Value
31 dmc in1 Interrupt dmcin1 active and enabled.

yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

30 fifo out1 extra Interrupt fifo out1 extra active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

29 fifo out1 Interrupt fifo out1 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

28 timer grp3 Interrupt timergrp3 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

27 trigger grp6 Interrupt triggergrp6 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

26 trigger grp3 Interrupt triggergrp3 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

25 spu1intr15 Interrupt spu1intr15 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

24 spu0intr15 Interrupt spu0intr15 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

23 dmc out1 Interrupt dmcout1 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

22 fifo in0 extra Interrupt fifo in0 extra active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

21 fifo in0 Interrupt fifo in0 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

20 timer grp2 Interrupt timergrp2 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1338 CHAPTER 25. INTERNAL REGISTERS

19 trigger grp5 Interrupt triggergrp5 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

18 trigger grp2 Interrupt triggergrp2 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

17 spu1intr14 Interrupt spu1intr14 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

16 spu0intr14 Interrupt spu0intr14 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

15 dmc in0 Interrupt dmcin0 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

14 fifo out0 extra Interrupt fifo out0 extra active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

13 fifo out0 Interrupt fifo out0 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

12 timer grp1 Interrupt timergrp1 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

11 trigger grp4 Interrupt triggergrp4 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

10 trigger grp1 Interrupt triggergrp1 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

9 spu1intr13 Interrupt spu1intr13 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

8 spu0intr13 Interrupt spu0intr13 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

7 dmc out0 Interrupt dmcout0 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

6 fifo in1 extra Interrupt fifo in1 extra active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

5 fifo in1 Interrupt fifo in1 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

25.28. IOP SW MPU 1339

4 timer grp0 Interrupt timergrp0 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

3 trigger grp7 Interrupt triggergrp7 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

2 trigger grp0 Interrupt triggergrp0 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1 spu1intr12 Interrupt spu1intr12 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

0 spu0intr12 Interrupt spu0intr12 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1340 CHAPTER 25. INTERNAL REGISTERS

25.29 iop sw spu

Instance Base Address
iop sw spu0 0xb0021400

iop sw spu1 0xb0021500

25.29.1 rw mc ctrl

Address 0x0

Default
Type Read/Write

Description Control register for the MC. A write to this register requests ownership of MC.

Bit(s) Name Description Value
7 wr spu1mem Enable writes to SPU1 memory.

no: No writes to SPU1 memory
yes: Write to SPU1 memory

no=0
yes=1

6 wr spu0mem Enable writes to SPU0 memory.
no: No writes to SPU0 memory
yes: Write to SPU0 memory

no=0
yes=1

5-3:3 size Size (in bytes) of data to read or write. MC can
read/write at most four bytes.

2-1:2 cmd Command to perform.
copy: Copy data from SMIF and write to I/O memory
reg copy: Data from mcdata is written to I/O memory
rd: Read from SMIF tor mc data
wr: Write rw mc datato SMIF

copy=0
reg copy=1
rd=2
wr=3

0 keepowner Enables ownership to be kept after finished operation.
no: Ownerships is automatically released
yes: Ownership is kept

no=0
yes=1

25.29. IOP SW SPU 1341

25.29.2 rw mc data

Address 0x4

Default
Type Read/Write

Description Data for write to system memory. Depending on size inrw mc ctrl some parts of value
can be don’t care. Ifrw mc ctrl.cmdis set toreg copythe write to this register performs
the write to I/O memory. Ifrw mc ctrl.keepowneris not set the ownership of MC will
be released.

Bit(s) Name Description Value
31-0:32 val Data value to be written to system memory.

1342 CHAPTER 25. INTERNAL REGISTERS

25.29.3 rw mc addr

Address 0x8

Default
Type Read/Write

Description The system memory address to perform operation on.rw mc addrstates the address
which will be used by the selected command inrw mc ctrl.cmd. A write to this register
starts the memory operation. If operation iswr or copyandrw mc ctrl.keepownerisn’t
set the ownership will be lost when operation is done.

25.29. IOP SW SPU 1343

25.29.4 rs mc data/r mc data

Address 0xc/0x10

Default
Type Read with side effects/Read

Description Data read from system memory at addressrw mc addr. When readingrs mc dataown-
ership of MC is released.

1344 CHAPTER 25. INTERNAL REGISTERS

25.29.5 r mc stat

Address 0x14

Default
Type Read

Description Status of the MC.

Bit(s) Name Description Value
7 ownedby spu1 MC is owned by SPU1.

no: Not owned by SPU1
yes: Owned by SPU1

no=0
yes=1

6 ownedby spu0 MC is owned by SPU0.
no: Not owned by SPU0
yes: Owned by SPU0

no=0
yes=1

5 ownedby mpu MC is owned by MPU.
no: Not owned by MPU
yes: Owned by MPU

no=0
yes=1

4 ownedby cpu MC is owned by CPU.
no: Not owned by CPU
yes: Owned by CPU

no=0
yes=1

3 busyspu1 MC is busy performing command for SPU1.
no: Not busy
yes: Busy

no=0
yes=1

2 busyspu0 MC is busy performing command for SPU0.
no: Not busy
yes: Busy

no=0
yes=1

1 busympu MC is busy performing command for MPU.
no: Not busy
yes: Busy

no=0
yes=1

0 busycpu MC is busy performing command for CPU.
no: Not busy
yes: Busy

no=0
yes=1

25.29. IOP SW SPU 1345

25.29.6 rw bus0 clr mask

Address 0x18

Default 0x00000000

Type Read/Write

Description Clear bits in BUS0.

Bit(s) Name Description Value
31-24:8 byte3 Used to clear bits in BUS0[31:24].

23-16:8 byte2 Used to clear bits in BUS0[23:16].

15-8:8 byte1 Used to clear bits in BUS0[15:8].

7-0:8 byte0 Used to clear bits in BUS0[7:0].

1346 CHAPTER 25. INTERNAL REGISTERS

25.29.7 rw bus0 set mask

Address 0x1c

Default 0x00000000

Type Read/Write

Description Set bits in BUS0.

Bit(s) Name Description Value
31-24:8 byte3 Used to set bits in BUS0[31:24].

23-16:8 byte2 Used to set bits in BUS0[23:16].

15-8:8 byte1 Used to set bits in BUS0[15:8].

7-0:8 byte0 Used to set bits in BUS0[7:0].

25.29. IOP SW SPU 1347

25.29.8 rw bus0 oe clr mask

Address 0x20

Default 0x00000000

Type Read/Write

Description Clear OE signals for BUS0.

Bit(s) Name Description Value
3 byte3 Used to clear OE for BUS0[31:24].

2 byte2 Used to clear OE for BUS0[23:16].

1 byte1 Used to clear OE for BUS0[15:8].

0 byte0 Used to clear OE for BUS0[7:0].

1348 CHAPTER 25. INTERNAL REGISTERS

25.29.9 rw bus0 oe set mask

Address 0x24

Default 0x00000000

Type Read/Write

Description Set OE signals for BUS0.

Bit(s) Name Description Value
3 byte3 Used to set OE for BUS0[31:24].

2 byte2 Used to set OE for BUS0[23:16].

1 byte1 Used to set OE for BUS0[15:8].

0 byte0 Used to set OE for BUS0[7:0].

25.29. IOP SW SPU 1349

25.29.10 r bus0 in

Address 0x28

Default
Type Read

Description Read register for BUS0.

1350 CHAPTER 25. INTERNAL REGISTERS

25.29.11 rw bus1 clr mask

Address 0x2c

Default 0x00000000

Type Read/Write

Description Clear bits in BUS1.

Bit(s) Name Description Value
31-24:8 byte3 Used to clear bits in BUS1[31:24].

23-16:8 byte2 Used to clear bits in BUS1[23:16].

15-8:8 byte1 Used to clear bits in BUS1[15:8].

7-0:8 byte0 Used to clear bits in BUS1[7:0].

25.29. IOP SW SPU 1351

25.29.12 rw bus1 set mask

Address 0x30

Default 0x00000000

Type Read/Write

Description Set bits in BUS1.

Bit(s) Name Description Value
31-24:8 byte3 Used to set bits in BUS1[31:24].

23-16:8 byte2 Used to set bits in BUS1[23:16].

15-8:8 byte1 Used to set bits in BUS1[15:8].

7-0:8 byte0 Used to set bits in BUS1[7:0].

1352 CHAPTER 25. INTERNAL REGISTERS

25.29.13 rw bus1 oe clr mask

Address 0x34

Default 0x00000000

Type Read/Write

Description Clear OE signals for BUS1.

Bit(s) Name Description Value
3 byte3 Used to clear OE for BUS1[31:24].

2 byte2 Used to clear OE for BUS1[23:16].

1 byte1 Used to clear OE for BUS1[15:8].

0 byte0 Used to clear OE for BUS1[7:0].

25.29. IOP SW SPU 1353

25.29.14 rw bus1 oe set mask

Address 0x38

Default 0x00000000

Type Read/Write

Description Set OE signals for BUS1.

Bit(s) Name Description Value
3 byte3 Used to set OE for BUS1[31:24].

2 byte2 Used to set OE for BUS1[23:16].

1 byte1 Used to set OE for BUS1[15:8].

0 byte0 Used to set OE for BUS1[7:0].

1354 CHAPTER 25. INTERNAL REGISTERS

25.29.15 r bus1 in

Address 0x3c

Default
Type Read

Description Read register for BUS1.

25.29. IOP SW SPU 1355

25.29.16 rw gio clr mask

Address 0x40

Default 0x00000000

Type Read/Write

Description Clear bits in GIO.

Bit(s) Name Description Value
31-0:32 val Used to clear bits in GIO.

1356 CHAPTER 25. INTERNAL REGISTERS

25.29.17 rw gio set mask

Address 0x44

Default 0x00000000

Type Read/Write

Description Set bits in GIO.

Bit(s) Name Description Value
31-0:32 val Used to set bits in GIO.

25.29. IOP SW SPU 1357

25.29.18 rw gio oe clr mask

Address 0x48

Default 0x00000000

Type Read/Write

Description Clear OE signals for GIO.

Bit(s) Name Description Value
31-0:32 val Used to clear OE for GIO.

1358 CHAPTER 25. INTERNAL REGISTERS

25.29.19 rw gio oe set mask

Address 0x4c

Default 0x00000000

Type Read/Write

Description Set OE signals for GIO.

Bit(s) Name Description Value
31-0:32 val Used to set OE for GIO.

25.29. IOP SW SPU 1359

25.29.20 r gio in

Address 0x50

Default
Type Read

Description Read register for GIO.

1360 CHAPTER 25. INTERNAL REGISTERS

25.29.21 rw bus0 clr mask lo

Address 0x54

Default
Type Read/Write

Description Clear bits in BUS0, Note: BUS0[31:16] is not affected.

Bit(s) Name Description Value
15-8:8 byte1 Used to clear bits in BUS0[15:8].

7-0:8 byte0 Used to clear bits in BUS0[7:0].

25.29. IOP SW SPU 1361

25.29.22 rw bus0 clr mask hi

Address 0x58

Default
Type Read/Write

Description Clear bits in BUS0, Note: BUS0[15:0] is not affected.

Bit(s) Name Description Value
15-8:8 byte3 Used to clear bits in BUS0[31:24].

7-0:8 byte2 Used to clear bits in BUS0[23:16].

1362 CHAPTER 25. INTERNAL REGISTERS

25.29.23 rw bus0 set mask lo

Address 0x5c

Default
Type Read/Write

Description Set bits in BUS0, Note: BUS0[31:16] is not affected.

Bit(s) Name Description Value
15-8:8 byte1 Used to set bits in BUS0[15:8].

7-0:8 byte0 Used to set bits in BUS0[7:0].

25.29. IOP SW SPU 1363

25.29.24 rw bus0 set mask hi

Address 0x60

Default
Type Read/Write

Description Set bits in BUS0, Note: BUS0[15:0] is not affected.

Bit(s) Name Description Value
15-8:8 byte3 Used to set bits in BUS0[31:24].

7-0:8 byte2 Used to set bits in BUS0[23:16].

1364 CHAPTER 25. INTERNAL REGISTERS

25.29.25 rw bus1 clr mask lo

Address 0x64

Default
Type Read/Write

Description Clear bits in BUS1, Note: BUS1[31:16] is not affected.

Bit(s) Name Description Value
15-8:8 byte1 Used to clear bits in BUS1[15:8].

7-0:8 byte0 Used to clear bits in BUS1[7:0].

25.29. IOP SW SPU 1365

25.29.26 rw bus1 clr mask hi

Address 0x68

Default
Type Read/Write

Description Clear bits in BUS1, Note: BUS1[15:0] is not affected.

Bit(s) Name Description Value
15-8:8 byte3 Used to clear bits in BUS1[31:24].

7-0:8 byte2 Used to clear bits in BUS1[23:16].

1366 CHAPTER 25. INTERNAL REGISTERS

25.29.27 rw bus1 set mask lo

Address 0x6c

Default
Type Read/Write

Description Set bits in BUS1, Note: BUS1[31:16] is not affected.

Bit(s) Name Description Value
15-8:8 byte1 Used to set bits in BUS1[15:8].

7-0:8 byte0 Used to set bits in BUS1[7:0].

25.29. IOP SW SPU 1367

25.29.28 rw bus1 set mask hi

Address 0x70

Default
Type Read/Write

Description Set bits in BUS1, Note: BUS1[15:0] is not affected.

Bit(s) Name Description Value
15-8:8 byte3 Used to set bits in BUS1[31:24].

7-0:8 byte2 Used to set bits in BUS1[23:16].

1368 CHAPTER 25. INTERNAL REGISTERS

25.29.29 rw gio clr mask lo

Address 0x74

Default
Type Read/Write

Description Clear bits in GIO, Note: GIO[31:16] is not affected.

Bit(s) Name Description Value
15-0:16 val Used to clear bits in GIO[15:0].

25.29. IOP SW SPU 1369

25.29.30 rw gio clr mask hi

Address 0x78

Default
Type Read/Write

Description Clear bits in GIO, Note: GIO[15:0] is not affected.

Bit(s) Name Description Value
15-0:16 val Used to clear bits in GIO[31:16].

1370 CHAPTER 25. INTERNAL REGISTERS

25.29.31 rw gio set mask lo

Address 0x7c

Default
Type Read/Write

Description Set bits in GIO, Note: GIO[31:16] is not affected.

Bit(s) Name Description Value
15-0:16 val Used to set bits in GIO[15:0].

25.29. IOP SW SPU 1371

25.29.32 rw gio set mask hi

Address 0x80

Default
Type Read/Write

Description Set bits in GIO, Note: GIO[15:0] is not affected.

Bit(s) Name Description Value
15-0:16 val Used to set bits in GIO[31:16].

1372 CHAPTER 25. INTERNAL REGISTERS

25.29.33 rw gio oe clr mask lo

Address 0x84

Default
Type Read/Write

Description Clear OE signals for GIO, Note: OE for GIO[31:16] is not affected.

Bit(s) Name Description Value
15-0:16 val Used to clear OE for GIO[15:0].

25.29. IOP SW SPU 1373

25.29.34 rw gio oe clr mask hi

Address 0x88

Default
Type Read/Write

Description Clear OE signals for GIO, Note: OE for GIO[15:0] is not affected.

Bit(s) Name Description Value
15-0:16 val Used to clear OE for GIO[31:16].

1374 CHAPTER 25. INTERNAL REGISTERS

25.29.35 rw gio oe set mask lo

Address 0x8c

Default
Type Read/Write

Description Set OE signals for GIO, Note: OE for GIO[31:16] is not affected.

Bit(s) Name Description Value
15-0:16 val Used to set OE for GIO[15:0].

25.29. IOP SW SPU 1375

25.29.36 rw gio oe set mask hi

Address 0x90

Default
Type Read/Write

Description Set OE signals for GIO, Note: OE for GIO[15:0] is not affected.

Bit(s) Name Description Value
15-0:16 val Used to set OE for GIO[31:16].

1376 CHAPTER 25. INTERNAL REGISTERS

25.29.37 rw cpu intr

Address 0x94

Default
Type Read/Write

Description This is used to set interrupts to CPU.

Bit(s) Name Description Value
15 intr15 Set software interrupt 15, to CPU.

set: Set interrupt
nop: No operation

set=1
nop=0

14 intr14 Set software interrupt 14, to CPU.
set: Set interrupt
nop: No operation

set=1
nop=0

13 intr13 Set software interrupt 13, to CPU.
set: Set interrupt
nop: No operation

set=1
nop=0

12 intr12 Set software interrupt 12, to CPU.
set: Set interrupt
nop: No operation

set=1
nop=0

11 intr11 Set software interrupt 11, to CPU.
set: Set interrupt
nop: No operation

set=1
nop=0

10 intr10 Set software interrupt 10, to CPU.
set: Set interrupt
nop: No operation

set=1
nop=0

9 intr9 Set software interrupt 9, to CPU.
set: Set interrupt
nop: No operation

set=1
nop=0

8 intr8 Set software interrupt 8, to CPU.
set: Set interrupt
nop: No operation

set=1
nop=0

7 intr7 Set software interrupt 7, to CPU.
set: Set interrupt
nop: No operation

set=1
nop=0

6 intr6 Set software interrupt 6, to CPU.
set: Set interrupt
nop: No operation

set=1
nop=0

5 intr5 Set software interrupt 5, to CPU.
set: Set interrupt
nop: No operation

set=1
nop=0

4 intr4 Set software interrupt 4, to CPU.
set: Set interrupt
nop: No operation

set=1
nop=0

25.29. IOP SW SPU 1377

3 intr3 Set software interrupt 3, to CPU.
set: Set interrupt
nop: No operation

set=1
nop=0

2 intr2 Set software interrupt 2, to CPU.
set: Set interrupt
nop: No operation

set=1
nop=0

1 intr1 Set software interrupt 1, to CPU.
set: Set interrupt
nop: No operation

set=1
nop=0

0 intr0 Set software interrupt 0, to CPU.
set: Set interrupt
nop: No operation

set=1
nop=0

1378 CHAPTER 25. INTERNAL REGISTERS

25.29.38 r cpu intr

Address 0x98

Default
Type Read

Description This is used to check which SPU software interrupts are set to CPU (unmasked).

Bit(s) Name Description Value
15 intr15 SPU software interrupt 15, to CPU.

yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

14 intr14 SPU software interrupt 14, to CPU.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

13 intr13 SPU software interrupt 13, to CPU.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

12 intr12 SPU software interrupt 12, to CPU.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

11 intr11 SPU software interrupt 11, to CPU.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

10 intr10 SPU software interrupt 10, to CPU.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

9 intr9 SPU software interrupt 9, to CPU.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

8 intr8 SPU software interrupt 8, to CPU.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

7 intr7 SPU software interrupt 7, to CPU.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

6 intr6 SPU software interrupt 6, to CPU.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

5 intr5 SPU software interrupt 5, to CPU.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

4 intr4 SPU software interrupt 4, to CPU.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

25.29. IOP SW SPU 1379

3 intr3 SPU software interrupt 3, to CPU.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

2 intr2 SPU software interrupt 2, to CPU.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1 intr1 SPU software interrupt 1, to CPU.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

0 intr0 SPU software interrupt 0, to CPU.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1380 CHAPTER 25. INTERNAL REGISTERS

25.29.39 r hw intr

Address 0x9c

Default
Type Read

Description This is used to check which interrupt are set from all hw modules (unmasked).

Bit(s) Name Description Value
23 dmc in1 Interrupt (unmasked) from dmcin1.

yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

22 dmc out1 Interrupt (unmasked) from dmcout1.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

21 dmc in0 Interrupt (unmasked) from dmcin0.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

20 dmc out0 Interrupt (unmasked) from dmcout0.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

19 fifo in1 extra Interrupt (unmasked) from fifoin1 extra.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

18 fifo in1 Interrupt (unmasked) from fifoin1.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

17 fifo out1 extra Interrupt (unmasked) from fifoout1 extra.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

16 fifo out1 Interrupt (unmasked) from fifoout1.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

15 fifo in0 extra Interrupt (unmasked) from fifoin0 extra.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

14 fifo in0 Interrupt (unmasked) from fifoin0.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

13 fifo out0 extra Interrupt (unmasked) from fifoout0 extra.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

12 fifo out0 Interrupt (unmasked) from fifoout0.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

25.29. IOP SW SPU 1381

11 timer grp3 Interrupt (unmasked) from Timer group 3.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

10 timer grp2 Interrupt (unmasked) from Timer group 2.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

9 timer grp1 Interrupt (unmasked) from Timer group 1.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

8 timer grp0 Interrupt (unmasked) from Timer group 0.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

7 trigger grp7 Interrupt (unmasked) from Trigger group 7.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

6 trigger grp6 Interrupt (unmasked) from Trigger group 6.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

5 trigger grp5 Interrupt (unmasked) from Trigger group 5.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

4 trigger grp4 Interrupt (unmasked) from Trigger group 4.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

3 trigger grp3 Interrupt (unmasked) from Trigger group 3.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

2 trigger grp2 Interrupt (unmasked) from Trigger group 2.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1 trigger grp1 Interrupt (unmasked) from Trigger group 1.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

0 trigger grp0 Interrupt (unmasked) from Trigger group 0.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1382 CHAPTER 25. INTERNAL REGISTERS

25.29.40 rw mpu intr

Address 0xa0

Default
Type Read/Write

Description This is used to set interrupts to MPU.

Bit(s) Name Description Value
15 intr15 Set software interrupt 15, to MPU.

set: Set interrupt
nop: No operation

set=1
nop=0

14 intr14 Set software interrupt 14, to MPU.
set: Set interrupt
nop: No operation

set=1
nop=0

13 intr13 Set software interrupt 13, to MPU.
set: Set interrupt
nop: No operation

set=1
nop=0

12 intr12 Set software interrupt 12, to MPU.
set: Set interrupt
nop: No operation

set=1
nop=0

11 intr11 Set software interrupt 11, to MPU.
set: Set interrupt
nop: No operation

set=1
nop=0

10 intr10 Set software interrupt 10, to MPU.
set: Set interrupt
nop: No operation

set=1
nop=0

9 intr9 Set software interrupt 9, to MPU.
set: Set interrupt
nop: No operation

set=1
nop=0

8 intr8 Set software interrupt 8, to MPU.
set: Set interrupt
nop: No operation

set=1
nop=0

7 intr7 Set software interrupt 7, to MPU.
set: Set interrupt
nop: No operation

set=1
nop=0

6 intr6 Set software interrupt 6, to MPU.
set: Set interrupt
nop: No operation

set=1
nop=0

5 intr5 Set software interrupt 5, to MPU.
set: Set interrupt
nop: No operation

set=1
nop=0

4 intr4 Set software interrupt 4, to MPU.
set: Set interrupt
nop: No operation

set=1
nop=0

25.29. IOP SW SPU 1383

3 intr3 Set software interrupt 3, to MPU.
set: Set interrupt
nop: No operation

set=1
nop=0

2 intr2 Set software interrupt 2, to MPU.
set: Set interrupt
nop: No operation

set=1
nop=0

1 intr1 Set software interrupt 1, to MPU.
set: Set interrupt
nop: No operation

set=1
nop=0

0 intr0 Set software interrupt 0, to MPU.
set: Set interrupt
nop: No operation

set=1
nop=0

1384 CHAPTER 25. INTERNAL REGISTERS

25.29.41 r mpu intr

Address 0xa4

Default
Type Read

Description This is used to check which interrupts are set to MPU (unmasked).

Bit(s) Name Description Value
31 otherspu intr15 software interrupt 15 from the other SPU to MPU.

yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

30 otherspu intr14 software interrupt 14 from the other SPU to MPU.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

29 otherspu intr13 software interrupt 13 from the other SPU to MPU.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

28 otherspu intr12 software interrupt 12 from the other SPU to MPU.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

27 otherspu intr11 software interrupt 11 from the other SPU to MPU.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

26 otherspu intr10 software interrupt 10 from the other SPU to MPU.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

25 otherspu intr9 software interrupt 9 from the other SPU to MPU.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

24 otherspu intr8 software interrupt 8 from the other SPU to MPU.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

23 otherspu intr7 software interrupt 7 from the other SPU to MPU.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

22 otherspu intr6 software interrupt 6 from the other SPU to MPU.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

21 otherspu intr5 software interrupt 5 from the other SPU to MPU.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

20 otherspu intr4 software interrupt 4 from the other SPU to MPU.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

25.29. IOP SW SPU 1385

19 otherspu intr3 software interrupt 3 from the other SPU to MPU.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

18 otherspu intr2 software interrupt 2 from the other SPU to MPU.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

17 otherspu intr1 software interrupt 1 from the other SPU to MPU.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

16 otherspu intr0 software interrupt 0 from the other SPU to MPU.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

15 intr15 software interrupt 15, to MPU.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

14 intr14 software interrupt 14, to MPU.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

13 intr13 software interrupt 13, to MPU.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

12 intr12 software interrupt 12, to MPU.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

11 intr11 software interrupt 11, to MPU.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

10 intr10 software interrupt 10, to MPU.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

9 intr9 software interrupt 9, to MPU.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

8 intr8 software interrupt 8, to MPU.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

7 intr7 software interrupt 7, to MPU.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

6 intr6 software interrupt 6, to MPU.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

5 intr5 software interrupt 5, to MPU.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1386 CHAPTER 25. INTERNAL REGISTERS

4 intr4 software interrupt 4, to MPU.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

3 intr3 software interrupt 3, to MPU.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

2 intr2 software interrupt 2, to MPU.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1 intr1 software interrupt 1, to MPU.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

0 intr0 software interrupt 0, to MPU.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

25.30. IOP TIMER GRP 1387

25.30 iop timer grp

Instance Base Address
iop timer grp0 0xb0020a80

iop timer grp1 0xb0020b00

iop timer grp2 0xb0020b80

iop timer grp3 0xb0020c00

25.30.1 rw cfg

Address 0x0

Default 0x00000002

Type Read/Write

Description Timer group configuration.

Bit(s) Name Description Value
18-11:8 clk div Divisor for predividing the I/O Processor system clock.

The predevided clock will have a period length equal
to (clk div * system clock period).clk div must be an
even number (bit 0 ofclk div is always ignored). If
clk div equals 0 the predevided clock will have a pe-
riod length of (256 * system clock period). The divided
clock can be used as clock source for a Timer when
rw tmr cfg.clk srcis set todiv clk200.

10-3:8 clk gendiv Divisor for predividing the output from the clock gen-
erator. The predevided clock will have a period length
equal to (clk gendiv * clock generator period). If
clk gendiv equals 0 the predevided clock will have a
period length of (256 * clock generator period). The
divided clock can be used as clock source for a Timer
whenrw tmr cfg.clk srcis set todiv clk gen.

2-1:2 trig Select if the clock source of the clock generator should
be triggered when it is high or on positive or negative
edge.trig is only valid whenclk srcequalsext.
hi: When clock source is high
pos: Positive edge of the clock source
neg: Negative edge of the clock source
posneg: Both positive and negative edge of the clock
source

hi=0
pos=1
neg=2
posneg=3

0 clk src Selects which clock should be used for the countdown
in the clock generator.
clk200: The internal I/O Processor clock (200 MHz)
ext: The external clock is selected by the Switch

clk200=0
ext=1

1388 CHAPTER 25. INTERNAL REGISTERS

25.30.2 rw half period

Address 0x4

Default
Type Read/Write

Description The generated clock from the clock generator has two different half periods. The oc-
currence quota of the two half periods are described byquotahi andquotalo.

Bit(s) Name Description Value
30 quotahi sel Select which half period should have the

highest quota, the half period with length
rw half period lenor rw half period len+1.
short period: The short period has the highest
occurrence
long period: The long period has the highest oc-
currence

shortperiod=0
long period=1

29-
15:15

quotahi The highest occurrence quota.

14-0:15 quotalo The lowest occurrence quota.

25.30. IOP TIMER GRP 1389

25.30.3 rw half period len

Address 0x8

Default
Type Read/Write

Description Half period length. The generated clock from the clock generator consists of two dif-
ferent half periods.rw half period len contains the length of the smaller half period.
The other half period has the lengthrw half period len+1. The length is measured by
the number of system clock cycles. The clock generator will be reset when writing to
rw half period len, i.e. its counter will immediately be updated with the new value of
rw half period len.

1390 CHAPTER 25. INTERNAL REGISTERS

25.30.4 rw tmr cfg

Address 0xc, 0x10, 0x14, 0x18

Default 0x00018000, 0x0001a900, 0x0001d200, 0x0001fb00

Type Read/Write

Description Configures a timer. Each timer has its own configuration register.

Bit(s) Name Description Value
17 rst at en strb Select if the enable strobe will reset the timer

counter, or not.
no: The counter is not reset by the enable
strobe
yes: The counter is reset by the enable strobe

no=0
yes=1

16 dis only by reg Select if the timer can only be disabled by
rw cmd.disand not by the strobe from other
timers.
no: The timer can be disabled by other timers
or by rw cmd.en
yes: The timer is only disabled byrw cmd.en

no=0
yes=1

15 en only by reg Select if the timer can only be enabled by
rw cmd.enand not by the strobe from other
timers.
no: The timer can be enabled by other timers
or by rw cmd.en
yes: The timer is only enabled byrw cmd.en

no=0
yes=1

14-13:2 dis by tmr Select which timer strobe within the same
group that is used to disable the current timer.
The timer can not disable itself. If the value
of dis by tmr is the same as the number of
the current timer, it will use an external sig-
nal from the switch (e.g. strobe from a
Trigger group). dis by tmr is ignored when
dis only by regequalsyes.

12-11:2 en by tmr Select which timer strobe within the same
group that is used to enable the current timer.
The timer can not enable itself. If the value
of en by tmr is the same as the number of
the current timer, it will use an external sig-
nal from the switch (e.g. strobe from a
Trigger group). en by tmr is ignored when
en only by regequalsyes.

10 inv Decide if the output strobe should be inverted
or not.
no: Normal
yes: Inverted

no=0
yes=1

25.30. IOP TIMER GRP 1391

9-8:2 activeon tmr The active period of the output signal from
the timer can be controlled by the output sig-
nal from another timer within the same Timer
group, selected byactiveon tmr. This is
achieved by combining the output signals of
the timers together using an AND-operation.
The result of this operation is available as one
of the output strobes from the Timer Group.

7 out mode Output strobe mode. When the timer has
counted down to zero, the output strobe can
either be a pulse (the strobe is high during one
I/O Processor clock cycle) or it will toggle the
output value.
pulse: Pulse mode
toggle: Toggle mode

pulse=0
toggle=1

6-5:2 run mode Enable and disable mode.
stop: Stop timer and reset it after it is disabled
pause: Pause, i.e. the timer is not reset when
disabled
complete: Complete the current cycle then
stop
once: Run once then stop

stop=0
pause=1
complete=2
once=3

4-3:2 strb Select if the clock source (clk src) should be
triggered when it is high or on positive or neg-
ative edge. Note:strb must be set tohi if
clk srcequalsclk200.
hi: High strobe
pos: Positive edge of strobe
neg: Negative edge of strobe
posneg: Both positive and negative edge of
strobe

hi=0
pos=1
neg=2
posneg=3

1392 CHAPTER 25. INTERNAL REGISTERS

2-0:3 clk src Selects which clock source should be used
for timer countdown. When the timer is dis-
abled it will only count down when writing
to rw cmd.strb. The divisor for the divided
I/O Processor clock and the divided clock gen-
erator clock is found inrw cfg.clk div and
rw cfg.clk gendiv respectively. Iftmr is se-
lected, the Timer used as clock source must
be the previous one in the timer-ring, i.e
Timer 0 can have Timer 3 as clock source,
Timer 1 can have Timer 0 as clock source,
Timer 2 can have Timer 1 as clock source,
Timer 3 can have Timer 2 as clock source
clk200: I/O Processor clock
div clk200: Predivided I/O Processor clock
clk gen: Clock generator
div clk gen: Predevided clock generator
tmr: Timer

clk200=0
div clk200=1
clk gen=2
div clk gen=3
tmr=4

25.30. IOP TIMER GRP 1393

25.30.5 rw tmr len

Address 0x2c, 0x30, 0x34, 0x38

Default 0x00000000, 0x00000000, 0x00000000, 0x00000000

Type Read/Write

Description Set the timer length. The timer can count up to 2ˆ16 cycles, i.e. the timer length is
between 5ns tõ300us, when using a 200MHz clock as the clock source.
Each timer has its own length register.

Bit(s) Name Description Value
15-0:16 val The timer counts down fromval to 0 before changing the output

strobe. In other words the timer will change its output strobe every
(val + 1) cycles ofclk src.
rs tmr cnt will immediately be updated with the new value ofval,
if a value is written toval when the timer is disabled. Otherwise,
if the timer is enabled when a value is written toval, thers tmr cnt
will not be updated with the new value until after the counter has
counted down to zero.

1394 CHAPTER 25. INTERNAL REGISTERS

25.30.6 rw cmd

Address 0x3c

Default
Type Read/Write

Description Timer commands for the whole group. Each bit in a field represents one timer.

Bit(s) Name Description Value
15-12:4 strb Strobe one or more timers. The strobe will count downr tmr cnt

one step. The timer will count down even if the timer is disabled.

11-8:4 dis Disable one or more timers.

7-4:4 en Enable one or more timers.

3-0:4 rst Reset one or more timers. The Timer counter will then be set to
rw tmr lenand the output will be set to zero. The Timer will also
be disabled unless the corresponding bit inen is set at the same
time as resetting the Timer.

25.30. IOP TIMER GRP 1395

25.30.7 r clk gen cnt

Address 0x40

Default
Type Read

Description The current value of the clock generator counter. The clock generator will change its
output strobe whenr clk gencnt reaches zero.

1396 CHAPTER 25. INTERNAL REGISTERS

25.30.8 rs tmr cnt/r tmr cnt

Address 0x44, 0x4c, 0x54, 0x5c

Default
Type Read with side effects/Read

Description The current value of the timer counter.

Bit(s) Name Description Value
15-0:16 val The timer will generate an interrupt or change its output strobe

whenval reaches zero. When readingrs tmr cnt, val will be set to
the value of the timer length register.

25.30. IOP TIMER GRP 1397

25.30.9 rw intr mask

Address 0x64

Default 0x00000000

Type Read/Write

Description Interrupt mask. Interrupts from the timer. An interrupt is generated when the timer
has counted down to zero. Specifies which interrupts are enabled in this subsystem.
Only enabled interrupts will propagate to the central interrupt handler. In C code the
relationship betweenrw intr mask, r intr andr maskedintr can be expressed as:
r maskedintr = r intr & rw intr mask

Bit(s) Name Description Value
3 tmr3 Enable/disable tmr3 interrupt. Interrupt from timer 3.

yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

2 tmr2 Enable/disable tmr2 interrupt. Interrupt from timer 2.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

1 tmr1 Enable/disable tmr1 interrupt. Interrupt from timer 1.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

0 tmr0 Enable/disable tmr0 interrupt. Interrupt from timer 0.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

1398 CHAPTER 25. INTERNAL REGISTERS

25.30.10 rw ack intr

Address 0x68

Default
Type Read/Write

Description Acknowledge interrupts. Interrupts from the timer. An interrupt is generated when the
timer has counted down to zero.

Bit(s) Name Description Value
3 tmr3 Acknowledge tmr3 interrupt.

yes: Acknowledge interrupt
no: No operation

yes=1
no=0

2 tmr2 Acknowledge tmr2 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

1 tmr1 Acknowledge tmr1 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

0 tmr0 Acknowledge tmr0 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

25.30. IOP TIMER GRP 1399

25.30.11 r intr

Address 0x6c

Default
Type Read

Description Interrupts before the mask. Interrupts from the timer. An interrupt is generated when the
timer has counted down to zero. Makes it possible to determine if an interrupt is active
even though it is not enabled in the mask (rw intr mask). In C code the relationship
betweenrw intr mask, r intr andr maskedintr can be expressed as:
r maskedintr = r intr & rw intr mask

Bit(s) Name Description Value
3 tmr3 Interrupt tmr3 active.

yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

2 tmr2 Interrupt tmr2 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1 tmr1 Interrupt tmr1 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

0 tmr0 Interrupt tmr0 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1400 CHAPTER 25. INTERNAL REGISTERS

25.30.12 r masked intr

Address 0x70

Default
Type Read

Description Interrupts after the mask. Interrupts from the timer. An interrupt is generated
when the timer has counted down to zero. Tells which interrupts are active and en-
abled (inrw intr mask). In C code the relationship betweenrw intr mask, r intr and
r maskedintr can be expressed as:
r maskedintr = r intr & rw intr mask

Bit(s) Name Description Value
3 tmr3 Interrupt tmr3 active and enabled.

yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

2 tmr2 Interrupt tmr2 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1 tmr1 Interrupt tmr1 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

0 tmr0 Interrupt tmr0 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

25.31. IOP TRIGGER GRP 1401

25.31 iop trigger grp

Instance Base Address
iop trigger grp0 0xb0020140

iop trigger grp1 0xb0020180

iop trigger grp2 0xb00201c0

iop trigger grp3 0xb0020200

iop trigger grp4 0xb0020240

iop trigger grp5 0xb0020280

iop trigger grp6 0xb00202c0

iop trigger grp7 0xb0020300

25.31.1 rw cfg

Address 0x0, 0x4, 0x8, 0xc

Default 0x00000000, 0x00000000, 0x00000000, 0x00000000

Type Read/Write

Description Configures a Trigger. Each Trigger has its own configuration register.

Bit(s) Name Description Value
7 dis only by reg Select if the Trigger can only be disabled by

rw cmd.disand not by an external strobe.
no: The Trigger can be disabled by external
strobes or byrw cmd.dis
yes: The Trigger can only be enabled by
rw cmd.dis

no=0
yes=1

6 en only by reg Select if the Trigger can only be enabled by
rw cmd.enand not by an external strobe.
no: The Trigger can be enabled by other
timers or byrw cmd.en
yes: The Trigger is only enabled by
rw cmd.en

no=0
yes=1

1402 CHAPTER 25. INTERNAL REGISTERS

5-3:3 trig Triggering condition. Some configurations
of trig will make the Trigger trigger if the
signal was high (or low) just after the Trig-
ger was enabled.
off: Never trigger
rise: Trigger on rising edge
fall: Trigger on falling edge
rise fall: Trigger on both rising and falling
edges
rise fall lo: Trigger on both edges or if in=0
when enabled
rise hi: Trigger on rising edge or if in=1
when enabled
fall lo: Trigger on falling edge or if in=0
when enabled
rise fall hi: Trigger on both edges or if in=1
when enabled

off=0
rise=1
fall=2
rise fall=3
rise fall lo=4
rise hi=5
fall lo=6
rise fall hi=7

2 once Sense once. Configure if the Trigger shall
disable itself automatically or not after an
edge detection of the incoming signal.
no: The Trigger will not disable itself auto-
matically
yes: The Trigger will disable itself after an
edge is triggered

no=0
yes=1

1-0:2 action Output signal action. Configure how the out-
put signal shall act after an edge is triggered.
pulse: Pulse output
rise: Set output to 1
fall: Set output to 0
toggle: Toggle output

pulse=0
rise=1
fall=2
toggle=3

25.31. IOP TRIGGER GRP 1403

25.31.2 rw cmd

Address 0x10

Default
Type Read/Write

Description Trigger commands. Note: Setting a bit indis and the corresponding bit inen at the
same time will disable the Trigger if it is currently enabled and enable it if it is currently
disabled.

Bit(s) Name Description Value
7-4:4 en Writing to enwill enable one or more Triggers. Each bit represents

one Trigger in this group.

3-0:4 dis Writing to dis will disable one or more Triggers. Each bit repre-
sents one Trigger in this group.

1404 CHAPTER 25. INTERNAL REGISTERS

25.31.3 rw intr mask

Address 0x14

Default 0x00000000

Type Read/Write

Description Interrupt mask. Interrupts from the Trigger. Depending on the configured triggering
condition, an interrupt is generated when a rising or falling edge of the incoming signal
is detected. Specifies which interrupts are enabled in this subsystem. Only enabled
interrupts will propagate to the central interrupt handler. In C code the relationship
betweenrw intr mask, r intr andr maskedintr can be expressed as:
r maskedintr = r intr & rw intr mask

Bit(s) Name Description Value
3 trig3 Enable/disable trig3 interrupt. Interrupt from Trigger 3.

yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

2 trig2 Enable/disable trig2 interrupt. Interrupt from Trigger 2.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

1 trig1 Enable/disable trig1 interrupt. Interrupt from Trigger 1.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

0 trig0 Enable/disable trig0 interrupt. Interrupt from Trigger 0.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

25.31. IOP TRIGGER GRP 1405

25.31.4 rw ack intr

Address 0x18

Default
Type Read/Write

Description Acknowledge interrupts. Interrupts from the Trigger. Depending on the configured trig-
gering condition, an interrupt is generated when a rising or falling edge of the incoming
signal is detected.

Bit(s) Name Description Value
3 trig3 Acknowledge trig3 interrupt.

yes: Acknowledge interrupt
no: No operation

yes=1
no=0

2 trig2 Acknowledge trig2 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

1 trig1 Acknowledge trig1 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

0 trig0 Acknowledge trig0 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

1406 CHAPTER 25. INTERNAL REGISTERS

25.31.5 r intr

Address 0x1c

Default
Type Read

Description Interrupts before the mask. Interrupts from the Trigger. Depending on the configured
triggering condition, an interrupt is generated when a rising or falling edge of the in-
coming signal is detected. Makes it possible to determine if an interrupt is active even
though it is not enabled in the mask (rw intr mask). In C code the relationship between
rw intr mask, r intr andr maskedintr can be expressed as:
r maskedintr = r intr & rw intr mask

Bit(s) Name Description Value
3 trig3 Interrupt trig3 active.

yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

2 trig2 Interrupt trig2 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1 trig1 Interrupt trig1 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

0 trig0 Interrupt trig0 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

25.31. IOP TRIGGER GRP 1407

25.31.6 r masked intr

Address 0x20

Default
Type Read

Description Interrupts after the mask. Interrupts from the Trigger. Depending on the configured trig-
gering condition, an interrupt is generated when a rising or falling edge of the incoming
signal is detected. Tells which interrupts are active and enabled (inrw intr mask). In C
code the relationship betweenrw intr mask, r intr andr maskedintr can be expressed
as:
r maskedintr = r intr & rw intr mask

Bit(s) Name Description Value
3 trig3 Interrupt trig3 active and enabled.

yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

2 trig2 Interrupt trig2 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1 trig1 Interrupt trig1 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

0 trig0 Interrupt trig0 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1408 CHAPTER 25. INTERNAL REGISTERS

25.32 iop scrc in

Instance Base Address
iop scrc in0 0xb0020880

iop scrc in1 0xb0020900

25.32.1 rw cfg

Address 0x0

Default 0x00000000

Type Read/Write

Description Configures the Serial CRC

Bit(s) Name Description Value
1-0:2 trig Select if the strobe for serial input should be triggered when it

is high or on positive or negative edge.
hi: High strobe
pos: Positive edge of strobe
neg: Negative edge of strobe
posneg: Both positive and negative edge of strobe

hi=0
pos=1
neg=2
posneg=3

25.32. IOP SCRC IN 1409

25.32.2 rw ctrl

Address 0x4

Default 0x00000000

Type Read/Write

Description Serial CRC control register.

Bit(s) Name Description Value
0 dif in en Enable or disable the serial data interface for incoming data.

no: Disabled
yes: Enabled

no=0
yes=1

1410 CHAPTER 25. INTERNAL REGISTERS

25.32.3 r stat

Address 0x8

Default
Type Read

Description Status register.

Bit(s) Name Description Value
0 err Status bit from the serial CRC. Checks ifrs computedcrc is not

equalrw correctcrc.
no: No CRC error
yes: CRC error

no=0
yes=1

25.32. IOP SCRC IN 1411

25.32.4 rw init crc

Address 0xc

Default 0x00000000

Type Read/Write

Description Initial shift register value for the CRC, e.g.
Xˆ31 + Xˆ22 + Xˆ16 + Xˆ15 + Xˆ11 + Xˆ5 + Xˆ4 + Xˆ3 + 1 = 0x80418839
A write to this register reloadsr computedcrcwith rw init crc.

1412 CHAPTER 25. INTERNAL REGISTERS

25.32.5 rs computed crc/r computed crc

Address 0x10/0x14

Default 0x00000000

Type Read with side effects/Read

Description The contents of the CRC shift register. A read fromrs computedcrc reloads
rs computedcrcwith rw init crc.

25.32. IOP SCRC IN 1413

25.32.6 rw crc

Address 0x18

Default
Type Read/Write

Description The CRC generator polynomial. A term xˆn in the generator polynomial will result in
a 1 at bit position n-1 inrw crc, e.g.
xˆ16 + x̂ 12 + x̂ 5 + 1 = 0x00008810
Note that the representation of the generator polynomial does not contain the last coef-
ficient (+1). A write to this register reloadsrw crcwith rw init crc.

1414 CHAPTER 25. INTERNAL REGISTERS

25.32.7 rw correct crc

Address 0x1c

Default
Type Read/Write

Description Set the correct CRC value. If the CRC is correct,r computedcrcshall have the value of
rw correctcrc, after the data stream (including the CRC) has been received, otherwise
it is a CRC error.

25.32. IOP SCRC IN 1415

25.32.8 rw wr1bit

Address 0x20

Default
Type Read/Write

Description Generates a serial strobe to the serial CRC. Writesdataand marks it with last if set in
last.

Bit(s) Name Description Value
3-2:2 last Last mark to set on this data bit.

no: No last is set
yes: Last is set
dif in: Last is sampled from difin last signal

no=0
yes=1
dif in=2

1-0:2 data Value for this data bit.
set0: Data bit is zero
set1: Data bit is one
dif in: Data is sampled from difin data signal

set0=0
set1=1
dif in=2

1416 CHAPTER 25. INTERNAL REGISTERS

25.33 iop scrc out

Instance Base Address
iop scrcout0 0xb0020980

iop scrcout1 0xb0020a00

25.33.1 rw cfg

Address 0x0

Default 0x00000000

Type Read/Write

Description Configures the serial CRC. The serial CRC will be reset when writing to this register.
I.e., the internal FIFO will then become empty andr computedcrc is set to either
rw init crcor to the inverted bits ofrw init crcdepending on the value ofinv crc.

Bit(s) Name Description Value
2 inv crc Select if each bit of the computed CRC should be inverted

or not.
no: CRC bits are not inverted
yes: CRC bits are inverted

no=0
yes=1

1-0:2 trig Select if the strobe for serial output should be triggered
when it is high or on positive or negative edge.
hi: High strobe
pos: Positive edge of strobe
neg: Negative edge of strobe
posneg: Both positive and negative edge of strobe

hi=0
pos=1
neg=2
posneg=3

25.33. IOP SCRC OUT 1417

25.33.2 rw ctrl

Address 0x4

Default 0x00000000

Type Read/Write

Description Serial CRC control register.

Bit(s) Name Description Value
1 out src Select the source of the DIF output. When the CRC is trans-

mitted, the first CRC bit sent is the most significant bit of
r computedcrc(depends on the length of the generator poly-
nomial). The last CRC bit sent is bit 0 ofr computedcrc.
data: Output data fromrw data.val
crc: Output CRC

data=0
crc=1

0 strb src Select the source of the CRC strobe.
reg: Strobe CRC when data is written torw data.val
dif: Use the strobe from DIF as CRC strobe

reg=0
dif=1

1418 CHAPTER 25. INTERNAL REGISTERS

25.33.3 rw init crc

Address 0x8

Default 0x00000000

Type Read/Write

Description Initial shift register value for the CRC. When writing to this register, the CRC shift
register for outgoing data will be reset.r computedcrc is then set to eitherrw init crc
or to the inverted bits ofrw init crcdepending on the value ofrw cfg.inv crc.

25.33. IOP SCRC OUT 1419

25.33.4 rw crc

Address 0xc

Default 0x00000000

Type Read/Write

Description The CRC generator polynomial. A term xˆn in the generator polynomial will result in
a 1 at bit position n-1 inrw crc, e.g.
xˆ16 + x̂ 12 + x̂ 5 + 1 = 0x00008810
Note that the representation of the generator polynomial does not contain the last coef-
ficient (+1). A write to this register reloads the CRC shift register.r computedcrc is
then set to eitherrw init crcor to the inverted bits ofrw init crcdepending on the value
of rw cfg.inv crc.

1420 CHAPTER 25. INTERNAL REGISTERS

25.33.5 rw data

Address 0x10

Default 0x00000000

Type Read/Write

Description Write data to the serial CRC. Only the write strobe ofrw datais used (the value of
rw data.valis ignored), ifrw ctrl.out srcequalscrcandrw ctrl.strb srcequalsreg.

Bit(s) Name Description Value
0 val Data bit.

25.33. IOP SCRC OUT 1421

25.33.6 r computed crc

Address 0x14

Default
Type Read

Description The contents of the CRC shift register.

1422 CHAPTER 25. INTERNAL REGISTERS

25.34 iop version

Instance Base Address
iop version 0xb0020000

25.34.1 r version

Address 0x0

Default
Type Read

Description I/O Processor version register.

Bit(s) Name Description Value
7-0:8 nr I/O Processor version number.

v1 0: Version 1.0
v1 0=1

25.35. MARB BP 1423

25.35 marb bp

Instance Base Address
marbbp0 0xb003e240

marbbp1 0xb003e280

marbbp2 0xb003e2c0

marbbp3 0xb003e300

25.35.1 rw first addr

Address 0x0

Default
Type Read/Write

Description First address triggering the breakpoint. For the chosen access types and clients, the
breakpoint triggers when
addr+size> rw first addr
and ifwrapin therw optionsregister is set tono,
addr<= rw last addr
must also be true.

1424 CHAPTER 25. INTERNAL REGISTERS

25.35.2 rw last addr

Address 0x4

Default
Type Read/Write

Description Last address triggering the breakpoint. For the chosen access types and clients, the
breakpoint triggers when
addr<= rw last addr
and ifwrapin therw optionsregister is set tono,
addr+size> rw first addr
must also be true.

25.35. MARB BP 1425

25.35.3 rw op

Address 0x8

Default 0x00000000

Type Read/Write

Description Operations selection for the breakpoint.

Bit(s) Name Description Value
7 us pri wr Turn breaking on unsnooped priority writes on/off.

yes: Break on unsnooped priority writes
no: Do not break on unsnooped priority writes

yes=1
no=0

6 us rd excl Turn breaking on unsnooped read exclusives on/off.
yes: Break on unsnooped read exclusives
no: Do not break on unsnooped read exclusives

yes=1
no=0

5 us wr Turn breaking on unsnooped plain writes on/off.
yes: Break on unsnooped plain writes
no: Do not break on unsnooped plain writes

yes=1
no=0

4 us rd Turn breaking on unsnooped plain reads on/off.
yes: Break on unsnooped plain reads
no: Do not break on unsnooped plain reads

yes=1
no=0

3 pri wr Turn breaking on priority writes on/off.
yes: Break on priority writes
no: Do not break on priority writes

yes=1
no=0

2 rd excl Turn breaking on read exclusives on/off.
yes: Break on read exclusives
no: Do not break on read exclusives

yes=1
no=0

1 wr Turn breaking on plain writes on/off.
yes: Break on plain writes
no: Do not break on plain writes

yes=1
no=0

0 rd Turn breaking on plain reads on/off.
yes: Break on plain reads
no: Do not break on plain reads

yes=1
no=0

1426 CHAPTER 25. INTERNAL REGISTERS

25.35.4 rw clients

Address 0xc

Default
Type Read/Write

Description Chooses which clients the breakpoint listens to.

Bit(s) Name Description Value
13 slave Turn breaking on accesses from slave on/off.

yes: Listen to client
no: Do not listen to client

yes=1
no=0

12 iop Turn breaking on accesses from iop on/off.
yes: Listen to client
no: Do not listen to client

yes=1
no=0

11 cpud Turn breaking on accesses from cpud on/off.
yes: Listen to client
no: Do not listen to client

yes=1
no=0

10 cpui Turn breaking on accesses from cpui on/off.
yes: Listen to client
no: Do not listen to client

yes=1
no=0

9 dma9 Turn breaking on accesses from dma9 on/off.
yes: Listen to client
no: Do not listen to client

yes=1
no=0

8 dma8 Turn breaking on accesses from dma8 on/off.
yes: Listen to client
no: Do not listen to client

yes=1
no=0

7 dma7 Turn breaking on accesses from dma7 on/off.
yes: Listen to client
no: Do not listen to client

yes=1
no=0

6 dma6 Turn breaking on accesses from dma6 on/off.
yes: Listen to client
no: Do not listen to client

yes=1
no=0

5 dma5 Turn breaking on accesses from dma5 on/off.
yes: Listen to client
no: Do not listen to client

yes=1
no=0

4 dma4 Turn breaking on accesses from dma4 on/off.
yes: Listen to client
no: Do not listen to client

yes=1
no=0

3 dma3 Turn breaking on accesses from dma3 on/off.
yes: Listen to client
no: Do not listen to client

yes=1
no=0

2 dma2 Turn breaking on accesses from dma2 on/off.
yes: Listen to client
no: Do not listen to client

yes=1
no=0

25.35. MARB BP 1427

1 dma1 Turn breaking on accesses from dma1 on/off.
yes: Listen to client
no: Do not listen to client

yes=1
no=0

0 dma0 Turn breaking on accesses from dma0 on/off.
yes: Listen to client
no: Do not listen to client

yes=1
no=0

1428 CHAPTER 25. INTERNAL REGISTERS

25.35.5 rw options

Address 0x10

Default 0x00000000

Type Read/Write

Description Options affecting the behavior of the breakpoint.

Bit(s) Name Description Value
0 wrap Selects if the breakpoint address range should be [rw first addr,

rw last addr] (wrap == no) or [rw first addr, 0xffffffff, [0,
rw last addr] (wrap== yes).
yes: Address range wraps from 0xffffffff to 0
no: Address range does not wrap

yes=1
no=0

25.35. MARB BP 1429

25.35.6 r brk addr

Address 0x14

Default
Type Read

Description The address of the first access that triggered the breakpoint after it has been enabled or
acknowledged throughrw ack.

1430 CHAPTER 25. INTERNAL REGISTERS

25.35.7 r brk op

Address 0x18

Default
Type Read

Description The operation of the first access that triggered the breakpoint after it has been enabled
or acknowledge throughrw ack.

Bit(s) Name Description Value
7 us pri wr Breakpoint triggered by unsnooped priority writes.

yes: Triggered on unsnooped priority writes
no: Did not trigger on unsnooped priority writes

yes=1
no=0

6 us rd excl Breakpoint triggered by unsnooped read exclusives.
yes: Triggered on unsnooped read exclusives
no: Did not trigger on unsnooped read exclusives

yes=1
no=0

5 us wr Breakpoint triggered by unsnooped plain writes.
yes: Triggered on unsnooped plain writes
no: Did not trigger on unsnooped plain writes

yes=1
no=0

4 us rd Breakpoint triggered by unsnooped plain reads.
yes: Triggered on unsnooped plain reads
no: Did not trigger on unsnooped plain reads

yes=1
no=0

3 pri wr Breakpoint triggered by priority writes.
yes: Triggered on priority writes
no: Did not trigger on priority writes

yes=1
no=0

2 rd excl Breakpoint triggered by read exclusives.
yes: Triggered on read exclusives
no: Did not trigger on read exclusives

yes=1
no=0

1 wr Breakpoint triggered by plain writes.
yes: Triggered on plain writes
no: Did not trigger on plain writes

yes=1
no=0

0 rd Breakpoint triggered by plain reads.
yes: Triggered on plain reads
no: Did not trigger on plain reads

yes=1
no=0

25.35. MARB BP 1431

25.35.8 r brk clients

Address 0x1c

Default
Type Read

Description All clients that have triggered the breakpoint since it was last acknowledged through
rw ack.

Bit(s) Name Description Value
13 slave Has slave triggered this breakpoint?

yes: slave has triggered breakpoint
no: slave has not triggered breakpoint

yes=1
no=0

12 iop Has iop triggered this breakpoint?
yes: iop has triggered breakpoint
no: iop has not triggered breakpoint

yes=1
no=0

11 cpud Has cpud triggered this breakpoint?
yes: cpud has triggered breakpoint
no: cpud has not triggered breakpoint

yes=1
no=0

10 cpui Has cpui triggered this breakpoint?
yes: cpui has triggered breakpoint
no: cpui has not triggered breakpoint

yes=1
no=0

9 dma9 Has dma9 triggered this breakpoint?
yes: dma9 has triggered breakpoint
no: dma9 has not triggered breakpoint

yes=1
no=0

8 dma8 Has dma8 triggered this breakpoint?
yes: dma8 has triggered breakpoint
no: dma8 has not triggered breakpoint

yes=1
no=0

7 dma7 Has dma7 triggered this breakpoint?
yes: dma7 has triggered breakpoint
no: dma7 has not triggered breakpoint

yes=1
no=0

6 dma6 Has dma6 triggered this breakpoint?
yes: dma6 has triggered breakpoint
no: dma6 has not triggered breakpoint

yes=1
no=0

5 dma5 Has dma5 triggered this breakpoint?
yes: dma5 has triggered breakpoint
no: dma5 has not triggered breakpoint

yes=1
no=0

4 dma4 Has dma4 triggered this breakpoint?
yes: dma4 has triggered breakpoint
no: dma4 has not triggered breakpoint

yes=1
no=0

3 dma3 Has dma3 triggered this breakpoint?
yes: dma3 has triggered breakpoint
no: dma3 has not triggered breakpoint

yes=1
no=0

2 dma2 Has dma2 triggered this breakpoint?
yes: dma2 has triggered breakpoint
no: dma2 has not triggered breakpoint

yes=1
no=0

1432 CHAPTER 25. INTERNAL REGISTERS

1 dma1 Has dma1 triggered this breakpoint?
yes: dma1 has triggered breakpoint
no: dma1 has not triggered breakpoint

yes=1
no=0

0 dma0 Has dma0 triggered this breakpoint?
yes: dma0 has triggered breakpoint
no: dma0 has not triggered breakpoint

yes=1
no=0

25.35. MARB BP 1433

25.35.9 r brk first client

Address 0x20

Default
Type Read

Description The first client that triggered the breakpoint after it was last acknowledged through
rw ack.

Bit(s) Name Description Value
13 slave Did slave trigger this breakpoint first?

yes: slave first triggered breakpoint
no: slave first not triggered breakpoint

yes=1
no=0

12 iop Did iop trigger this breakpoint first?
yes: iop first triggered breakpoint
no: iop first not triggered breakpoint

yes=1
no=0

11 cpud Did cpud trigger this breakpoint first?
yes: cpud first triggered breakpoint
no: cpud first not triggered breakpoint

yes=1
no=0

10 cpui Did cpui trigger this breakpoint first?
yes: cpui first triggered breakpoint
no: cpui first not triggered breakpoint

yes=1
no=0

9 dma9 Did dma9 trigger this breakpoint first?
yes: dma9 first triggered breakpoint
no: dma9 first not triggered breakpoint

yes=1
no=0

8 dma8 Did dma8 trigger this breakpoint first?
yes: dma8 first triggered breakpoint
no: dma8 first not triggered breakpoint

yes=1
no=0

7 dma7 Did dma7 trigger this breakpoint first?
yes: dma7 first triggered breakpoint
no: dma7 first not triggered breakpoint

yes=1
no=0

6 dma6 Did dma6 trigger this breakpoint first?
yes: dma6 first triggered breakpoint
no: dma6 first not triggered breakpoint

yes=1
no=0

5 dma5 Did dma5 trigger this breakpoint first?
yes: dma5 first triggered breakpoint
no: dma5 first not triggered breakpoint

yes=1
no=0

4 dma4 Did dma4 trigger this breakpoint first?
yes: dma4 first triggered breakpoint
no: dma4 first not triggered breakpoint

yes=1
no=0

3 dma3 Did dma3 trigger this breakpoint first?
yes: dma3 first triggered breakpoint
no: dma3 first not triggered breakpoint

yes=1
no=0

2 dma2 Did dma2 trigger this breakpoint first?
yes: dma2 first triggered breakpoint
no: dma2 first not triggered breakpoint

yes=1
no=0

1434 CHAPTER 25. INTERNAL REGISTERS

1 dma1 Did dma1 trigger this breakpoint first?
yes: dma1 first triggered breakpoint
no: dma1 first not triggered breakpoint

yes=1
no=0

0 dma0 Did dma0 trigger this breakpoint first?
yes: dma0 first triggered breakpoint
no: dma0 first not triggered breakpoint

yes=1
no=0

25.35. MARB BP 1435

25.35.10 r brk size

Address 0x24

Default
Type Read

Description The size of the first access that triggered the breakpoint after it was last acknowledged
throughrw ack.

1436 CHAPTER 25. INTERNAL REGISTERS

25.35.11 rw ack

Address 0x28

Default
Type Read/Write

Description Writing anything to this register will acknowledge this breakpoint if it has triggered.
I.e make it ”untriggered”. This has the same effect as writingyes to the field in
marb.rwack intr referring to this breakpoint.

25.36. MARB 1437

25.36 marb

Instance Base Address
marb 0xb003e000

25.36.1 rw int slots

Address 0x0, 0x4, 0x8, 0xc, 0x10, 0x14, 0x18, 0x1c, 0x20, 0x24, 0x28, 0x2c, 0x30, 0x34, 0x38,
0x3c, 0x40, 0x44, 0x48, 0x4c, 0x50, 0x54, 0x58, 0x5c, 0x60, 0x64, 0x68, 0x6c, 0x70,
0x74, 0x78, 0x7c, 0x80, 0x84, 0x88, 0x8c, 0x90, 0x94, 0x98, 0x9c, 0xa0, 0xa4, 0xa8,
0xac, 0xb0, 0xb4, 0xb8, 0xbc, 0xc0, 0xc4, 0xc8, 0xcc, 0xd0, 0xd4, 0xd8, 0xdc, 0xe0,
0xe4, 0xe8, 0xec, 0xf0, 0xf4, 0xf8, 0xfc

Default 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000

Type Read/Write

Description Slot allocation vector for Internal 128KB RAM and 8KB ROM.

Bit(s) Name Description Value
3-0:4 owner Slot owner.

dma0: Client dma0
dma1: Client dma1
dma2: Client dma2
dma3: Client dma3
dma4: Client dma4
dma5: Client dma5
dma6: Client dma6
dma7: Client dma7
dma8: Client dma8
dma9: Client dma9
cpui: Client cpui
cpud: Client cpud
iop: Client iop
slave: Client slave

dma0=0
dma1=1
dma2=2
dma3=3
dma4=4
dma5=5
dma6=6
dma7=7
dma8=8
dma9=9
cpui=10
cpud=11
iop=12
slave=13

1438 CHAPTER 25. INTERNAL REGISTERS

25.36.2 rw ext slots

Address 0x100, 0x104, 0x108, 0x10c, 0x110, 0x114, 0x118, 0x11c, 0x120, 0x124, 0x128,
0x12c, 0x130, 0x134, 0x138, 0x13c, 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154,
0x158, 0x15c, 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c, 0x180,
0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c, 0x1a0, 0x1a4, 0x1a8, 0x1ac,
0x1b0, 0x1b4, 0x1b8, 0x1bc, 0x1c0, 0x1c4, 0x1c8, 0x1cc, 0x1d0, 0x1d4, 0x1d8,
0x1dc, 0x1e0, 0x1e4, 0x1e8, 0x1ec, 0x1f0, 0x1f4, 0x1f8, 0x1fc

Default 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000

Type Read/Write

Description Slot allocation vector for External memory.

Bit(s) Name Description Value
3-0:4 owner Slot owner.

dma0: Client dma0
dma1: Client dma1
dma2: Client dma2
dma3: Client dma3
dma4: Client dma4
dma5: Client dma5
dma6: Client dma6
dma7: Client dma7
dma8: Client dma8
dma9: Client dma9
cpui: Client cpui
cpud: Client cpud
iop: Client iop
slave: Client slave

dma0=0
dma1=1
dma2=2
dma3=3
dma4=4
dma5=5
dma6=6
dma7=7
dma8=8
dma9=9
cpui=10
cpud=11
iop=12
slave=13

25.36. MARB 1439

25.36.3 rw regs slots

Address 0x200, 0x204, 0x208, 0x20c

Default 0x00000000, 0x00000000, 0x00000000, 0x00000000

Type Read/Write

Description Slot allocation vector for Mode registers.

Bit(s) Name Description Value
3-0:4 owner Slot owner.

cpud: Client cpud
iop: Client iop
slave: Client slave

cpud=11
iop=12
slave=13

1440 CHAPTER 25. INTERNAL REGISTERS

25.36.4 rw intr mask

Address 0x210

Default 0x00000000

Type Read/Write

Description Interrupt mask.

Bit(s) Name Description Value
3 bp3 Enable/disable breakpoint 3.

yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

2 bp2 Enable/disable breakpoint 2.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

1 bp1 Enable/disable breakpoint 1.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

0 bp0 Enable/disable breakpoint 0.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

25.36. MARB 1441

25.36.5 rw ack intr

Address 0x214

Default
Type Read/Write

Description Acknowledge interrupts.

Bit(s) Name Description Value
3 bp3 Acknowledge breakpoint 3.

yes: Acknowledge interrupt
no: No operation

yes=1
no=0

2 bp2 Acknowledge breakpoint 2.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

1 bp1 Acknowledge breakpoint 1.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

0 bp0 Acknowledge breakpoint 0.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

1442 CHAPTER 25. INTERNAL REGISTERS

25.36.6 r intr

Address 0x218

Default
Type Read

Description Interrupts before mask. Can be used to tell which breakpoints have triggered.

Bit(s) Name Description Value
3 bp3 Status before mask of breakpoint 3.

yes: Interrupt is active (bp has triggered)
no: Interrupt is inactive (bp has not triggered)

yes=1
no=0

2 bp2 Status before mask of breakpoint 2.
yes: Interrupt is active (bp has triggered)
no: Interrupt is inactive (bp has not triggered)

yes=1
no=0

1 bp1 Status before mask of breakpoint 1.
yes: Interrupt is active (bp has triggered)
no: Interrupt is inactive (bp has not triggered)

yes=1
no=0

0 bp0 Status before mask of breakpoint 0.
yes: Interrupt is active (bp has triggered)
no: Interrupt is inactive (bp has not triggered)

yes=1
no=0

25.36. MARB 1443

25.36.7 r masked intr

Address 0x21c

Default
Type Read

Description Interrupts after mask.

Bit(s) Name Description Value
3 bp3 Status after mask of breakpoint 3.

yes: Interrupt is active (bp has triggered)
no: Interrupt is inactive (bp has not triggered)

yes=1
no=0

2 bp2 Status after mask of breakpoint 2.
yes: Interrupt is active (bp has triggered)
no: Interrupt is inactive (bp has not triggered)

yes=1
no=0

1 bp1 Status after mask of breakpoint 1.
yes: Interrupt is active (bp has triggered)
no: Interrupt is inactive (bp has not triggered)

yes=1
no=0

0 bp0 Status after mask of breakpoint 0.
yes: Interrupt is active (bp has triggered)
no: Interrupt is inactive (bp has not triggered)

yes=1
no=0

1444 CHAPTER 25. INTERNAL REGISTERS

25.36.8 rw stop mask

Address 0x220

Default 0x00000000

Type Read/Write

Description Clients to stop when they trigger a breakpoint.

Bit(s) Name Description Value
13 slave When on, accesses from clientslavewill be stopped when it

triggers a breakpoint. The client will be started again when the
breakpoint(s) is/are acknowledged inrw ack intr or this field is
set tono.
yes: Stop client at breakpoint trigger
no: Do not stop client at breakpoint trigger

yes=1
no=0

12 iop When on, accesses from clientiop will be stopped when it trig-
gers a breakpoint. The client will be started again when the
breakpoint(s) is/are acknowledged inrw ack intr or this field is
set tono.
yes: Stop client at breakpoint trigger
no: Do not stop client at breakpoint trigger

yes=1
no=0

11 cpud When on, accesses from clientcpud will be stopped when it
triggers a breakpoint. The client will be started again when the
breakpoint(s) is/are acknowledged inrw ack intr or this field is
set tono.
yes: Stop client at breakpoint trigger
no: Do not stop client at breakpoint trigger

yes=1
no=0

10 cpui When on, accesses from clientcpuiwill be stopped when it trig-
gers a breakpoint. The client will be started again when the
breakpoint(s) is/are acknowledged inrw ack intr or this field is
set tono.
yes: Stop client at breakpoint trigger
no: Do not stop client at breakpoint trigger

yes=1
no=0

9 dma9 When on, accesses from clientdma9will be stopped when it
triggers a breakpoint. The client will be started again when the
breakpoint(s) is/are acknowledged inrw ack intr or this field is
set tono.
yes: Stop client at breakpoint trigger
no: Do not stop client at breakpoint trigger

yes=1
no=0

8 dma8 When on, accesses from clientdma8will be stopped when it
triggers a breakpoint. The client will be started again when the
breakpoint(s) is/are acknowledged inrw ack intr or this field is
set tono.
yes: Stop client at breakpoint trigger
no: Do not stop client at breakpoint trigger

yes=1
no=0

25.36. MARB 1445

7 dma7 When on, accesses from clientdma7will be stopped when it
triggers a breakpoint. The client will be started again when the
breakpoint(s) is/are acknowledged inrw ack intr or this field is
set tono.
yes: Stop client at breakpoint trigger
no: Do not stop client at breakpoint trigger

yes=1
no=0

6 dma6 When on, accesses from clientdma6will be stopped when it
triggers a breakpoint. The client will be started again when the
breakpoint(s) is/are acknowledged inrw ack intr or this field is
set tono.
yes: Stop client at breakpoint trigger
no: Do not stop client at breakpoint trigger

yes=1
no=0

5 dma5 When on, accesses from clientdma5will be stopped when it
triggers a breakpoint. The client will be started again when the
breakpoint(s) is/are acknowledged inrw ack intr or this field is
set tono.
yes: Stop client at breakpoint trigger
no: Do not stop client at breakpoint trigger

yes=1
no=0

4 dma4 When on, accesses from clientdma4will be stopped when it
triggers a breakpoint. The client will be started again when the
breakpoint(s) is/are acknowledged inrw ack intr or this field is
set tono.
yes: Stop client at breakpoint trigger
no: Do not stop client at breakpoint trigger

yes=1
no=0

3 dma3 When on, accesses from clientdma3will be stopped when it
triggers a breakpoint. The client will be started again when the
breakpoint(s) is/are acknowledged inrw ack intr or this field is
set tono.
yes: Stop client at breakpoint trigger
no: Do not stop client at breakpoint trigger

yes=1
no=0

2 dma2 When on, accesses from clientdma2will be stopped when it
triggers a breakpoint. The client will be started again when the
breakpoint(s) is/are acknowledged inrw ack intr or this field is
set tono.
yes: Stop client at breakpoint trigger
no: Do not stop client at breakpoint trigger

yes=1
no=0

1 dma1 When on, accesses from clientdma1will be stopped when it
triggers a breakpoint. The client will be started again when the
breakpoint(s) is/are acknowledged inrw ack intr or this field is
set tono.
yes: Stop client at breakpoint trigger
no: Do not stop client at breakpoint trigger

yes=1
no=0

1446 CHAPTER 25. INTERNAL REGISTERS

0 dma0 When on, accesses from clientdma0will be stopped when it
triggers a breakpoint. The client will be started again when the
breakpoint(s) is/are acknowledged inrw ack intr or this field is
set tono.
yes: Stop client at breakpoint trigger
no: Do not stop client at breakpoint trigger

yes=1
no=0

25.36. MARB 1447

25.36.9 r stopped

Address 0x224

Default 0x00000000

Type Read

Description Clients stopped by triggering breakpoints.

Bit(s) Name Description Value
13 slave Tells if client slave is stopped by a triggered breakpoint or not.

yes: Client is stopped
no: Client is running

yes=1
no=0

12 iop Tells if client iop is stopped by a triggered breakpoint or not.
yes: Client is stopped
no: Client is running

yes=1
no=0

11 cpud Tells if client cpud is stopped by a triggered breakpoint or not.
yes: Client is stopped
no: Client is running

yes=1
no=0

10 cpui Tells if client cpui is stopped by a triggered breakpoint or not.
yes: Client is stopped
no: Client is running

yes=1
no=0

9 dma9 Tells if client dma9 is stopped by a triggered breakpoint or not.
yes: Client is stopped
no: Client is running

yes=1
no=0

8 dma8 Tells if client dma8 is stopped by a triggered breakpoint or not.
yes: Client is stopped
no: Client is running

yes=1
no=0

7 dma7 Tells if client dma7 is stopped by a triggered breakpoint or not.
yes: Client is stopped
no: Client is running

yes=1
no=0

6 dma6 Tells if client dma6 is stopped by a triggered breakpoint or not.
yes: Client is stopped
no: Client is running

yes=1
no=0

5 dma5 Tells if client dma5 is stopped by a triggered breakpoint or not.
yes: Client is stopped
no: Client is running

yes=1
no=0

4 dma4 Tells if client dma4 is stopped by a triggered breakpoint or not.
yes: Client is stopped
no: Client is running

yes=1
no=0

3 dma3 Tells if client dma3 is stopped by a triggered breakpoint or not.
yes: Client is stopped
no: Client is running

yes=1
no=0

2 dma2 Tells if client dma2 is stopped by a triggered breakpoint or not.
yes: Client is stopped
no: Client is running

yes=1
no=0

1448 CHAPTER 25. INTERNAL REGISTERS

1 dma1 Tells if client dma1 is stopped by a triggered breakpoint or not.
yes: Client is stopped
no: Client is running

yes=1
no=0

0 dma0 Tells if client dma0 is stopped by a triggered breakpoint or not.
yes: Client is stopped
no: Client is running

yes=1
no=0

25.36. MARB 1449

25.36.10 rw no snoop

Address 0x340

Default 0x00000000

Type Read/Write

Description Make clients use only unsnooped accesses.

Bit(s) Name Description Value
13 slave When on, accesses from client slave will always be unsnooped.

yes: Client uses only unsnooped accesses
no: Client may uses any type of access

yes=1
no=0

12 iop When on, accesses from client iop will always be unsnooped.
yes: Client uses only unsnooped accesses
no: Client may uses any type of access

yes=1
no=0

11 cpud When on, accesses from client cpud will always be unsnooped.
yes: Client uses only unsnooped accesses
no: Client may uses any type of access

yes=1
no=0

10 cpui When on, accesses from client cpui will always be unsnooped.
yes: Client uses only unsnooped accesses
no: Client may uses any type of access

yes=1
no=0

9 dma9 When on, accesses from client dma9 will always be unsnooped.
yes: Client uses only unsnooped accesses
no: Client may uses any type of access

yes=1
no=0

8 dma8 When on, accesses from client dma8 will always be unsnooped.
yes: Client uses only unsnooped accesses
no: Client may uses any type of access

yes=1
no=0

7 dma7 When on, accesses from client dma7 will always be unsnooped.
yes: Client uses only unsnooped accesses
no: Client may uses any type of access

yes=1
no=0

6 dma6 When on, accesses from client dma6 will always be unsnooped.
yes: Client uses only unsnooped accesses
no: Client may uses any type of access

yes=1
no=0

5 dma5 When on, accesses from client dma5 will always be unsnooped.
yes: Client uses only unsnooped accesses
no: Client may uses any type of access

yes=1
no=0

4 dma4 When on, accesses from client dma4 will always be unsnooped.
yes: Client uses only unsnooped accesses
no: Client may uses any type of access

yes=1
no=0

3 dma3 When on, accesses from client dma3 will always be unsnooped.
yes: Client uses only unsnooped accesses
no: Client may uses any type of access

yes=1
no=0

2 dma2 When on, accesses from client dma2 will always be unsnooped.
yes: Client uses only unsnooped accesses
no: Client may uses any type of access

yes=1
no=0

1450 CHAPTER 25. INTERNAL REGISTERS

1 dma1 When on, accesses from client dma1 will always be unsnooped.
yes: Client uses only unsnooped accesses
no: Client may uses any type of access

yes=1
no=0

0 dma0 When on, accesses from client dma0 will always be unsnooped.
yes: Client uses only unsnooped accesses
no: Client may uses any type of access

yes=1
no=0

25.36. MARB 1451

25.36.11 rw no snoop rq

Address 0x344

Default 0x00000000

Type Read/Write

Description Make client caches ignore snoop requests.

Bit(s) Name Description Value
11 cpud When on, snoop requests to client cpud will be ignored.

yes: Clients cache ignores snoop requests
no: Clients cache obeys snoop requests

yes=1
no=0

10 cpui When on, snoop requests to client cpui will be ignored.
yes: Clients cache ignores snoop requests
no: Clients cache obeys snoop requests

yes=1
no=0

1452 CHAPTER 25. INTERNAL REGISTERS

25.37 mmu

Bank
1

2

25.37.1 rw mm cfg

Support register s0

Default
Type Read/Write

Description General configuration register.

Bit(s) Name Description Value
19 we Write error exception enable. Enable this bit to turn on write

protection of pages marked with the write enable bit in the TLB.
When disabled, the write enable bit in the TLB entry is ignored
and can not generate a write error exception. All pages are then
write enabled.
off: Disable write error exception
on: Enable write error exception

off=0
on=1

18 acc Access violation exception enable. Enable this bit to turn on
protection of kernel pages. When disabled, the kernel bit in the
TLB entry is ignored and can not generate an access violation
exception. All kernel pages may then be referenced in user
mode also.
off: Disable access violation exception
on: Enable access violation exception

off=0
on=1

17 ex Execute violation exception enable. Enable this bit to turn on
protection of pages from code execution. When disabled, the
CPU is allowed to execute code from any page and no access
violation exceptions are generated.
off: Disable execute violation exception
on: Enable execute violation exception

off=0
on=1

16 inv Invalid page exception enable. Enable this bit to turn on the
invalid page exception. When enabled, a matching entry in the
TLB with the valid bit cleared will generate an invalid page
exception. When disabled, an entry with the valid bit cleared
will be treated as a miss and thus generate a refill fault.
off: Disable invalid page exception
on: Enable invalid page exception

off=0
on=1

15 segf Segment segf map type select.
page: Select page mapping
linear: Select linear segment mapping

page=0
linear=1

25.37. MMU 1453

14 sege Segment sege map type select.
page: Select page mapping
linear: Select linear segment mapping

page=0
linear=1

13 segd Segment segd map type select.
page: Select page mapping
linear: Select linear segment mapping

page=0
linear=1

12 segc Segment segc map type select.
page: Select page mapping
linear: Select linear segment mapping

page=0
linear=1

11 segb Segment segb map type select.
page: Select page mapping
linear: Select linear segment mapping

page=0
linear=1

10 sega Segment sega map type select.
page: Select page mapping
linear: Select linear segment mapping

page=0
linear=1

9 seg9 Segment seg9 map type select.
page: Select page mapping
linear: Select linear segment mapping

page=0
linear=1

8 seg8 Segment seg8 map type select.
page: Select page mapping
linear: Select linear segment mapping

page=0
linear=1

7 seg7 Segment seg7 map type select.
page: Select page mapping
linear: Select linear segment mapping

page=0
linear=1

6 seg6 Segment seg6 map type select.
page: Select page mapping
linear: Select linear segment mapping

page=0
linear=1

5 seg5 Segment seg5 map type select.
page: Select page mapping
linear: Select linear segment mapping

page=0
linear=1

4 seg4 Segment seg4 map type select.
page: Select page mapping
linear: Select linear segment mapping

page=0
linear=1

3 seg3 Segment seg3 map type select.
page: Select page mapping
linear: Select linear segment mapping

page=0
linear=1

2 seg2 Segment seg2 map type select.
page: Select page mapping
linear: Select linear segment mapping

page=0
linear=1

1 seg1 Segment seg1 map type select.
page: Select page mapping
linear: Select linear segment mapping

page=0
linear=1

0 seg0 Segment seg0 map type select.
page: Select page mapping
linear: Select linear segment mapping

page=0
linear=1

1454 CHAPTER 25. INTERNAL REGISTERS

25.37.2 rw mm kbase lo

Support register s1

Default
Type Read/Write

Description Kernel segment base low.

Bit(s) Name Description Value
31-28:4 base7 Kernel segment seg7 base.

27-24:4 base6 Kernel segment seg6 base.

23-20:4 base5 Kernel segment seg5 base.

19-16:4 base4 Kernel segment seg4 base.

15-12:4 base3 Kernel segment seg3 base.

11-8:4 base2 Kernel segment seg2 base.

7-4:4 base1 Kernel segment seg1 base.

3-0:4 base0 Kernel segment seg0 base.

25.37. MMU 1455

25.37.3 rw mm kbase hi

Support register s2

Default
Type Read/Write

Description Kernel segment base high.

Bit(s) Name Description Value
31-28:4 basef Kernel segment segf base.

27-24:4 basee Kernel segment sege base.

23-20:4 based Kernel segment segd base.

19-16:4 basec Kernel segment segc base.

15-12:4 baseb Kernel segment segb base.

11-8:4 basea Kernel segment sega base.

7-4:4 base9 Kernel segment seg9 base.

3-0:4 base8 Kernel segment seg8 base.

1456 CHAPTER 25. INTERNAL REGISTERS

25.37.4 r mm cause

Support register s3

Default
Type Read

Description MMU fault cause. This register is also used for storage ofrw mm tlb hi
data and the contents of the register will be destroyed when writing to
rw mm tlb hi. The r mm causeregister is updated when a memory man-
agement exception occurs, and tells the system what triggered the exception.
Whenrw mm tlb lo is written thepid field and the upper 15 bits of thevpn
field are written into the TLB using theidx field in rw mm tlb sel.

Bit(s) Name Description Value
31-
13:19

vpn Virtual Page Number. This field is updated when a memory man-
agement exception occurs and holds the vpn for the referenced
address that generated the exception.

9-8:2 op Operation type. This field is updated when a memory manage-
ment exception occurs and indicates if the exception was caused
by an execute, read, write or flush operation.
execute: Execute operation
read: Read operation
write: Write operation
flush: Flush operation

execute=0
read=1
write=2
flush=3

7-0:8 pid Page ID. This field is updated when a memory management ex-
ception occurs and holds the process ID value in the CPU when
the exception occurred.

25.37. MMU 1457

25.37.5 rw mm tlb sel

Support register s4

Default
Type Read/Write

Description TLB entry select.

Bit(s) Name Description Value
5-4:2 set TLB set select. This field selects which set in the TLB to use when

rw mm tlb lo andrw mm tlb hi registers are used. At a refill ex-
ception thesetfield is loaded with a random value to select which
set to replace. All other exceptions load thesetfield with a pointer
to the set that triggered the exception.

3-0:4 idx TLB index select. This field selects which index in the TLB to
use whenrw mm tlb lo andrw mm tlb hi registers are used. At
an exception theidx field is loaded with the four lower bits of the
faulting vpn to be used as a pointer to the index that triggered the
exception.

1458 CHAPTER 25. INTERNAL REGISTERS

25.37.6 rw mm tlb lo

Support register s5

Default
Type Read/Write

Description TLB low data. This register is used for reading and writing the lower part of
an entry in the TLB. Whenrw mm tlb lo is read, thepfn, g, v, k, w andx
fields in the TLB entry selected by theidx field in rw mm tlb selwill be read.
Whenrw mm tlb lo is written, this value plus thepid field and the 15 most
significant bits of thevpn field in ther mm causeregister are written into the
TLB entry selected by theidx field in rw mm tlb sel. The four lower bits of
thevpn field are not used but must always match the four lower bits in theidx
field in rw mm tlb sel.

Bit(s) Name Description Value
31-
13:19

pfn Physical frame number.

4 g Global bit.
no: Disable global access
yes: Enable global access

no=0
yes=1

3 v Valid bit.
no: Mark as invalid
yes: Mark as valid

no=0
yes=1

2 k Kernel bit.
no: Enable user mode permission
yes: Disable user mode permission

no=0
yes=1

1 w Write enable bit.
no: Disable write permission
yes: Enable write permission

no=0
yes=1

0 x Execute bit.
no: Disable execute permission
yes: Enable execute permission

no=0
yes=1

25.37. MMU 1459

25.37.7 rw mm tlb hi

Support register s6

Default
Type Read/Write

Description TLB high data. This register is used for reading and writing the higher part
of an entry in the TLB. Whenrw mm tlb hi is read, thepid and vpn fields
in the TLB entry selected by theidx field in rw mm tlb sel will be read.
Whenrw mm tlb hi is written, the value is stored in the corresponding fields
in r mm cause. Whenrw mm tlb lo is written the fields inr mm causewill
be written into the TLB. Note that the previous contents ofr mm causewill be
destroyed when writing to this register.

Bit(s) Name Description Value
31-
13:19

vpn Virtual Page Number.

7-0:8 pid Page ID.

1460 CHAPTER 25. INTERNAL REGISTERS

25.38 pinmux

Instance Base Address
pinmux 0xb0038000

25.38.1 rw pa

Address 0x0

Default 0x00000000

Type Read/Write

Description Connection of configurable I/O portpa.

Bit(s) Name Description Value
15 hsh7 Connects to external DMA/slave mode handshake signalhsh7

to pinpa7.
no: Not connected
yes: Connected

no=0
yes=1

14 hsh6 Connects to external DMA/slave mode handshake signalhsh6
to pinpa6.
no: Not connected
yes: Connected

no=0
yes=1

13 hsh5 Connects to external DMA/slave mode handshake signalhsh5
to pinpa5.
no: Not connected
yes: Connected

no=0
yes=1

12 hsh4 Connects to external DMA/slave mode handshake signalhsh4
to pinpa4.
no: Not connected
yes: Connected

no=0
yes=1

11 csp6n Connects chip selectcsp6n to pinpa3.
no: Not connected
yes: Connected

no=0
yes=1

10 csp5n Connects chip selectcsp5n to pinpa2.
no: Not connected
yes: Connected

no=0
yes=1

9 csp3n Connects chip selectcsp3n to pinpa1.
no: Not connected
yes: Connected

no=0
yes=1

8 csp2n Connects chip selectcsp2n to pinpa0.
no: Not connected
yes: Connected

no=0
yes=1

25.38. PINMUX 1461

7 pa7 Connects general I/O signalpa7 to pinpa7.
no: Not connected
yes: Connected

no=0
yes=1

6 pa6 Connects general I/O signalpa6 to pinpa6.
no: Not connected
yes: Connected

no=0
yes=1

5 pa5 Connects general I/O signalpa5 to pinpa5.
no: Not connected
yes: Connected

no=0
yes=1

4 pa4 Connects general I/O signalpa4 to pinpa4.
no: Not connected
yes: Connected

no=0
yes=1

3 pa3 Connects general I/O signalpa3 to pinpa3.
no: Not connected
yes: Connected

no=0
yes=1

2 pa2 Connects general I/O signalpa2 to pinpa2.
no: Not connected
yes: Connected

no=0
yes=1

1 pa1 Connects general I/O signalpa1 to pinpa1.
no: Not connected
yes: Connected

no=0
yes=1

0 pa0 Connects general I/O signalpa0 to pinpa0.
no: Not connected
yes: Connected

no=0
yes=1

1462 CHAPTER 25. INTERNAL REGISTERS

25.38.2 rw hwprot

Address 0x4

Default 0x00000000

Type Read/Write

Description Connection of I/O protocol functions that are implemented as fixed blocks.

Bit(s) Name Description Value
12 timer Connects the timer output to pinpc16.

no: Not connected
yes: Connected

no=0
yes=1

11 eth1mgm Connects Ethernet port 1 transceiver management signals to
pinspe17- pe16.
no: Not connected
yes: Connected

no=0
yes=1

10 eth1 Connects Ethernet port 1 communication signals to pinspe15
- pe0.
no: Not connected
yes: Connected

no=0
yes=1

9 ata Connects common ATA signals to pinspb15 - pb0 andpd14
- pd8.
no: Not connected
yes: Connected

no=0
yes=1

8 ata3 Connects ATA bus 3 signals to pinspc10- pc8andpc2- pc0.
no: Not connected
yes: Connected

no=0
yes=1

7 ata2 Connects ATA bus 2 signals to pinspc15- pc11andpc3.
no: Not connected
yes: Connected

no=0
yes=1

6 ata1 Connects ATA bus 1 signals to pinspd4 - pd0 andpe17.
no: Not connected
yes: Connected

no=0
yes=1

5 ata0 Connects ATA bus 0 signals to pinspd17 - pd15 andpd7 -
pd5.
no: Not connected
yes: Connected

no=0
yes=1

4 sser1 Connects synchronous serial port 1 to pinspd4 - pd0.
no: Not connected
yes: Connected

no=0
yes=1

3 sser0 Connects synchronous serial port 0 to pinspc16 andpc3 -
pc0.
no: Not connected
yes: Connected

no=0
yes=1

25.38. PINMUX 1463

2 ser3 Connects asynchronous serial port 3 to pinspc15- pc12.
no: Not connected
yes: Connected

no=0
yes=1

1 ser2 Connects asynchronous serial port 2 to pinspc11- pc8.
no: Not connected
yes: Connected

no=0
yes=1

0 ser1 Connects asynchronous serial port 1 to pinspc7 - pc4.
no: Not connected
yes: Connected

no=0
yes=1

1464 CHAPTER 25. INTERNAL REGISTERS

25.38.3 rw pb gio

Address 0x8

Default 0x00000000

Type Read/Write

Description Connects general I/O port pb to portpb.

Bit(s) Name Description Value
17 pb17 Connects general I/O signalpb17 to pinpb17.

no: Not connected
yes: Connected

no=0
yes=1

16 pb16 Connects general I/O signalpb16 to pinpb16.
no: Not connected
yes: Connected

no=0
yes=1

15 pb15 Connects general I/O signalpb15 to pinpb15.
no: Not connected
yes: Connected

no=0
yes=1

14 pb14 Connects general I/O signalpb14 to pinpb14.
no: Not connected
yes: Connected

no=0
yes=1

13 pb13 Connects general I/O signalpb13 to pinpb13.
no: Not connected
yes: Connected

no=0
yes=1

12 pb12 Connects general I/O signalpb12 to pinpb12.
no: Not connected
yes: Connected

no=0
yes=1

11 pb11 Connects general I/O signalpb11 to pinpb11.
no: Not connected
yes: Connected

no=0
yes=1

10 pb10 Connects general I/O signalpb10 to pinpb10.
no: Not connected
yes: Connected

no=0
yes=1

9 pb9 Connects general I/O signalpb9 to pinpb9.
no: Not connected
yes: Connected

no=0
yes=1

8 pb8 Connects general I/O signalpb8 to pinpb8.
no: Not connected
yes: Connected

no=0
yes=1

7 pb7 Connects general I/O signalpb7 to pinpb7.
no: Not connected
yes: Connected

no=0
yes=1

6 pb6 Connects general I/O signalpb6 to pinpb6.
no: Not connected
yes: Connected

no=0
yes=1

25.38. PINMUX 1465

5 pb5 Connects general I/O signalpb5 to pinpb5.
no: Not connected
yes: Connected

no=0
yes=1

4 pb4 Connects general I/O signalpb4 to pinpb4.
no: Not connected
yes: Connected

no=0
yes=1

3 pb3 Connects general I/O signalpb3 to pinpb3.
no: Not connected
yes: Connected

no=0
yes=1

2 pb2 Connects general I/O signalpb2 to pinpb2.
no: Not connected
yes: Connected

no=0
yes=1

1 pb1 Connects general I/O signalpb1 to pinpb1.
no: Not connected
yes: Connected

no=0
yes=1

0 pb0 Connects general I/O signalpb0 to pinpb0.
no: Not connected
yes: Connected

no=0
yes=1

1466 CHAPTER 25. INTERNAL REGISTERS

25.38.4 rw pb iop

Address 0xc

Default 0x00000000

Type Read/Write

Description Connects I/O processor port pb to portpb.

Bit(s) Name Description Value
17 pb17 Connects I/O processor signalpb17 to pinpb17.

no: Not connected
yes: Connected

no=0
yes=1

16 pb16 Connects I/O processor signalpb16 to pinpb16.
no: Not connected
yes: Connected

no=0
yes=1

15 pb15 Connects I/O processor signalpb15 to pinpb15.
no: Not connected
yes: Connected

no=0
yes=1

14 pb14 Connects I/O processor signalpb14 to pinpb14.
no: Not connected
yes: Connected

no=0
yes=1

13 pb13 Connects I/O processor signalpb13 to pinpb13.
no: Not connected
yes: Connected

no=0
yes=1

12 pb12 Connects I/O processor signalpb12 to pinpb12.
no: Not connected
yes: Connected

no=0
yes=1

11 pb11 Connects I/O processor signalpb11 to pinpb11.
no: Not connected
yes: Connected

no=0
yes=1

10 pb10 Connects I/O processor signalpb10 to pinpb10.
no: Not connected
yes: Connected

no=0
yes=1

9 pb9 Connects I/O processor signalpb9 to pinpb9.
no: Not connected
yes: Connected

no=0
yes=1

8 pb8 Connects I/O processor signalpb8 to pinpb8.
no: Not connected
yes: Connected

no=0
yes=1

7 pb7 Connects I/O processor signalpb7 to pinpb7.
no: Not connected
yes: Connected

no=0
yes=1

6 pb6 Connects I/O processor signalpb6 to pinpb6.
no: Not connected
yes: Connected

no=0
yes=1

25.38. PINMUX 1467

5 pb5 Connects I/O processor signalpb5 to pinpb5.
no: Not connected
yes: Connected

no=0
yes=1

4 pb4 Connects I/O processor signalpb4 to pinpb4.
no: Not connected
yes: Connected

no=0
yes=1

3 pb3 Connects I/O processor signalpb3 to pinpb3.
no: Not connected
yes: Connected

no=0
yes=1

2 pb2 Connects I/O processor signalpb2 to pinpb2.
no: Not connected
yes: Connected

no=0
yes=1

1 pb1 Connects I/O processor signalpb1 to pinpb1.
no: Not connected
yes: Connected

no=0
yes=1

0 pb0 Connects I/O processor signalpb0 to pinpb0.
no: Not connected
yes: Connected

no=0
yes=1

1468 CHAPTER 25. INTERNAL REGISTERS

25.38.5 rw pc gio

Address 0x10

Default 0x00000000

Type Read/Write

Description Connects general I/O port pc to portpc.

Bit(s) Name Description Value
17 pc17 Connects general I/O signalpc17to pinpc17.

no: Not connected
yes: Connected

no=0
yes=1

16 pc16 Connects general I/O signalpc16to pinpc16.
no: Not connected
yes: Connected

no=0
yes=1

15 pc15 Connects general I/O signalpc15to pinpc15.
no: Not connected
yes: Connected

no=0
yes=1

14 pc14 Connects general I/O signalpc14to pinpc14.
no: Not connected
yes: Connected

no=0
yes=1

13 pc13 Connects general I/O signalpc13to pinpc13.
no: Not connected
yes: Connected

no=0
yes=1

12 pc12 Connects general I/O signalpc12to pinpc12.
no: Not connected
yes: Connected

no=0
yes=1

11 pc11 Connects general I/O signalpc11to pinpc11.
no: Not connected
yes: Connected

no=0
yes=1

10 pc10 Connects general I/O signalpc10to pinpc10.
no: Not connected
yes: Connected

no=0
yes=1

9 pc9 Connects general I/O signalpc9 to pinpc9.
no: Not connected
yes: Connected

no=0
yes=1

8 pc8 Connects general I/O signalpc8 to pinpc8.
no: Not connected
yes: Connected

no=0
yes=1

7 pc7 Connects general I/O signalpc7 to pinpc7.
no: Not connected
yes: Connected

no=0
yes=1

6 pc6 Connects general I/O signalpc6 to pinpc6.
no: Not connected
yes: Connected

no=0
yes=1

25.38. PINMUX 1469

5 pc5 Connects general I/O signalpc5 to pinpc5.
no: Not connected
yes: Connected

no=0
yes=1

4 pc4 Connects general I/O signalpc4 to pinpc4.
no: Not connected
yes: Connected

no=0
yes=1

3 pc3 Connects general I/O signalpc3 to pinpc3.
no: Not connected
yes: Connected

no=0
yes=1

2 pc2 Connects general I/O signalpc2 to pinpc2.
no: Not connected
yes: Connected

no=0
yes=1

1 pc1 Connects general I/O signalpc1 to pinpc1.
no: Not connected
yes: Connected

no=0
yes=1

0 pc0 Connects general I/O signalpc0 to pinpc0.
no: Not connected
yes: Connected

no=0
yes=1

1470 CHAPTER 25. INTERNAL REGISTERS

25.38.6 rw pc iop

Address 0x14

Default 0x00000000

Type Read/Write

Description Connects I/O processor port pc to portpc.

Bit(s) Name Description Value
17 pc17 Connects I/O processor signalpc17to pinpc17.

no: Not connected
yes: Connected

no=0
yes=1

16 pc16 Connects I/O processor signalpc16to pinpc16.
no: Not connected
yes: Connected

no=0
yes=1

15 pc15 Connects I/O processor signalpc15to pinpc15.
no: Not connected
yes: Connected

no=0
yes=1

14 pc14 Connects I/O processor signalpc14to pinpc14.
no: Not connected
yes: Connected

no=0
yes=1

13 pc13 Connects I/O processor signalpc13to pinpc13.
no: Not connected
yes: Connected

no=0
yes=1

12 pc12 Connects I/O processor signalpc12to pinpc12.
no: Not connected
yes: Connected

no=0
yes=1

11 pc11 Connects I/O processor signalpc11to pinpc11.
no: Not connected
yes: Connected

no=0
yes=1

10 pc10 Connects I/O processor signalpc10to pinpc10.
no: Not connected
yes: Connected

no=0
yes=1

9 pc9 Connects I/O processor signalpc9 to pinpc9.
no: Not connected
yes: Connected

no=0
yes=1

8 pc8 Connects I/O processor signalpc8 to pinpc8.
no: Not connected
yes: Connected

no=0
yes=1

7 pc7 Connects I/O processor signalpc7 to pinpc7.
no: Not connected
yes: Connected

no=0
yes=1

6 pc6 Connects I/O processor signalpc6 to pinpc6.
no: Not connected
yes: Connected

no=0
yes=1

25.38. PINMUX 1471

5 pc5 Connects I/O processor signalpc5 to pinpc5.
no: Not connected
yes: Connected

no=0
yes=1

4 pc4 Connects I/O processor signalpc4 to pinpc4.
no: Not connected
yes: Connected

no=0
yes=1

3 pc3 Connects I/O processor signalpc3 to pinpc3.
no: Not connected
yes: Connected

no=0
yes=1

2 pc2 Connects I/O processor signalpc2 to pinpc2.
no: Not connected
yes: Connected

no=0
yes=1

1 pc1 Connects I/O processor signalpc1 to pinpc1.
no: Not connected
yes: Connected

no=0
yes=1

0 pc0 Connects I/O processor signalpc0 to pinpc0.
no: Not connected
yes: Connected

no=0
yes=1

1472 CHAPTER 25. INTERNAL REGISTERS

25.38.7 rw pd gio

Address 0x18

Default 0x00000000

Type Read/Write

Description Connects general I/O port pd to portpd.

Bit(s) Name Description Value
17 pd17 Connects general I/O signalpd17 to pinpd17.

no: Not connected
yes: Connected

no=0
yes=1

16 pd16 Connects general I/O signalpd16 to pinpd16.
no: Not connected
yes: Connected

no=0
yes=1

15 pd15 Connects general I/O signalpd15 to pinpd15.
no: Not connected
yes: Connected

no=0
yes=1

14 pd14 Connects general I/O signalpd14 to pinpd14.
no: Not connected
yes: Connected

no=0
yes=1

13 pd13 Connects general I/O signalpd13 to pinpd13.
no: Not connected
yes: Connected

no=0
yes=1

12 pd12 Connects general I/O signalpd12 to pinpd12.
no: Not connected
yes: Connected

no=0
yes=1

11 pd11 Connects general I/O signalpd11 to pinpd11.
no: Not connected
yes: Connected

no=0
yes=1

10 pd10 Connects general I/O signalpd10 to pinpd10.
no: Not connected
yes: Connected

no=0
yes=1

9 pd9 Connects general I/O signalpd9 to pinpd9.
no: Not connected
yes: Connected

no=0
yes=1

8 pd8 Connects general I/O signalpd8 to pinpd8.
no: Not connected
yes: Connected

no=0
yes=1

7 pd7 Connects general I/O signalpd7 to pinpd7.
no: Not connected
yes: Connected

no=0
yes=1

6 pd6 Connects general I/O signalpd6 to pinpd6.
no: Not connected
yes: Connected

no=0
yes=1

25.38. PINMUX 1473

5 pd5 Connects general I/O signalpd5 to pinpd5.
no: Not connected
yes: Connected

no=0
yes=1

4 pd4 Connects general I/O signalpd4 to pinpd4.
no: Not connected
yes: Connected

no=0
yes=1

3 pd3 Connects general I/O signalpd3 to pinpd3.
no: Not connected
yes: Connected

no=0
yes=1

2 pd2 Connects general I/O signalpd2 to pinpd2.
no: Not connected
yes: Connected

no=0
yes=1

1 pd1 Connects general I/O signalpd1 to pinpd1.
no: Not connected
yes: Connected

no=0
yes=1

0 pd0 Connects general I/O signalpd0 to pinpd0.
no: Not connected
yes: Connected

no=0
yes=1

1474 CHAPTER 25. INTERNAL REGISTERS

25.38.8 rw pd iop

Address 0x1c

Default 0x00000000

Type Read/Write

Description Connects I/O processor port pd to portpd.

Bit(s) Name Description Value
17 pd17 Connects I/O processor signalpd17 to pinpd17.

no: Not connected
yes: Connected

no=0
yes=1

16 pd16 Connects I/O processor signalpd16 to pinpd16.
no: Not connected
yes: Connected

no=0
yes=1

15 pd15 Connects I/O processor signalpd15 to pinpd15.
no: Not connected
yes: Connected

no=0
yes=1

14 pd14 Connects I/O processor signalpd14 to pinpd14.
no: Not connected
yes: Connected

no=0
yes=1

13 pd13 Connects I/O processor signalpd13 to pinpd13.
no: Not connected
yes: Connected

no=0
yes=1

12 pd12 Connects I/O processor signalpd12 to pinpd12.
no: Not connected
yes: Connected

no=0
yes=1

11 pd11 Connects I/O processor signalpd11 to pinpd11.
no: Not connected
yes: Connected

no=0
yes=1

10 pd10 Connects I/O processor signalpd10 to pinpd10.
no: Not connected
yes: Connected

no=0
yes=1

9 pd9 Connects I/O processor signalpd9 to pinpd9.
no: Not connected
yes: Connected

no=0
yes=1

8 pd8 Connects I/O processor signalpd8 to pinpd8.
no: Not connected
yes: Connected

no=0
yes=1

7 pd7 Connects I/O processor signalpd7 to pinpd7.
no: Not connected
yes: Connected

no=0
yes=1

6 pd6 Connects I/O processor signalpd6 to pinpd6.
no: Not connected
yes: Connected

no=0
yes=1

25.38. PINMUX 1475

5 pd5 Connects I/O processor signalpd5 to pinpd5.
no: Not connected
yes: Connected

no=0
yes=1

4 pd4 Connects I/O processor signalpd4 to pinpd4.
no: Not connected
yes: Connected

no=0
yes=1

3 pd3 Connects I/O processor signalpd3 to pinpd3.
no: Not connected
yes: Connected

no=0
yes=1

2 pd2 Connects I/O processor signalpd2 to pinpd2.
no: Not connected
yes: Connected

no=0
yes=1

1 pd1 Connects I/O processor signalpd1 to pinpd1.
no: Not connected
yes: Connected

no=0
yes=1

0 pd0 Connects I/O processor signalpd0 to pinpd0.
no: Not connected
yes: Connected

no=0
yes=1

1476 CHAPTER 25. INTERNAL REGISTERS

25.38.9 rw pe gio

Address 0x20

Default 0x00000000

Type Read/Write

Description Connects general I/O port pe to portpe.

Bit(s) Name Description Value
17 pe17 Connects general I/O signalpe17to pinpe17.

no: Not connected
yes: Connected

no=0
yes=1

16 pe16 Connects general I/O signalpe16to pinpe16.
no: Not connected
yes: Connected

no=0
yes=1

15 pe15 Connects general I/O signalpe15to pinpe15.
no: Not connected
yes: Connected

no=0
yes=1

14 pe14 Connects general I/O signalpe14to pinpe14.
no: Not connected
yes: Connected

no=0
yes=1

13 pe13 Connects general I/O signalpe13to pinpe13.
no: Not connected
yes: Connected

no=0
yes=1

12 pe12 Connects general I/O signalpe12to pinpe12.
no: Not connected
yes: Connected

no=0
yes=1

11 pe11 Connects general I/O signalpe11to pinpe11.
no: Not connected
yes: Connected

no=0
yes=1

10 pe10 Connects general I/O signalpe10to pinpe10.
no: Not connected
yes: Connected

no=0
yes=1

9 pe9 Connects general I/O signalpe9to pinpe9.
no: Not connected
yes: Connected

no=0
yes=1

8 pe8 Connects general I/O signalpe8to pinpe8.
no: Not connected
yes: Connected

no=0
yes=1

7 pe7 Connects general I/O signalpe7to pinpe7.
no: Not connected
yes: Connected

no=0
yes=1

6 pe6 Connects general I/O signalpe6to pinpe6.
no: Not connected
yes: Connected

no=0
yes=1

25.38. PINMUX 1477

5 pe5 Connects general I/O signalpe5to pinpe5.
no: Not connected
yes: Connected

no=0
yes=1

4 pe4 Connects general I/O signalpe4to pinpe4.
no: Not connected
yes: Connected

no=0
yes=1

3 pe3 Connects general I/O signalpe3to pinpe3.
no: Not connected
yes: Connected

no=0
yes=1

2 pe2 Connects general I/O signalpe2to pinpe2.
no: Not connected
yes: Connected

no=0
yes=1

1 pe1 Connects general I/O signalpe1to pinpe1.
no: Not connected
yes: Connected

no=0
yes=1

0 pe0 Connects general I/O signalpe0to pinpe0.
no: Not connected
yes: Connected

no=0
yes=1

1478 CHAPTER 25. INTERNAL REGISTERS

25.38.10 rw pe iop

Address 0x24

Default 0x00000000

Type Read/Write

Description Connects I/O processor port pe to portpe.

Bit(s) Name Description Value
17 pe17 Connects I/O processor signalpe17to pinpe17.

no: Not connected
yes: Connected

no=0
yes=1

16 pe16 Connects I/O processor signalpe16to pinpe16.
no: Not connected
yes: Connected

no=0
yes=1

15 pe15 Connects I/O processor signalpe15to pinpe15.
no: Not connected
yes: Connected

no=0
yes=1

14 pe14 Connects I/O processor signalpe14to pinpe14.
no: Not connected
yes: Connected

no=0
yes=1

13 pe13 Connects I/O processor signalpe13to pinpe13.
no: Not connected
yes: Connected

no=0
yes=1

12 pe12 Connects I/O processor signalpe12to pinpe12.
no: Not connected
yes: Connected

no=0
yes=1

11 pe11 Connects I/O processor signalpe11to pinpe11.
no: Not connected
yes: Connected

no=0
yes=1

10 pe10 Connects I/O processor signalpe10to pinpe10.
no: Not connected
yes: Connected

no=0
yes=1

9 pe9 Connects I/O processor signalpe9to pinpe9.
no: Not connected
yes: Connected

no=0
yes=1

8 pe8 Connects I/O processor signalpe8to pinpe8.
no: Not connected
yes: Connected

no=0
yes=1

7 pe7 Connects I/O processor signalpe7to pinpe7.
no: Not connected
yes: Connected

no=0
yes=1

6 pe6 Connects I/O processor signalpe6to pinpe6.
no: Not connected
yes: Connected

no=0
yes=1

25.38. PINMUX 1479

5 pe5 Connects I/O processor signalpe5to pinpe5.
no: Not connected
yes: Connected

no=0
yes=1

4 pe4 Connects I/O processor signalpe4to pinpe4.
no: Not connected
yes: Connected

no=0
yes=1

3 pe3 Connects I/O processor signalpe3to pinpe3.
no: Not connected
yes: Connected

no=0
yes=1

2 pe2 Connects I/O processor signalpe2to pinpe2.
no: Not connected
yes: Connected

no=0
yes=1

1 pe1 Connects I/O processor signalpe1to pinpe1.
no: Not connected
yes: Connected

no=0
yes=1

0 pe0 Connects I/O processor signalpe0to pinpe0.
no: Not connected
yes: Connected

no=0
yes=1

1480 CHAPTER 25. INTERNAL REGISTERS

25.38.11 rw usb phy

Address 0x28

Default 0x00000000

Type Read/Write

Description Connects the internal USB 1.1 phy to the I/O processor. Two different mappings are
available.

Bit(s) Name Description Value
1 en usb1 Enables the I/O-processor to use the internal USB phy. This

field connects I/O processor signalspe14 - pe8 to the USB
phy.
no: USB phy not connected
yes: USB phy connected to the I/O processor

no=0
yes=1

0 en usb0 Enables the I/O processor to use the internal USB phy. This
field connects I/O processor signalspc14 - pc8 to the USB
phy.
no: USB phy not connected
yes: USB phy connected to the I/O processor

no=0
yes=1

25.39. RT TRACE 1481

25.39 rt trace

Instance Base Address
trace 0xb0040000

25.39.1 rw cfg

Address 0x0

Default 0x00000000

Type Read/Write

Description Configuration of real time trace. This register may be written by software and by the
TAP controller. This enables the TAP controller to control the real time trace function-
ality.

Bit(s) Name Description Value
22-16:7 wp stop Specifies which watchpoints stop the tracing. Requires that

the mode field is set towp, and that the corresponding
watchpoints in the CPU are turned on.
wp0: Watchpoint 0 stops tracing
wp1: Watchpoint 1 stops tracing
wp2: Watchpoint 2 stops tracing
wp3: Watchpoint 3 stops tracing
wp4: Watchpoint 4 stops tracing
wp5: Watchpoint 5 stops tracing
wp6: Watchpoint 6 stops tracing

wp0=1
wp1=2
wp2=4
wp3=8
wp4=16
wp5=32
wp6=64

14-8:7 wp start Specifies which watchpoints start the tracing. Requires that
the mode field is set towp, and that the corresponding
watchpoints in the CPU are turned on.
wp0: Watchpoint 0 starts tracing
wp1: Watchpoint 1 starts tracing
wp2: Watchpoint 2 starts tracing
wp3: Watchpoint 3 starts tracing
wp4: Watchpoint 4 starts tracing
wp5: Watchpoint 5 starts tracing
wp6: Watchpoint 6 starts tracing

wp0=1
wp1=2
wp2=4
wp3=8
wp4=16
wp5=32
wp6=64

4 stall Decides if the tracer may stop the CPU when the trace buffer
is full to prevent loss of trace data. When off, the tracer may
temporarily loose track when there are a lot of jumps in a
short time.
no: Tracer will never stop the CPU
yes: Tracer may stop the CPU

no=0
yes=1

3 wp Turn watchpoint tracing on/off.
no: Watchpoint tracing disabled
yes: Watchpoint tracing enabled

no=0
yes=1

1482 CHAPTER 25. INTERNAL REGISTERS

2 owner Turn ownership tracing on/off.
no: Ownership tracing disabled
yes: Ownership tracing enabled

no=0
yes=1

1 mode Decides how tracing is started and stopped.
normal: Tracing always on
wp: Tracing start/stop controlled by watchpoints

normal=0
wp=1

0 en Turn real time tracing as a whole on/off.
no: Disable real time tracing
yes: Enable real time tracing

no=0
yes=1

25.39. RT TRACE 1483

25.39.2 rw tap ctrl

Address 0x4

Default
Type Read/Write

Description JTAG TAP debug data register control.

Bit(s) Name Description Value
1 ack guru Acknowledge Guru exception caused by the TAP.

yes: Acknowledge Guru exception
no: No operation

yes=1
no=0

0 ack data Acknowledge read data. I.e. clear thedav field of the
r tap statregister.
yes: Acknowledge read data
no: No operation

yes=1
no=0

1484 CHAPTER 25. INTERNAL REGISTERS

25.39.3 r tap stat

Address 0x8

Default
Type Read

Description JTAG TAP debug data register status.

Bit(s) Name Description Value
1 empty Tells if data written torw tap datahas been read via the TAP

controller or not. Cleared whenrw tap datais written. Set when
TAP has captured data fromrw tap dataandrw tap hdata.
yes: Write register is empty
no: Write register is full

yes=1
no=0

0 dav New data from TAP available inrw tap dataandrw tap hdata.
Cleared by writing to theack databit of rw tap ctrl.
yes: New data is available
no: No new data

yes=1
no=0

25.39. RT TRACE 1485

25.39.4 rw tap data

Address 0xc

Default
Type Read/Write

Description Read/write debug data register in JTAG TAP controller, bit 0 - 31.

1486 CHAPTER 25. INTERNAL REGISTERS

25.39.5 rw tap hdata

Address 0x10

Default
Type Read/Write

Description Read/write debug data register in JTAG TAP controller, bit 32 - 39.

Bit(s) Name Description Value
7-4:4 subop Sub-operation code.

gmode: Guru mode entered
rdreg: Read general register
rdpreg: Read special register
rdsreg: Read support register
wrreg: Write general register
wrpreg: Write special register
wrsreg: Write support register
rdmem: Read dword from memory
wrmem: Write dword to memory
rdmemb: Read byte from memory
wrmemb: Write byte to memory
ret: Return from Guru mode
brk: Break current command

gmode=0
rdreg=1
rdpreg=2
rdsreg=3
wrreg=4
wrpreg=5
wrsreg=6
rdmem=7
wrmem=8
rdmemb=9
wrmemb=10
ret=11
brk=12

3-0:4 op Operation code.
nop: No operation
trcfg: Controls real time tracing by writing therw cfg register
dbg: Make CPU enter Guru debug mode
dbgdi: Data to Guru debug mode
dbgdo: Data from Guru debug mode
redir: Write debug redirection address register (r redir)

nop=0
trcfg=1
dbg=3
dbgdi=4
dbgdo=5
redir=6

25.39. RT TRACE 1487

25.39.6 r redir

Address 0x14

Default
Type Read

Description If non-zero, the debug ROM will jump to the address read here when triggered instead
of running the normal debug ROM code. This register can only be written through the
TAP using the redir command as specified inrw tap hdata.

1488 CHAPTER 25. INTERNAL REGISTERS

25.40 ser

Instance Base Address
ser0 0xb0026000

ser1 0xb0028000

ser2 0xb002a000

ser3 0xb002c000

25.40.1 rw tr ctrl

Address 0x0

Default 0x00008000

Type Read/Write

Description Configuration for the serial interface transmitter.

Bit(s) Name Description Value
16 autocts Automatic handling ofcts n. When enabled, a high sig-

nal oncts n stops transmission after the ongoing byte.
no: No automaticcts n handling
yes: Automaticcts n handling

no=0
yes=1

15 txd Value on thetxd pin when the transmitter is disabled or
stopped.

14 auto rts Automatically setrts n for half-duplex operation. The
rts n pin is set to the value of therts n field of the
rw rec ctrl register when the transmitter is paused and to
the inverted value when transmitting. If this mode is not
enabled, therts n will be set to the value of therts n field
at all times.
no: No automaticrts n handling
yes: Automaticrts n handling

no=0
yes=1

13 rts setup Whenauto rts is set toyes, this field sets the delay from
rts n is toggled until the start of the transmission. The
delay is set relative to the start of the start bit.
bits1: One bit delay
bits2: Two bits delay

bits1=0
bits2=1

25.40. SER 1489

12-10:3 rts delay Whenauto rts is set toyes, this field sets the delay from
completion of transmission untilrts n is toggled. The
delay is set relative to the start of the first stop bit.
del0 5: Delay 0.5 bit times
del1: Delay 1 bit time
del1 5: Delay 1.5 bit times
del2: Delay 2 bit times
del2 5: Delay 2.5 bit times
del3: Delay 3 bit times
del3 5: Delay 3.5 bit times
del4: Delay 4 bit times

del0 5=0
del1=1
del1 5=2
del2=3
del2 5=4
del3=5
del3 5=6
del4=7

9 stop Stop transmitter after the ongoing byte. When this field is
set, the ongoing transmission (if any) will be completed
including the specified number of stop bits, and thereafter
the tr emptyandtr idle fields will be set toyesand the
txd pin will be set to the value of thetxd field.
no: Do not stop
yes: Stop

no=0
yes=1

8 stopbits Number of stop bits.
bits1: One stop bit
bits2: Two stop bits

bits1=0
bits2=1

7 databits Number of data bits for the transmitter.
bits8: 8 data bits
bits7: 7 data bits

bits8=0
bits7=1

6 par en Enable parity generation for the transmitter.
no: Parity disabled
yes: Parity enabled

no=0
yes=1

5-4:2 par Selects parity for the transmitter.
even: Even parity
odd: Odd parity
mark: MARK parity (logic 1)
space: SPACE parity (logic 0)

even=0
odd=1
mark=2
space=3

3 en Enable the serial transmitter.
no: Serial transmitter disabled
yes: Serial transmitter enabled

no=0
yes=1

2-0:3 basefreq Transmitter baud rate base frequency. The transmitter
baud clock isbasefreq / (rw tr bauddiv.div * 8).
off: No clock
ext: External clock input
f29 493: 29.493 MHz
f32: 32.000 MHz
f32 768: 32.768 MHz
f100: 100 MHz

off=0
ext=1
f29 493=4
f32=5
f32 768=6
f100=7

1490 CHAPTER 25. INTERNAL REGISTERS

25.40.2 rw tr dma en

Address 0x4

Default 0x00000000

Type Read/Write

Description Enables DMA for the serial transmitter.

Bit(s) Name Description Value
0 en Enable DMA. This field will be set tono by the DMA when the

DMA reaches end of packet.
no: DMA disabled
yes: DMA enabled

no=0
yes=1

25.40. SER 1491

25.40.3 rw rec ctrl

Address 0x8

Default 0x00010000

Type Read/Write

Description Configuration for the serial interface receiver.

Bit(s) Name Description Value
17 loopback Enables internal loop back from the serial transmitter.

no: Normal operation
yes: Internal loop back

no=0
yes=1

16 rts n Controls therts n pin. When read, this field returns
the value written to it. To read the actual value on the
rts n pin, use therts n field of ther statdin register.
active: Therts n pin is set to active
inactive: Therts n pin is set to inactive

active=0
inactive=1

15 half duplex Automatically disables receiver while transmitting.
This is useful in e.g. 2-wire RS-485 applications to
avoid receiving your own data.
no: Full duplex
yes: Half duplex

no=0
yes=1

14 autoeop Generate eop to the DMA when no characters have
been received for the time specified by thetimeout
field.
no: Automatic eop generation disabled
yes: Automatic eop generation enabled

no=0
yes=1

13-11:3 timeout Receive timeout (in character times). A value of 0 will
generate an eop to the DMA as soon as characters are
not received back-to-back.

10 sampling Sampling mode for serial receiver.
middle: One sample in the middle of the data bit
majority: Majority of three samples in the middle of
the data bit

middle=0
majority=1

9 dmaerr Controls the handling of receive errors when DMA is
used. Ifstopis selected a receive error will cause an
eop to the DMA channel and the DMA transfers will
stop. The erroneous byte will not be forwarded to the
DMA.
stop: Receive error generates eop and stops the DMA
ignore: Receive errors are ignored when DMA is used

stop=0
ignore=1

8 dmamode DMA is used to receive data.
no: Register access mode
yes: DMA mode

no=0
yes=1

7 databits Number of data bits for the receiver.
bits8: 8 data bits
bits7: 7 data bits

bits8=0
bits7=1

1492 CHAPTER 25. INTERNAL REGISTERS

6 par en Enable parity check for the receiver.
no: Parity disabled
yes: Parity enabled

no=0
yes=1

5-4:2 par Selects parity for the receiver.
even: Even parity
odd: Odd parity
mark: MARK parity (logic 1)
space: SPACE parity (logic 0)

even=0
odd=1
mark=2
space=3

3 en Enable the serial receiver.
no: Serial receiver disabled
yes: Serial receiver enabled

no=0
yes=1

2-0:3 basefreq Receiver baud rate base frequency. The receiver baud
clock isbasefreq / (rw rec bauddiv.div * 8).
off: No clock
ext: External clock input
f29 493: 29.493 MHz
f32: 32.000 MHz
f32 768: 32.768 MHz
f100: 100 MHz

off=0
ext=1
f29 493=4
f32=5
f32 768=6
f100=7

25.40. SER 1493

25.40.4 rw tr baud div

Address 0xc

Default 0x00000000

Type Read/Write

Description Transmitter baud rate divisor. The baud clock isrw tr ctrl.basefreq / (div * 8). Note
that writing to this register will restart the baud rate generator. Writing to the register
while transmitting will therefore corrupt outgoing data even if the register contents is
not changed.

Bit(s) Name Description Value
15-0:16 div Transmitter baud rate divisor.

1494 CHAPTER 25. INTERNAL REGISTERS

25.40.5 rw rec baud div

Address 0x10

Default 0x00000000

Type Read/Write

Description Receiver baud rate divisor. The baud clock isrw rec ctrl.basefreq / (div * 8). Note
that writing to this register will restart the baud rate generator. Writing to the register
while receiving will therefore corrupt incoming data even if the register contents is not
changed.

Bit(s) Name Description Value
15-0:16 div Receiver baud rate divisor.

25.40. SER 1495

25.40.6 rw xoff

Address 0x14

Default 0x00000000

Type Read/Write

Description Configuration of xoff for the serial interface.

Bit(s) Name Description Value
8 automatic Automatic xoff handling. When enabled, the transmitter is

automatically stopped when an xoff character is detected.
no: Disable automatic xoff handling
yes: Enable automatic xoff handling

no=0
yes=1

7-0:8 chr The xoff character code.

1496 CHAPTER 25. INTERNAL REGISTERS

25.40.7 rw xoff clr

Address 0x18

Default
Type Read/Write

Description Clears thexoff detectfield in ther statdin andrs statdin registers.

Bit(s) Name Description Value
0 clr Clearsxoff detectin ther statdin andrs statdin registers.

no: No operation
yes: Clear

no=0
yes=1

25.40. SER 1497

25.40.8 rw dout

Address 0x1c

Default
Type Read/Write

Description Transmit data.

Bit(s) Name Description Value
7-0:8 data Byte to transmit.

1498 CHAPTER 25. INTERNAL REGISTERS

25.40.9 rs stat din/r stat din

Address 0x20/0x24

Default
Type Read with side effects/Read

Description Serial port status and received data. Read with side effects will clear theorun, par err,
framing erranddavfields.

Bit(s) Name Description Value
28 txd The value on thetxd pin.

27 rts n Value on therts n pin.
active:rts n is low (active)
inactive:rts n is high (inactive)

active=0
inactive=1

26 xoff detect An xoff character detected. Cleared by writing to the
rw xoff clr register. An xoff is only detected if the
automaticfield of therw xoff register is set toyes.
no: No xoff detected
yes: xoff detected

no=0
yes=1

25 cts n Value on thects n pin.
active:cts n is low (active)
inactive:cts n is high (inactive)

active=0
inactive=1

24 tr rdy Serial transmitter ready (a character can be written to
rw dout).
no: Transmitter not ready
yes: Transmitter ready

no=0
yes=1

23 tr empty Serial transmitter empty. Thetr empty field is set
when the transmitter is idle (seetr idle below) or when
there is no ongoing transmission and the DMA FIFO
is empty. Note that thetr emptyfield can be used as
an indication of a completed DMA transfer only when
the associated DMA channel has reached end of list.
no: Transmitter not empty
yes: Transmitter empty

no=0
yes=1

22 tr idle Serial transmitter is idle. The condition for tridle
is: (no ongoing transmission) and ((dma disabled) or
((automatic xoff) and (xoff detected)) or (transmitter
stopped) or (transmitter disabled)).
no: Transmitter not idle
yes: Transmitter idle

no=0
yes=1

21 rxd Value on therxd pin.

20 rec err Receiver error. Indicates that an overrun error, a fram-
ing error or a parity error has occured. Cleared by
readingrs statdin. This field is not cleared when a
new correct character is received.

25.40. SER 1499

19 orun Receiver overrun. Indicates that a new character was
received before the previous one was read out or trans-
ferred to the DMA, and that the previous character was
lost. Cleared by readingrs statdin.
no: No overrun
yes: Overrun

no=0
yes=1

18 par err Parity error. This field shows the parity status of the
last received character. Cleared by readingrs statdin.
no: No parity error
yes: Parity error

no=0
yes=1

17 framing err Framing error. This field shows the framing status
of the last received character. Cleared by reading
rs statdin.
no: No framing error
yes: Framing error

no=0
yes=1

16 dav Data is available from the serial receiver. Cleared by
readingrs statdin.
no: No data available
yes: Data available

no=0
yes=1

7-0:8 data Received data.

1500 CHAPTER 25. INTERNAL REGISTERS

25.40.10 rw rec eop

Address 0x28

Default
Type Read/Write

Description This register is used by the software to set an eop (end of packet) to the DMA channel
of the serial receiver.

Bit(s) Name Description Value
0 set Set eop to the DMA.

no: No operation
yes: Set eop

no=0
yes=1

25.40. SER 1501

25.40.11 rw intr mask

Address 0x2c

Default 0x00000000

Type Read/Write

Description Interrupt mask. Specifies which interrupts are enabled in this subsystem. Only enabled
interrupts will propagate to the central interrupt handler. In C code the relationship
betweenrw intr mask, r intr andr maskedintr can be expressed as:
r maskedintr = r intr & rw intr mask

Bit(s) Name Description Value
3 dav Enable/disable dav interrupt. Data available interrupt.

yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

2 tr idle Enable/disable tridle interrupt. Transmitter idle interrupt.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

1 tr empty Enable/disable trempty interrupt. Transmitter empty inter-
rupt.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

0 tr rdy Enable/disable trrdy interrupt. Transmitter ready interrupt.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

1502 CHAPTER 25. INTERNAL REGISTERS

25.40.12 rw ack intr

Address 0x30

Default
Type Read/Write

Description Acknowledge interrupts.

Bit(s) Name Description Value
3 dav Acknowledge dav interrupt.

yes: Acknowledge interrupt
no: No operation

yes=1
no=0

2 tr idle Acknowledge tridle interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

1 tr empty Acknowledge trempty interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

0 tr rdy Acknowledge trrdy interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

25.40. SER 1503

25.40.13 r intr

Address 0x34

Default
Type Read

Description Interrupts before the mask. Makes it possible to determine if an interrupt is active even
though it is not enabled in the mask (rw intr mask). In C code the relationship between
rw intr mask, r intr andr maskedintr can be expressed as:
r maskedintr = r intr & rw intr mask

Bit(s) Name Description Value
3 dav Interrupt dav active.

yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

2 tr idle Interrupt tr idle active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1 tr empty Interrupt tr empty active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

0 tr rdy Interrupt tr rdy active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1504 CHAPTER 25. INTERNAL REGISTERS

25.40.14 r masked intr

Address 0x38

Default
Type Read

Description Interrupts after the mask. Tells which interrupts are active and enabled (in
rw intr mask). In C code the relationship betweenrw intr mask, r intr and
r maskedintr can be expressed as:
r maskedintr = r intr & rw intr mask

Bit(s) Name Description Value
3 dav Interrupt dav active and enabled.

yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

2 tr idle Interrupt tr idle active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1 tr empty Interrupt tr empty active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

0 tr rdy Interrupt tr rdy active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

25.41. SSER 1505

25.41 sser

Instance Base Address
sser0 0xb0022000

sser1 0xb0024000

25.41.1 rw cfg

Address 0x0

Default 0x00000000

Type Read/Write

Description General control register for the synchronous serial port.

Bit(s) Name Description Value
30 en Turns the entire port on or off. The fields

rw tr cfg.tr en and rw rec cfg.recen have no ef-
fect if this field is disabled.
yes: Enable port
no: Disable port

yes=1
no=0

29 prepare Prepare transmitter and frame for operation. This
field resets frame circuit and keeps transmitter
from starting. Only needed in some special cases.
yes: Prepare
no: Normal operation

yes=1
no=0

28 hold pol Hold signal polarity, if used, for both incoming and
outgoing signals.
pos: Active high polarity, 1 = hold
neg: Active low polarity, 0 = hold

pos=0
neg=1

27 clk in sel Select which clock input to use (if any).
clk in: Use clk in (clk)
ext clk: Use extclk (sharedext clk)

clk in=0
ext clk=1

26-25:2 out clk src Selects the source for the output clock. In nojitter
mode, extclk frequency must be no higher than
16.67 MHz, andclk div must not be set to 0.
clk100: The internal 100 MHz clock
intern clk: An internally generated clock
nojitter: As internclk but output on the pos edge
of ext clk
const0: Constant value, controlled byout clk pol

clk100=0
intern clk=1
nojitter=2
const0=3

24 out clk pol Selects polarity of output clock
pos: Normal polarity
neg: Inverted polarity

pos=0
neg=1

1506 CHAPTER 25. INTERNAL REGISTERS

23 clk od mode Turnsclk pin into an open-drain output (ifclk dir
is out). Gives expected results only when
out clk srcis set tointern clk.
yes: Open drain mode
no: Normal mode

yes=1
no=0

22 clk dir Specifies the direction of theclk pin.
out: Theclk pin is an output
in: Theclk pin is an input

out=1
in=0

21 clkgatein Specifies whether the incoming clock is gated or
continuous. Note: Must be set tono when using
internal clocking.
yes: The incoming external clock is gated
no: The incoming external clock is continuous

yes=1
no=0

20 clkgatectrl If gateclk is yes, this field specifies which unit that
controls clock gating.
tr: Transmitter controls clock gating
rec: Receiver controls clock gating

tr=1
rec=0

19 gateclk Selects if an output clock shall be gated or contin-
uous. If gated, the level of theclk pin is controlled
by out clk pol when inactive.
yes: The outgoing internal clock is gated
no: The outgoing internal clock is continuous

yes=1
no=0

18-16:3 basefreq Frequency base for internal clock generator. The
clock generator output frequency will be this fre-
quency divided byclk div.
f100: 100 MHz
ext: External clock input
f29 493: 29.493 MHz
f32: 32.000 MHz
f32 768: 32.768 MHz
no clk: No clock

f100=0
ext=1
f29 493=4
f32=5
f32 768=6
no clk=7

15-0:16 clk div Division factor, minus 1, for internal clock gener-
ator. See the23.4.4.1for details.

25.41. SSER 1507

25.41.2 rw frm cfg

Address 0x4

Default 0x00000000

Type Read/Write

Description Configures frame signalling.

Bit(s) Name Description Value
30-29:2 statuspin use Selects how to use thestatuspin.

Notes:

1. The field rw tr cfg.dual i2s overrides this
setting and uses thestatuspin as a second
I2S output.

2. If rw rec cfg.slave2en is set, set this field
to gio0.

frm: Frame signalling
hold: Hold signalling
gio1: General IO, with value 1 if output
gio0: General IO, with value 0 if output

frm=3
hold=2
gio1=1
gio0=0

28 statuspin dir Selects the direction of thestatuspin.
out: Thestatuspin is an output
in: Thestatuspin is an input

out=1
in=0

27-26:2 framepin use Selects how to use theframe pin. Note: If
rw rec cfg.slave3en is set andrw rec cfg.mode
equalswiresave, set this field togio0.
frm: Frame signalling
hold: Hold signalling
gio1: General IO, with value 1 if output
gio0: General IO, with value 0 if output

frm=3
hold=2
gio1=1
gio0=0

25 framepin dir Selects the direction of theframe pin.
out: Theframe pin is an output
in: Theframe pin is an input

out=1
in=0

24 out on If a frame signal is output, this field specifies
which frame event source that triggers it.
tr: Transmitter controls frame output
intern tb: internal frame time base

tr=1
intern tb=0

23 out off If a frame signal is output, andtypeis set tolevel,
this field controls which unit that generates the
end-of-word signal that turns off the frame out-
put.
tr: Transmitter turns off frame
rec: Receiver turns off frame

tr=1
rec=0

1508 CHAPTER 25. INTERNAL REGISTERS

22 clk src Selects internal or external clock for frame signal
sampling and output. See alsofr in rxclk.
ext: External clock is used
intern: Internal clock is used

ext=1
intern=0

21 fr in rxclk Sample the incoming external frame signal (SSI
in slave mode) with the receiver’s clock instead
of the frame clock. This field has no effect when
not using an incoming external frame signal.
yes: Use receiver clock for frame decoding
no: Use frame clock for frame decoding

yes=1
no=0

20 clk pol Selects active edge of the frame clock. Note:
When using internal clock withrw cfg.clk div =
0, positive edge is always used regardless of this
setting. The output clock can still be inverted by
rw cfg.out clk pol though.
pos: Positive edge is used
neg: Negative edge is used

pos=0
neg=1

19 type Selects if incoming and outgoing frame signal(s)
shall be of edge or level type.
Edge-sensitive frame input: A new active edge on
the frame signal is needed for each new word.
Level-sensitive frame input: The active level on
the frame signal will trigger the frame circuit,
and if the frame signal stays at the active level,
the frame circuit will retrigger immediately after
each word.
Edge-type frame output:edge means that the
frame signal is active for one bit time at each word
start (except iflevel equalsboth, then the output
toggles once for each new frame event).
Level-type frame output:level means the frame
output is active during the entire word. See also
early wend.
edge: Edge-type frame
level: Level-type frame

edge=0
level=1

25.41. SSER 1509

18-17:2 level Selects which edges or levels shall be interpreted
as frame events, for both incoming and outgoing
frame.
Notes:

1. both in conjunction withtype = level will
give a constantly-active incoming frame,
even if none of thestatusor frame pins are
used as a frame input.

2. When using type.edge with level.both
transmission will start with a negative edge
(both for frame direction in and out).

neg lo: Negative edges or low level are frame
events
poshi: Positive edges or high level are frame
events
both: Both edges are frame events

neg lo=0
poshi=1
both=2

16 early wend End level-type frame out at word end.
yes: End level type frame at the end of the word
no: End level type frame one cycle after word end

yes=1
no=0

15-13:3 tr delay Specifies a distance, in bit clock cycles, between
a frame event and the first data bit for the trans-
mitter. For details see23.4.2.3.
Note: If the value 0 is used together with an ex-
ternal frame input signal, 2 ns of additional setup
time is required for the frame signal.

12-10:3 rec delay Specifies a distance, in bit clock cycles, between
a frame event and the first data bit for the receiver.
For details see23.4.2.3.
Note: If the value 0 is used together with an ex-
ternal frame input signal, 2 ns of additional setup
time is required for the frame signal.

9-0:10 wordrate Bit clock cycles between start of words, minus
one, in isochronous modes (if a new word should
start every 16:th cycle, write 15 here).

1510 CHAPTER 25. INTERNAL REGISTERS

25.41.3 rw tr cfg

Address 0x8

Default 0x01800000

Type Read/Write

Description Transmitter configuration

Bit(s) Name Description Value
27-26:2 bulk wspace In bulk mode, minimum space between words.

Note: Must be equal to or greater than
rw frm cfg.tr delay if bulk mode is used.
Must also be equal to or greater than
rw frm cfg.recdelay if the receiver uses the
transmitter as source of frame events in bulk
mode.

25 od mode Turnsdata pin into an open-drain output.
yes: Open drain mode
no: Normal mode

yes=1
no=0

24-23:2 datapin use data pin usage. If general-IO-input mode or three
data inputs in non-wiresave-mode are wanted, se-
lect tsout and disable the transmitter, the data pin
will then be tristated. Note: Whenuse60958is set,
set this field todout.
ts out: Data out, but tristated by frame input signal
dout: Normal data output
gio1: General output, with value 1
gio0: General output, with value 0

ts out=3
dout=2
gio1=1
gio0=0

22 dual i2s Use both I2S transmitters. Thestatuspin will be
used as a slave output. Must be set tono in other
modes than I2S.
yes: Both I2S transmitters are used
no: One I2S transmitter or other mode is used

yes=1
no=0

25.41. SSER 1511

21 usemd Send metadata from DMA data descriptors or
mode register. This is only useful in wiresave
mode.
Notes:

1. The ’md rec’ interrupt is generated when-
ever metadata is received from DMA, re-
gardless of this setting.

2. xon and xoff metadata (as requested by the
receiver) will not be sent if this field is
disabled. However, received xon and xoff
metadata will still turn the transmitter on and
off. Ie, flow control will be disabled in the
receive direction.

yes: metadata is sent
no: metadata is discarded

yes=1
no=0

20 ratectrl Selects isochronous or bulk modes
iso: Data is sent at a fixed rate
bulk: Data is sent when it is available

iso=0
bulk=1

19-18:2 iec60958ckdiv Divide factor, minus one, for the external clock
used for IEC60958 transmission. For a value of
zero, a 128*Fsamp clock shall be applied to the
clock pin. See23.4.1.4for clock frequencies for
standard IEC60958 sampling frequencies.

17 use60958 Use the IEC60958 transmitter
yes: IEC60958 mode
no: other modes

yes=1
no=0

16 frm src Selects what triggers the transmission of each
word. Don’t care in bulk mode (seeratectrl).
ext: External frame signal
intern: Internal frame time base

ext=1
intern=0

15-14:2 mode Selects transmitter main mode. See23.4.1for de-
tails.
lospeed: lowspeed mode
hispeed: highspeed mode
wiresave: wiresave mode

lospeed=0
hispeed=1
wiresave=2

13 usedma Use DMA or register interface as transmit data
source.
yes: Source is DMA
no: Source is mode register

yes=1
no=0

12 clk src Select internal or external clock for transmitter
ext: External clock is used
intern: Internal clock is used

ext=1
intern=0

1512 CHAPTER 25. INTERNAL REGISTERS

11 clk pol Selects polarity of clock edge for data out-
put. Note: When using internal clock with
rw cfg.clk div = 0, positive edges are always used
regardless of this setting. The output clock can still
be inverted byrw cfg.out clk pol though.
pos: Positive edge is used
neg: Negative edge is used

pos=0
neg=1

10 sh dir Selects shift direction of serial transmission. Must
be set to lsbfirst whenmodeis wiresave.
lsbfirst: LSB is sent first
msbfirst: MSB is sent first

lsbfirst=0
msbfirst=1

9-4:6 samplesize The size, minus one, of each sample. Ifmodeis set
to lospeed, the size is given in bits, otherwise it is
given in nibbles (bits/4). In wiresave mode, write
the value 3 here (ie 16 bits per sample).

3 eopstop Stop transfer after next EOP. Note: Will only stop
if metadata of last descriptor is other than txnull.
See also the tidle interrupt. This field has no effect
if usedmais set tono.
yes: Stop transfer at EOP
no: Continue unaffected by EOP

yes=1
no=0

2 urun stop Stop the transfer in case of underrun. Ifurun stop
is not set, one or more junk word(s) will be sent at
underrun.
yes: Stop transfer at underrun
no: Continue as soon as possible after underrun

yes=1
no=0

1 stop Start, stop or pause the transfer as soon as possi-
ble. Will wait until data already (partly) inside the
transmitter has been transmitted.
yes: Stop transfer
no: Continue transfer

yes=1
no=0

0 tr en Turns the transmitter on or off. Disabling the trans-
mitter resets its internal state.
yes: Enable transmitter
no: Disable transmitter

yes=1
no=0

25.41. SSER 1513

25.41.4 rw rec cfg

Address 0xc

Default 0x00000000

Type Read/Write

Description Receiver configuration

Bit(s) Name Description Value
28-27:2 fifo thr DMA receiver fifo threshold for flow control.

When the fifo has less than the threshold number
of bytes free, and flow control is used, the hold
output is set or xoff is transmitted. When the fifo
space is above the threshold again, the hold out-
put is cleared or xon is transmitted.
When no flow control is wanted, set toinf.
In modereg mode, other values than inf gives hold
whenever there is un-acked data in the register
r rec data.
inf: No flow control
thr32: Threshold is 32 bytes
thr16: Threshold is 16 bytes
thr8: Threshold is 8 bytes

inf=3
thr32=2
thr16=1
thr8=0

26 slave3en Use slave receiver connected to theframe (in
wiresave mode) ordata (in other modes) pins.
For other modes than wiresave and I2S, set tono.
yes: Third slave receiver is used
no: Third slave receiver not used

yes=1
no=0

25 slave2en Use slave receiver connected tostatus pin. For
other modes than wiresave and I2S, set tono.
yes: Second slave receiver is used
no: Second slave receiver not used

yes=1
no=0

24-20:5 iec60958ui len Length of a Unit Interval (half a bit time), in 100
MHz samples.
Set this field to 0 in other than IEC60958 modes.

19 use60958 Use the IEC60958 receiver
yes: IEC60958 mode
no: Other modes

yes=1
no=0

18-17:2 frm src Selects what starts reception of each word.
tx bulk: transmitter bulk-mode frame event
ext: External frame signal
intern: Internal frame time base

tx bulk=2
ext=1
intern=0

16-15:2 mode Selects receiver main mode. See23.4.1for de-
tails.
lospeed: lowspeed mode
hispeed: highspeed mode
wiresave: wiresave mode

lospeed=0
hispeed=1
wiresave=2

1514 CHAPTER 25. INTERNAL REGISTERS

14 usedma Use DMA or register interface as receive data
destination.
yes: Destination is DMA
no: Destination is mode register

yes=1
no=0

13 clk src Select internal or external clock for receiver
ext: External clock is used
intern: Internal clock is used

ext=1
intern=0

12 clk pol Selects polarity of clock edge for data sampling.
Note: When using internal clock with
rw cfg.clk div = 0, positive edges are al-
ways used regardless of this setting. The output
clock can still be inverted byrw cfg.out clk pol
though.
pos: Positive edge is used
neg: Negative edge is used

pos=0
neg=1

11 sh dir Selects shift direction of serial transmission.
Must be set tolsbfirstwhen using wiresave mode.
lsbfirst: LSB is received first
msbfirst: MSB is received first

lsbfirst=0
msbfirst=1

10-5:6 samplesize The size, minus one, of each sample. Ifmodeis
set tolospeed, the size is given in bits, otherwise
it is given in nibbles (bits/4). In wiresave mode,
write the value 3 here (ie 16 bits per sample).

4 eopstop Stop transfer after next received EOP (metadata).
Reception will continue as soon as the rstop inter-
rupt is ack:ed.
yes: Stop transfer at next EOP
no: Do not stop transfer

yes=1
no=0

3 orun stop Stop the transfer in case of overrun.
yes: Stop transfer at overrun
no: Continue as soon as possible after overrun

yes=1
no=0

25.41. SSER 1515

2 stop Start, stop or pause the transfer. After this bit is
written high, partially received data is written to
the DMA and ’eop’ and ’last’ are signalled. Then
the rstop interrupt is issued.
Notes:

1. DMA flush: It takes a while for the DMA
to flush its fifo after EOP, so software has
to wait for the ineop interrupt from DMA
after that stop is written, before accessing
the data.

2. Stop point: All data words that have been
completely clocked in from the serial line
60 ns or more before stop are guaranteed to
be flushed to the DMA. When using slave
receivers, the last word written from each
channel was received in the same clock cy-
cle. When the word length is greater than
16 bits, the sync serial receiver starts writ-
ing data to DMA before the reception of a
word is finished. If such a word is half-
written to DMA when stop is set, the rest
of the word is received and flushed to DMA
before stopping.

3. Metadata: The metadata stored in the data
descriptor when stop or forceeop is used,
is 0xX001, where X is 0byz10, where y
is one if ’stop’ was the reason for writing
EOP, and z is one if forceeop was the rea-
son. Both can be set if both should happen
simultaneously, in that case reception stops
after EOP.

yes: Stop transfer
no: Continue transfer

yes=1
no=0

1516 CHAPTER 25. INTERNAL REGISTERS

1 force eop Force eop to the DMA channel. Unlike thestop
field, force eop doesn’t interrupt the transmis-
sion, only sends EOP to DMA.
Notes: The notes 1 and 3 forstop applies also
here, plus:

1. EOP point: All data words that have been
completely clocked in from the serial line
60 ns or more beforestop are guaranteed
to be flushed to the DMA before the EOP.
Unlike thestopfield, force eoptakes action
immediately. This means that there can
be half-written words in the DMA fifo (if
wordlength> 16 bits and (the word wasn’t
completely received 60 ns before forceeop
or the DMA is full)), and if slave receivers
are used, the last word from each receiver
before EOP need not have arrived at the
same time (if the words weren’t completely
received 60 ns before forceeop, or if the
DMA has become full before all words
were flushed).

2. After this bit has been set, wait for the
DMA in eop interrupt, before writing this
bit low again.

yes: Signal EOP as soon as possible
no: No operation

yes=1
no=0

0 rec en Turns the receiver on or off
yes: Enable receiver
no: Disable receiver

yes=1
no=0

25.41. SSER 1517

25.41.5 rw tr data

Address 0x10

Default 0x00000000

Type Read/Write

Description Transmit data. Each write to this register will cause one data word to be sent.
Notes:

1. The transmitter expects that the first word has been written here before the trans-
mitter is enabled.

2. The trdy interrupt must be awaited before writing this register (except when writ-
ing the first word before enabling the transmitter).

3. Only use this register whenrw tr cfg.usedmais disabled.

Bit(s) Name Description Value
16 md Type of data in the data field. Must always beno when

rw tr cfg.usemd is set tono.
Note: Make sure this field is not set before disabling the trans-
mitter in modereg driven mode, otherwise infinite false mdsent
interrupts can occur.
yes: Metadata
no: Ordinary data

yes=1
no=0

15-0:16 data Data to transmit

1518 CHAPTER 25. INTERNAL REGISTERS

25.41.6 r rec data

Address 0x14

Default
Type Read

Description Receive data and external pin read values.

Bit(s) Name Description Value
22 clk in Level of theclk input pin

21 datain Level of thedata input pin

20 din Level of thedin input pin

19 frame in Level of theframe input pin

18 statusin Level of thestatus input pin

17 ext clk Level of theext clk input pin

16 md Type of data in the data field.
yes: Metadata
no: Ordinary data

yes=1
no=0

15-0:16 data Received data. An ’rdav’ interrupt will be issued when data
is available. An acknowledge of this interrupt also acknowl-
edges that this field, and themd field, have been read (so
they can be re-used).

25.41. SSER 1519

25.41.7 rw extra

Address 0x18

Default 0x00000000

Type Read/Write

Description This register contains fields for clock gating in highspeed mode, and a delay option for
output data.

Bit(s) Name Description Value
26-22:5 dout delay This field specifies a delay for the data output atdout.

If greater than zero, the data will be delayed the speci-
fied number of 100 MHz clock cycles before being out-
put, thus adding extra hold time after the clock edge
and shortening the setup time by the same amount.
The hold time applied must not be longer than the
clock period used, otherwise output data pulses might
be missed.
If using dout delaywhen the transmitter is clocked by
an external clock, note that the data atdout will be re-
sampled by the internal clock before being output. This
leads to that the delay will vary betweendout delay-1
anddout delaycycles. Further, adout delayvalue of 1
must not be used with external clocking.

21 clkon en If this field is enabled, the clock output at theclk pin
will be gated away until the fieldrw cfg.prepareis writ-
ten low. The clock will then be enabled in a clean
way. The first visible clock edge will be positive if
rw cfg.out clk pol is pos, negative otherwise.
yes: Special output-clock-on feature enabled
no: normal behavior

yes=1
no=0

20 clkoff en If this field is enabled, the output clock will be au-
tomatically turned off after a counter, started by the
special clock turn-on feature, counting down from the
clkoff cyclesvalue, reaches zero. The edges counted,
and the last visible edge, are of the opposite polarity
compared to the first visible edge.
yes: Special output-clock-off feature enabled
no: normal behavior

yes=1
no=0

19-0:20 clkoff cycles Number of output clock edges minus one, of the type
specified byrw cfg.out clk pol, to output before clock
is turned off.

1520 CHAPTER 25. INTERNAL REGISTERS

25.41.8 rw intr mask

Address 0x1c

Default 0x00000000

Type Read/Write

Description Interrupt mask. Interrupts from sync serial port. Specifies which interrupts are enabled
in this subsystem. Only enabled interrupts will propagate to the central interrupt han-
dler. In C code the relationship betweenrw intr mask, r intr andr maskedintr can be
expressed as:
r maskedintr = r intr & rw intr mask

Bit(s) Name Description Value
8 r958err Enable/disable r958err interrupt. IEC60958 receiver error.

yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

7 md sent Enable/disable mdsent interrupt. Metadata sent.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

6 md rec Enable/disable mdrec interrupt. Metadata received.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

5 orun Enable/disable orun interrupt. Receiver overrun error.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

4 urun Enable/disable urun interrupt. Transmitter underrun error.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

3 rstop Enable/disable rstop interrupt. Receiver stopped.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

2 tidle Enable/disable tidle interrupt. Transmitter idle.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

1 rdav Enable/disable rdav interrupt. Receiver data available.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

0 trdy Enable/disable trdy interrupt. Transmitter ready for new data.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

25.41. SSER 1521

25.41.9 rw ack intr

Address 0x20

Default
Type Read/Write

Description Acknowledge interrupts. Interrupts from sync serial port.

Bit(s) Name Description Value
8 r958err Acknowledge r958err interrupt.

yes: Acknowledge interrupt
no: No operation

yes=1
no=0

7 md sent Acknowledge mdsent interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

6 md rec Acknowledge mdrec interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

5 orun Acknowledge orun interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

4 urun Acknowledge urun interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

3 rstop Acknowledge rstop interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

2 tidle Acknowledge tidle interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

1 rdav Acknowledge rdav interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

0 trdy Acknowledge trdy interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

1522 CHAPTER 25. INTERNAL REGISTERS

25.41.10 r intr

Address 0x24

Default
Type Read

Description Interrupts before the mask. Interrupts from sync serial port. Makes it possible to deter-
mine if an interrupt is active even though it is not enabled in the mask (rw intr mask).
In C code the relationship betweenrw intr mask, r intr andr maskedintr can be ex-
pressed as:
r maskedintr = r intr & rw intr mask

Bit(s) Name Description Value
8 r958err Interrupt r958err active.

yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

7 md sent Interrupt mdsent active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

6 md rec Interrupt mdrec active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

5 orun Interrupt orun active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

4 urun Interrupt urun active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

3 rstop Interrupt rstop active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

2 tidle Interrupt tidle active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1 rdav Interrupt rdav active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

0 trdy Interrupt trdy active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

25.41. SSER 1523

25.41.11 r masked intr

Address 0x28

Default
Type Read

Description Interrupts after the mask. Interrupts from sync serial port. Tells which interrupts are
active and enabled (inrw intr mask). In C code the relationship betweenrw intr mask,
r intr andr maskedintr can be expressed as:
r maskedintr = r intr & rw intr mask

Bit(s) Name Description Value
8 r958err Interrupt r958err active and enabled.

yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

7 md sent Interrupt mdsent active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

6 md rec Interrupt mdrec active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

5 orun Interrupt orun active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

4 urun Interrupt urun active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

3 rstop Interrupt rstop active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

2 tidle Interrupt tidle active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1 rdav Interrupt rdav active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

0 trdy Interrupt trdy active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1524 CHAPTER 25. INTERNAL REGISTERS

25.42 strcop

Instance Base Address
strcop 0xb0030000

25.42.1 rw cfg

Address 0x0

Default 0x00000002

Type Read/Write

Description Crypto accelerator configuration register.

Bit(s) Name Description Value
5 en Enable/disable the crypto accelerator.

yes: Enable
no: Disable

yes=1
no=0

4 ignoresync If this field is set, the sync field in the DMA in channel
descriptors will be ignored. Data at the out channel will
not be synchronized with data at the in channel.
yes: Ignore the sync field
no: Use the sync field

yes=1
no=0

3 ipend IP checksum result endianness.
big: Big endian (network order)
little: Little endian

big=1
little=0

2 td1 3DES 1st round mode during encryption. Default is en-
crypt.
d: Decrypt
e: Encrypt

d=1
e=0

1 td2 3DES 2nd round mode during encryption. Default is de-
crypt.
d: Decrypt
e: Encrypt

d=1
e=0

0 td3 3DES 3rd round mode during encryption. Default is en-
crypt.
d: Decrypt
e: Encrypt

d=1
e=0

25.43. STRMUX 1525

25.43 strmux

Instance Base Address
strmux 0xb003a000

25.43.1 rw cfg

Address 0x0

Default 0x00000000

Type Read/Write

Description Configuration register for the connection between the on chip I/O blocks and the DMA
channels.

Bit(s) Name Description Value
29-27:3 dma9 Connections for DMA channel 9 (in).

off: Not connected
ext3: External DMA channel 3
strcop: Crypto accelerator
ser3: Asynchronous serial port 3

off=0
ext3=1
strcop=2
ser3=3

26-24:3 dma8 Connections for DMA channel 8 (out).
off: Not connected
ext2: External DMA channel 2
strcop: Crypto accelerator
ser3: Asynchronous serial port 3

off=0
ext2=1
strcop=2
ser3=3

23-21:3 dma7 Connections for DMA channel 7 (in).
off: Not connected
ext1: External DMA channel 1
ser0: Asynchronous serial port 0
sser1: Synchronous serial port 1
eth1: Ethernet interface 1

off=0
ext1=1
ser0=2
sser1=3
eth1=4

20-18:3 dma6 Connections for DMA channel 6 (out).
off: Not connected
ext0: External DMA channel 0
ser0: Asynchronous serial port 0
sser1: Synchronous serial port 1
eth1: Ethernet interface 1

off=0
ext0=1
ser0=2
sser1=3
eth1=4

17-15:3 dma5 Connections for DMA channel 5 (in).
off: Not connected
iop1: I/O processor DMA Communicator block 1
ser1: Asynchronous serial port 1
sser0: Synchronous serial port 0

off=0
iop1=1
ser1=2
sser0=3

1526 CHAPTER 25. INTERNAL REGISTERS

14-12:3 dma4 Connections for DMA channel 4 (out).
off: Not connected
iop1: I/O processor DMA Communicator block 1
ser1: Asynchronous serial port 1
sser0: Synchronous serial port 0

off=0
iop1=1
ser1=2
sser0=3

11-9:3 dma3 Connections for DMA channel 3 (in).
off: Not connected
ext3: External DMA channel 3
iop0: I/O processor DMA Communicator block 0
ata: ATA interface
ser2: Asynchronous serial port 2

off=0
ext3=1
iop0=2
ata=3
ser2=4

8-6:3 dma2 Connections for DMA channel 2 (out).
off: Not connected
ext2: External DMA channel 2
iop0: I/O processor DMA Communicator block 0
ata: ATA interface
ser2: Asynchronous serial port 2

off=0
ext2=1
iop0=2
ata=3
ser2=4

5-3:3 dma1 Connections for DMA channel 1 (in).
off: Not connected
eth0: Ethernet interface 0

off=0
eth0=1

2-0:3 dma0 Connections for DMA channel 0 (out).
off: Not connected
eth0: Ethernet interface 0

off=0
eth0=1

25.44. TIMER 1527

25.44 timer

Instance Base Address
timer 0xb001e000

25.44.1 rw tmr0 div

Address 0x0

Default
Type Read/Write

Description Timer tmr0 divide factor. The timer counts down from this value to 1, then reloads the
divide factor, generates the tmr0 interrupt and continues. The register value 0 results in
a divide factor of 232.

1528 CHAPTER 25. INTERNAL REGISTERS

25.44.2 r tmr0 data

Address 0x4

Default
Type Read

Description Current value of timer tmr0.

25.44. TIMER 1529

25.44.3 rw tmr0 ctrl

Address 0x8

Default 0x00000000

Type Read/Write

Description Timer tmr0 control register.

Bit(s) Name Description Value
4-2:3 freq Selects the input clock frequency to the timer.

off: No clock
ext: External clock input
f29 493: 29.493 MHz
f32: 32.000 MHz
f32 768: 32.768 MHz
f100: 100 MHz

off=0
ext=1
f29 493=4
f32=5
f32 768=6
f100=7

1-0:2 op Starts/stops the timer.
ld: The timer loads the start value
hold: The timer stops counting, and holds its value
run: The timer counts downwards

ld=0
hold=1
run=2

1530 CHAPTER 25. INTERNAL REGISTERS

25.44.4 rw tmr1 div

Address 0x10

Default
Type Read/Write

Description Timer tmr1 divide factor. The timer counts down from this value to 1, then reloads the
divide factor, generates the tmr1 interrupt and continues. The register value 0 results in
a divide factor of 232.

25.44. TIMER 1531

25.44.5 r tmr1 data

Address 0x14

Default
Type Read

Description Current value of timer tmr1.

1532 CHAPTER 25. INTERNAL REGISTERS

25.44.6 rw tmr1 ctrl

Address 0x18

Default 0x00000000

Type Read/Write

Description Timer tmr1 control register.

Bit(s) Name Description Value
4-2:3 freq Selects the input clock frequency to the timer.

off: No clock
ext: External clock input
f29 493: 29.493 MHz
f32: 32.000 MHz
f32 768: 32.768 MHz
f100: 100 MHz

off=0
ext=1
f29 493=4
f32=5
f32 768=6
f100=7

1-0:2 op Starts/stops the timer.
ld: The timer loads the start value
hold: The timer stops counting, and holds its value
run: The timer counts downwards

ld=0
hold=1
run=2

25.44. TIMER 1533

25.44.7 rs cnt data/r cnt data

Address 0x20/0x24

Default
Type Read with side effects/Read

Description Counter cnt data. Read with side effects will clear thecntfield in ther cnt dataregister.

Bit(s) Name Description Value
31-24:8 cnt Counter value. The counter is incremented by 1 for each input

clock pulse, as selected in therw cnt cfg register. The counter sat-
urates at 255. Thecnt interrupt is generated whenever the counter
is non-zero. A read with side effects will clear the counter.

23-0:24 tmr Timer value. When therw cnt cfg register selects a timer output
as the input clock, this field contains the lower 24 bits of that timer.
When the external clock is selected, or the counter clock is off, this
field contains the lower 24 bits of ther time register.

1534 CHAPTER 25. INTERNAL REGISTERS

25.44.8 rw cnt cfg

Address 0x28

Default 0x00000000

Type Read/Write

Description Configuration of input clock for counter cnt. This configuration also affects which value
that will be read from thetmr field of ther cnt dataregister.

Bit(s) Name Description Value
1-0:2 clk Selects clock input.

off: Clock off, counter holds its value
ext: External clock input
tmr0: Take clock from tmr0
tmr1: Take clock from tmr1

off=0
ext=1
tmr0=2
tmr1=3

25.44. TIMER 1535

25.44.9 rw trig

Address 0x30

Default
Type Read/Write

Description This register contains a trig point value, which is compared with one of the timers tmr0
or tmr1, or with the reg:rtime register. The trig interrupt is generated when the values
match and the selected timer (tmr0, tmr1 orr time) is clocked and running.

1536 CHAPTER 25. INTERNAL REGISTERS

25.44.10 rw trig cfg

Address 0x34

Default 0x00000000

Type Read/Write

Description Configuration register for trig point.

Bit(s) Name Description Value
1-0:2 tmr Selects which timer to compare the trig point value with.

off: Trig point disabled
time: Trig point compared with reg:rtime
tmr0: Trig point compared with tmr0
tmr1: Trig point compared with tmr1

off=0
time=1
tmr0=2
tmr1=3

25.44. TIMER 1537

25.44.11 r time

Address 0x38

Default
Type Read

Description This register contains a 32-bit binary counter that runs continuously with a 100 MHz
input clock. It starts from 0 at system reset, and counts upwards. Before the reg:rtime
register has reached 65536, it may be initialized to 0xffffff00 by theen field of the
rw testregister.

1538 CHAPTER 25. INTERNAL REGISTERS

25.44.12 rw out

Address 0x3c

Default 0x00000000

Type Read/Write

Description Selects which timer that controls the timer output. The timer output toggles each time
the selected timer wraps.

Bit(s) Name Description Value
1-0:2 tmr Timer output action.

off: Sets the timer output to 0
hold: Timer output holds its value
tmr0: Toggle when tmr0 wraps
tmr1: Toggle when tmr1 wraps

off=0
hold=1
tmr0=2
tmr1=3

25.44. TIMER 1539

25.44.13 rw wd ctrl

Address 0x40

Default
Type Read/Write

Description Watchdog control register. While the watchdog is running, further accesses to this reg-
ister will only take effect if thekey value matches the bitwise inverse of the previously
given key value.

Bit(s) Name Description Value
15-9:7 key This field contains a key value for the watchdog timer. The key

value is stored (not readable) when the watchdog is started.

8 cmd Start/stop command to the watchdog timer.
stop: Stop the watchdog timer
start: Start/restart the watchdog timer

stop=0
start=1

7-0:8 cnt Start value for the watchdog timer. The watchdog counts down-
wards from the selected start value, with a frequency of 763 Hz.
When it reaches 1, it generates a non-maskable interrupt, and when
it counts down to 0 it resets the chip. Setting a start value of 0 will
give a count value of 256.

1540 CHAPTER 25. INTERNAL REGISTERS

25.44.14 r wd stat

Address 0x44

Default
Type Read

Description Watchdog status register.

Bit(s) Name Description Value
8 cmd Shows the last valid command given to the watchdog.

stop: Stop the watchdog timer
start: Start/restart the watchdog timer

stop=0
start=1

7-0:8 cnt The current counter value of the watchdog.

25.44. TIMER 1541

25.44.15 rw intr mask

Address 0x48

Default 0x00000000

Type Read/Write

Description Interrupt mask. Timer interrupts. Specifies which interrupts are enabled in this subsys-
tem. Only enabled interrupts will propagate to the central interrupt handler. In C code
the relationship betweenrw intr mask, r intr andr maskedintr can be expressed as:
r maskedintr = r intr & rw intr mask

Bit(s) Name Description Value
3 trig Enable/disable trig interrupt. Interrupt from trig point.

yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

2 cnt Enable/disable cnt interrupt. Interrupt from counter cnt.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

1 tmr1 Enable/disable tmr1 interrupt. Interrupt from timer tmr1.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

0 tmr0 Enable/disable tmr0 interrupt. Interrupt from timer tmr0.
yes: Enable interrupt
no: Disable interrupt

yes=1
no=0

1542 CHAPTER 25. INTERNAL REGISTERS

25.44.16 rw ack intr

Address 0x4c

Default
Type Read/Write

Description Acknowledge interrupts. Timer interrupts.

Bit(s) Name Description Value
3 trig Acknowledge trig interrupt.

yes: Acknowledge interrupt
no: No operation

yes=1
no=0

2 cnt Acknowledge cnt interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

1 tmr1 Acknowledge tmr1 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

0 tmr0 Acknowledge tmr0 interrupt.
yes: Acknowledge interrupt
no: No operation

yes=1
no=0

25.44. TIMER 1543

25.44.17 r intr

Address 0x50

Default
Type Read

Description Interrupts before the mask. Timer interrupts. Makes it possible to determine if an
interrupt is active even though it is not enabled in the mask (rw intr mask). In C code
the relationship betweenrw intr mask, r intr andr maskedintr can be expressed as:
r maskedintr = r intr & rw intr mask

Bit(s) Name Description Value
3 trig Interrupt trig active.

yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

2 cnt Interrupt cnt active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1 tmr1 Interrupt tmr1 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

0 tmr0 Interrupt tmr0 active.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1544 CHAPTER 25. INTERNAL REGISTERS

25.44.18 r masked intr

Address 0x54

Default
Type Read

Description Interrupts after the mask. Timer interrupts. Tells which interrupts are active and en-
abled (inrw intr mask). In C code the relationship betweenrw intr mask, r intr and
r maskedintr can be expressed as:
r maskedintr = r intr & rw intr mask

Bit(s) Name Description Value
3 trig Interrupt trig active and enabled.

yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

2 cnt Interrupt cnt active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

1 tmr1 Interrupt tmr1 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

0 tmr0 Interrupt tmr0 active and enabled.
yes: Interrupt is active
no: Interrupt is inactive

yes=1
no=0

25.44. TIMER 1545

25.44.19 rw test

Address 0x58

Default 0x00000000

Type Read/Write

Description Test mode register. Used to speed up testing of the read-only timer and the watchdog
timer. The test mode will be permanently disabled if thedis bit is set, or whenr time
reaches 65536.

Bit(s) Name Description Value
1 en Enable timer test mode.

no: Normal operation mode
yes: Timer test mode

no=0
yes=1

0 dis Permanently disable test mode. Once set, this field can only be
cleared by system reset.
no: Test mode allowed
yes: Test mode permanently disabled

no=0
yes=1

1546 CHAPTER 25. INTERNAL REGISTERS

25.45 Register addresses

Address Scope Instance Register
0xac000000 bif slaveext bif slaveext r ch0 seqdata

0xac000004 bif slaveext bif slaveext r ch0 data

0xac000008 bif slaveext bif slaveext rw ch0 addr

0xac00000c bif slaveext bif slaveext r ch0 stat

0xac00000c bif slaveext bif slaveext rw ch0 ctrl

0xac000010 bif slaveext bif slaveext rw ch1 seqdata

0xac000014 bif slaveext bif slaveext rw ch1 data

0xac000018 bif slaveext bif slaveext rw ch1 addr

0xac00001c bif slaveext bif slaveext r ch1 stat

0xac00001c bif slaveext bif slaveext rw ch1 ctrl

0xac000020 bif slaveext bif slaveext r ch2 seqdata

0xac000024 bif slaveext bif slaveext r ch2 data

0xac000028 bif slaveext bif slaveext rw ch2 addr

0xac00002c bif slaveext bif slaveext r ch2 stat

0xac00002c bif slaveext bif slaveext rw ch2 ctrl

0xac000030 bif slaveext bif slaveext rw ch3 seqdata

0xac000034 bif slaveext bif slaveext rw ch3 data

0xac000038 bif slaveext bif slaveext rw ch3 addr

0xac00003c bif slaveext bif slaveext r ch3 stat

0xac00003c bif slaveext bif slaveext rw ch3 ctrl

0xb0000000 dma dma0 rw data

0xb0000004 dma dma0 rw datanext

0xb0000008 dma dma0 rw databuf

0xb000000c dma dma0 rw datactrl

0xb0000010 dma dma0 rw datastat

0xb0000014 dma dma0 rw datamd

0xb0000018 dma dma0 rw datamd s

0xb000001c dma dma0 rw dataafter

0xb0000020 dma dma0 rw ctxt

0xb0000024 dma dma0 rw ctxt next

0xb0000028 dma dma0 rw ctxt ctrl

0xb000002c dma dma0 rw ctxt stat

0xb0000030 dma dma0 rw ctxt md0

0xb0000034 dma dma0 rw ctxt md0 s

0xb0000038 dma dma0 rw ctxt md1

0xb000003c dma dma0 rw ctxt md1 s

0xb0000040 dma dma0 rw ctxt md2

0xb0000044 dma dma0 rw ctxt md2 s

25.45. REGISTER ADDRESSES 1547

0xb0000048 dma dma0 rw ctxt md3

0xb000004c dma dma0 rw ctxt md3 s

0xb0000050 dma dma0 rw ctxt md4

0xb0000054 dma dma0 rw ctxt md4 s

0xb0000058 dma dma0 rw saveddata

0xb000005c dma dma0 rw saveddatabuf

0xb0000060 dma dma0 rw group

0xb0000064 dma dma0 rw groupnext

0xb0000068 dma dma0 rw groupctrl

0xb000006c dma dma0 rw groupstat

0xb0000070 dma dma0 rw groupmd

0xb0000074 dma dma0 rw groupmd s

0xb0000078 dma dma0 rw groupup

0xb000007c dma dma0 rw groupdown

0xb0000080 dma dma0 rw cmd

0xb0000084 dma dma0 rw cfg

0xb0000088 dma dma0 rw stat

0xb000008c dma dma0 rw intr mask

0xb0000090 dma dma0 rw ack intr

0xb0000094 dma dma0 r intr

0xb0000098 dma dma0 r maskedintr

0xb000009c dma dma0 rw streamcmd

0xb0002000 dma dma1 rw data

0xb0002004 dma dma1 rw datanext

0xb0002008 dma dma1 rw databuf

0xb000200c dma dma1 rw datactrl

0xb0002010 dma dma1 rw datastat

0xb0002014 dma dma1 rw datamd

0xb0002018 dma dma1 rw datamd s

0xb000201c dma dma1 rw dataafter

0xb0002020 dma dma1 rw ctxt

0xb0002024 dma dma1 rw ctxt next

0xb0002028 dma dma1 rw ctxt ctrl

0xb000202c dma dma1 rw ctxt stat

0xb0002030 dma dma1 rw ctxt md0

0xb0002034 dma dma1 rw ctxt md0 s

0xb0002038 dma dma1 rw ctxt md1

0xb000203c dma dma1 rw ctxt md1 s

0xb0002040 dma dma1 rw ctxt md2

0xb0002044 dma dma1 rw ctxt md2 s

0xb0002048 dma dma1 rw ctxt md3

1548 CHAPTER 25. INTERNAL REGISTERS

0xb000204c dma dma1 rw ctxt md3 s

0xb0002050 dma dma1 rw ctxt md4

0xb0002054 dma dma1 rw ctxt md4 s

0xb0002058 dma dma1 rw saveddata

0xb000205c dma dma1 rw saveddatabuf

0xb0002060 dma dma1 rw group

0xb0002064 dma dma1 rw groupnext

0xb0002068 dma dma1 rw groupctrl

0xb000206c dma dma1 rw groupstat

0xb0002070 dma dma1 rw groupmd

0xb0002074 dma dma1 rw groupmd s

0xb0002078 dma dma1 rw groupup

0xb000207c dma dma1 rw groupdown

0xb0002080 dma dma1 rw cmd

0xb0002084 dma dma1 rw cfg

0xb0002088 dma dma1 rw stat

0xb000208c dma dma1 rw intr mask

0xb0002090 dma dma1 rw ack intr

0xb0002094 dma dma1 r intr

0xb0002098 dma dma1 r maskedintr

0xb000209c dma dma1 rw streamcmd

0xb0004000 dma dma2 rw data

0xb0004004 dma dma2 rw datanext

0xb0004008 dma dma2 rw databuf

0xb000400c dma dma2 rw datactrl

0xb0004010 dma dma2 rw datastat

0xb0004014 dma dma2 rw datamd

0xb0004018 dma dma2 rw datamd s

0xb000401c dma dma2 rw dataafter

0xb0004020 dma dma2 rw ctxt

0xb0004024 dma dma2 rw ctxt next

0xb0004028 dma dma2 rw ctxt ctrl

0xb000402c dma dma2 rw ctxt stat

0xb0004030 dma dma2 rw ctxt md0

0xb0004034 dma dma2 rw ctxt md0 s

0xb0004038 dma dma2 rw ctxt md1

0xb000403c dma dma2 rw ctxt md1 s

0xb0004040 dma dma2 rw ctxt md2

0xb0004044 dma dma2 rw ctxt md2 s

0xb0004048 dma dma2 rw ctxt md3

0xb000404c dma dma2 rw ctxt md3 s

25.45. REGISTER ADDRESSES 1549

0xb0004050 dma dma2 rw ctxt md4

0xb0004054 dma dma2 rw ctxt md4 s

0xb0004058 dma dma2 rw saveddata

0xb000405c dma dma2 rw saveddatabuf

0xb0004060 dma dma2 rw group

0xb0004064 dma dma2 rw groupnext

0xb0004068 dma dma2 rw groupctrl

0xb000406c dma dma2 rw groupstat

0xb0004070 dma dma2 rw groupmd

0xb0004074 dma dma2 rw groupmd s

0xb0004078 dma dma2 rw groupup

0xb000407c dma dma2 rw groupdown

0xb0004080 dma dma2 rw cmd

0xb0004084 dma dma2 rw cfg

0xb0004088 dma dma2 rw stat

0xb000408c dma dma2 rw intr mask

0xb0004090 dma dma2 rw ack intr

0xb0004094 dma dma2 r intr

0xb0004098 dma dma2 r maskedintr

0xb000409c dma dma2 rw streamcmd

0xb0006000 dma dma3 rw data

0xb0006004 dma dma3 rw datanext

0xb0006008 dma dma3 rw databuf

0xb000600c dma dma3 rw datactrl

0xb0006010 dma dma3 rw datastat

0xb0006014 dma dma3 rw datamd

0xb0006018 dma dma3 rw datamd s

0xb000601c dma dma3 rw dataafter

0xb0006020 dma dma3 rw ctxt

0xb0006024 dma dma3 rw ctxt next

0xb0006028 dma dma3 rw ctxt ctrl

0xb000602c dma dma3 rw ctxt stat

0xb0006030 dma dma3 rw ctxt md0

0xb0006034 dma dma3 rw ctxt md0 s

0xb0006038 dma dma3 rw ctxt md1

0xb000603c dma dma3 rw ctxt md1 s

0xb0006040 dma dma3 rw ctxt md2

0xb0006044 dma dma3 rw ctxt md2 s

0xb0006048 dma dma3 rw ctxt md3

0xb000604c dma dma3 rw ctxt md3 s

0xb0006050 dma dma3 rw ctxt md4

1550 CHAPTER 25. INTERNAL REGISTERS

0xb0006054 dma dma3 rw ctxt md4 s

0xb0006058 dma dma3 rw saveddata

0xb000605c dma dma3 rw saveddatabuf

0xb0006060 dma dma3 rw group

0xb0006064 dma dma3 rw groupnext

0xb0006068 dma dma3 rw groupctrl

0xb000606c dma dma3 rw groupstat

0xb0006070 dma dma3 rw groupmd

0xb0006074 dma dma3 rw groupmd s

0xb0006078 dma dma3 rw groupup

0xb000607c dma dma3 rw groupdown

0xb0006080 dma dma3 rw cmd

0xb0006084 dma dma3 rw cfg

0xb0006088 dma dma3 rw stat

0xb000608c dma dma3 rw intr mask

0xb0006090 dma dma3 rw ack intr

0xb0006094 dma dma3 r intr

0xb0006098 dma dma3 r maskedintr

0xb000609c dma dma3 rw streamcmd

0xb0008000 dma dma4 rw data

0xb0008004 dma dma4 rw datanext

0xb0008008 dma dma4 rw databuf

0xb000800c dma dma4 rw datactrl

0xb0008010 dma dma4 rw datastat

0xb0008014 dma dma4 rw datamd

0xb0008018 dma dma4 rw datamd s

0xb000801c dma dma4 rw dataafter

0xb0008020 dma dma4 rw ctxt

0xb0008024 dma dma4 rw ctxt next

0xb0008028 dma dma4 rw ctxt ctrl

0xb000802c dma dma4 rw ctxt stat

0xb0008030 dma dma4 rw ctxt md0

0xb0008034 dma dma4 rw ctxt md0 s

0xb0008038 dma dma4 rw ctxt md1

0xb000803c dma dma4 rw ctxt md1 s

0xb0008040 dma dma4 rw ctxt md2

0xb0008044 dma dma4 rw ctxt md2 s

0xb0008048 dma dma4 rw ctxt md3

0xb000804c dma dma4 rw ctxt md3 s

0xb0008050 dma dma4 rw ctxt md4

0xb0008054 dma dma4 rw ctxt md4 s

25.45. REGISTER ADDRESSES 1551

0xb0008058 dma dma4 rw saveddata

0xb000805c dma dma4 rw saveddatabuf

0xb0008060 dma dma4 rw group

0xb0008064 dma dma4 rw groupnext

0xb0008068 dma dma4 rw groupctrl

0xb000806c dma dma4 rw groupstat

0xb0008070 dma dma4 rw groupmd

0xb0008074 dma dma4 rw groupmd s

0xb0008078 dma dma4 rw groupup

0xb000807c dma dma4 rw groupdown

0xb0008080 dma dma4 rw cmd

0xb0008084 dma dma4 rw cfg

0xb0008088 dma dma4 rw stat

0xb000808c dma dma4 rw intr mask

0xb0008090 dma dma4 rw ack intr

0xb0008094 dma dma4 r intr

0xb0008098 dma dma4 r maskedintr

0xb000809c dma dma4 rw streamcmd

0xb000a000 dma dma5 rw data

0xb000a004 dma dma5 rw datanext

0xb000a008 dma dma5 rw databuf

0xb000a00c dma dma5 rw datactrl

0xb000a010 dma dma5 rw datastat

0xb000a014 dma dma5 rw datamd

0xb000a018 dma dma5 rw datamd s

0xb000a01c dma dma5 rw dataafter

0xb000a020 dma dma5 rw ctxt

0xb000a024 dma dma5 rw ctxt next

0xb000a028 dma dma5 rw ctxt ctrl

0xb000a02c dma dma5 rw ctxt stat

0xb000a030 dma dma5 rw ctxt md0

0xb000a034 dma dma5 rw ctxt md0 s

0xb000a038 dma dma5 rw ctxt md1

0xb000a03c dma dma5 rw ctxt md1 s

0xb000a040 dma dma5 rw ctxt md2

0xb000a044 dma dma5 rw ctxt md2 s

0xb000a048 dma dma5 rw ctxt md3

0xb000a04c dma dma5 rw ctxt md3 s

0xb000a050 dma dma5 rw ctxt md4

0xb000a054 dma dma5 rw ctxt md4 s

0xb000a058 dma dma5 rw saveddata

1552 CHAPTER 25. INTERNAL REGISTERS

0xb000a05c dma dma5 rw saveddatabuf

0xb000a060 dma dma5 rw group

0xb000a064 dma dma5 rw groupnext

0xb000a068 dma dma5 rw groupctrl

0xb000a06c dma dma5 rw groupstat

0xb000a070 dma dma5 rw groupmd

0xb000a074 dma dma5 rw groupmd s

0xb000a078 dma dma5 rw groupup

0xb000a07c dma dma5 rw groupdown

0xb000a080 dma dma5 rw cmd

0xb000a084 dma dma5 rw cfg

0xb000a088 dma dma5 rw stat

0xb000a08c dma dma5 rw intr mask

0xb000a090 dma dma5 rw ack intr

0xb000a094 dma dma5 r intr

0xb000a098 dma dma5 r maskedintr

0xb000a09c dma dma5 rw streamcmd

0xb000c000 dma dma6 rw data

0xb000c004 dma dma6 rw datanext

0xb000c008 dma dma6 rw databuf

0xb000c00c dma dma6 rw datactrl

0xb000c010 dma dma6 rw datastat

0xb000c014 dma dma6 rw datamd

0xb000c018 dma dma6 rw datamd s

0xb000c01c dma dma6 rw dataafter

0xb000c020 dma dma6 rw ctxt

0xb000c024 dma dma6 rw ctxt next

0xb000c028 dma dma6 rw ctxt ctrl

0xb000c02c dma dma6 rw ctxt stat

0xb000c030 dma dma6 rw ctxt md0

0xb000c034 dma dma6 rw ctxt md0 s

0xb000c038 dma dma6 rw ctxt md1

0xb000c03c dma dma6 rw ctxt md1 s

0xb000c040 dma dma6 rw ctxt md2

0xb000c044 dma dma6 rw ctxt md2 s

0xb000c048 dma dma6 rw ctxt md3

0xb000c04c dma dma6 rw ctxt md3 s

0xb000c050 dma dma6 rw ctxt md4

0xb000c054 dma dma6 rw ctxt md4 s

0xb000c058 dma dma6 rw saveddata

0xb000c05c dma dma6 rw saveddatabuf

25.45. REGISTER ADDRESSES 1553

0xb000c060 dma dma6 rw group

0xb000c064 dma dma6 rw groupnext

0xb000c068 dma dma6 rw groupctrl

0xb000c06c dma dma6 rw groupstat

0xb000c070 dma dma6 rw groupmd

0xb000c074 dma dma6 rw groupmd s

0xb000c078 dma dma6 rw groupup

0xb000c07c dma dma6 rw groupdown

0xb000c080 dma dma6 rw cmd

0xb000c084 dma dma6 rw cfg

0xb000c088 dma dma6 rw stat

0xb000c08c dma dma6 rw intr mask

0xb000c090 dma dma6 rw ack intr

0xb000c094 dma dma6 r intr

0xb000c098 dma dma6 r maskedintr

0xb000c09c dma dma6 rw streamcmd

0xb000e000 dma dma7 rw data

0xb000e004 dma dma7 rw datanext

0xb000e008 dma dma7 rw databuf

0xb000e00c dma dma7 rw datactrl

0xb000e010 dma dma7 rw datastat

0xb000e014 dma dma7 rw datamd

0xb000e018 dma dma7 rw datamd s

0xb000e01c dma dma7 rw dataafter

0xb000e020 dma dma7 rw ctxt

0xb000e024 dma dma7 rw ctxt next

0xb000e028 dma dma7 rw ctxt ctrl

0xb000e02c dma dma7 rw ctxt stat

0xb000e030 dma dma7 rw ctxt md0

0xb000e034 dma dma7 rw ctxt md0 s

0xb000e038 dma dma7 rw ctxt md1

0xb000e03c dma dma7 rw ctxt md1 s

0xb000e040 dma dma7 rw ctxt md2

0xb000e044 dma dma7 rw ctxt md2 s

0xb000e048 dma dma7 rw ctxt md3

0xb000e04c dma dma7 rw ctxt md3 s

0xb000e050 dma dma7 rw ctxt md4

0xb000e054 dma dma7 rw ctxt md4 s

0xb000e058 dma dma7 rw saveddata

0xb000e05c dma dma7 rw saveddatabuf

0xb000e060 dma dma7 rw group

1554 CHAPTER 25. INTERNAL REGISTERS

0xb000e064 dma dma7 rw groupnext

0xb000e068 dma dma7 rw groupctrl

0xb000e06c dma dma7 rw groupstat

0xb000e070 dma dma7 rw groupmd

0xb000e074 dma dma7 rw groupmd s

0xb000e078 dma dma7 rw groupup

0xb000e07c dma dma7 rw groupdown

0xb000e080 dma dma7 rw cmd

0xb000e084 dma dma7 rw cfg

0xb000e088 dma dma7 rw stat

0xb000e08c dma dma7 rw intr mask

0xb000e090 dma dma7 rw ack intr

0xb000e094 dma dma7 r intr

0xb000e098 dma dma7 r maskedintr

0xb000e09c dma dma7 rw streamcmd

0xb0010000 dma dma8 rw data

0xb0010004 dma dma8 rw datanext

0xb0010008 dma dma8 rw databuf

0xb001000c dma dma8 rw datactrl

0xb0010010 dma dma8 rw datastat

0xb0010014 dma dma8 rw datamd

0xb0010018 dma dma8 rw datamd s

0xb001001c dma dma8 rw dataafter

0xb0010020 dma dma8 rw ctxt

0xb0010024 dma dma8 rw ctxt next

0xb0010028 dma dma8 rw ctxt ctrl

0xb001002c dma dma8 rw ctxt stat

0xb0010030 dma dma8 rw ctxt md0

0xb0010034 dma dma8 rw ctxt md0 s

0xb0010038 dma dma8 rw ctxt md1

0xb001003c dma dma8 rw ctxt md1 s

0xb0010040 dma dma8 rw ctxt md2

0xb0010044 dma dma8 rw ctxt md2 s

0xb0010048 dma dma8 rw ctxt md3

0xb001004c dma dma8 rw ctxt md3 s

0xb0010050 dma dma8 rw ctxt md4

0xb0010054 dma dma8 rw ctxt md4 s

0xb0010058 dma dma8 rw saveddata

0xb001005c dma dma8 rw saveddatabuf

0xb0010060 dma dma8 rw group

0xb0010064 dma dma8 rw groupnext

25.45. REGISTER ADDRESSES 1555

0xb0010068 dma dma8 rw groupctrl

0xb001006c dma dma8 rw groupstat

0xb0010070 dma dma8 rw groupmd

0xb0010074 dma dma8 rw groupmd s

0xb0010078 dma dma8 rw groupup

0xb001007c dma dma8 rw groupdown

0xb0010080 dma dma8 rw cmd

0xb0010084 dma dma8 rw cfg

0xb0010088 dma dma8 rw stat

0xb001008c dma dma8 rw intr mask

0xb0010090 dma dma8 rw ack intr

0xb0010094 dma dma8 r intr

0xb0010098 dma dma8 r maskedintr

0xb001009c dma dma8 rw streamcmd

0xb0012000 dma dma9 rw data

0xb0012004 dma dma9 rw datanext

0xb0012008 dma dma9 rw databuf

0xb001200c dma dma9 rw datactrl

0xb0012010 dma dma9 rw datastat

0xb0012014 dma dma9 rw datamd

0xb0012018 dma dma9 rw datamd s

0xb001201c dma dma9 rw dataafter

0xb0012020 dma dma9 rw ctxt

0xb0012024 dma dma9 rw ctxt next

0xb0012028 dma dma9 rw ctxt ctrl

0xb001202c dma dma9 rw ctxt stat

0xb0012030 dma dma9 rw ctxt md0

0xb0012034 dma dma9 rw ctxt md0 s

0xb0012038 dma dma9 rw ctxt md1

0xb001203c dma dma9 rw ctxt md1 s

0xb0012040 dma dma9 rw ctxt md2

0xb0012044 dma dma9 rw ctxt md2 s

0xb0012048 dma dma9 rw ctxt md3

0xb001204c dma dma9 rw ctxt md3 s

0xb0012050 dma dma9 rw ctxt md4

0xb0012054 dma dma9 rw ctxt md4 s

0xb0012058 dma dma9 rw saveddata

0xb001205c dma dma9 rw saveddatabuf

0xb0012060 dma dma9 rw group

0xb0012064 dma dma9 rw groupnext

0xb0012068 dma dma9 rw groupctrl

1556 CHAPTER 25. INTERNAL REGISTERS

0xb001206c dma dma9 rw groupstat

0xb0012070 dma dma9 rw groupmd

0xb0012074 dma dma9 rw groupmd s

0xb0012078 dma dma9 rw groupup

0xb001207c dma dma9 rw groupdown

0xb0012080 dma dma9 rw cmd

0xb0012084 dma dma9 rw cfg

0xb0012088 dma dma9 rw stat

0xb001208c dma dma9 rw intr mask

0xb0012090 dma dma9 rw ack intr

0xb0012094 dma dma9 r intr

0xb0012098 dma dma9 r maskedintr

0xb001209c dma dma9 rw streamcmd

0xb0014000 bif core bif core rw grp1 cfg

0xb0014004 bif core bif core rw grp2 cfg

0xb0014008 bif core bif core rw grp3 cfg

0xb001400c bif core bif core rw grp4 cfg

0xb0014010 bif core bif core rw sdramcfg grp0

0xb0014014 bif core bif core rw sdramcfg grp1

0xb0014018 bif core bif core rw sdramtiming

0xb001401c bif core bif core rw sdramcmd

0xb0014020 bif core bif core rs sdramref stat

0xb0014024 bif core bif core r sdramref stat

0xb0016000 bif dma bif dma rw ch0 ctrl

0xb0016004 bif dma bif dma rw ch0 addr

0xb0016008 bif dma bif dma rw ch0 start

0xb001600c bif dma bif dma rw ch0 cnt

0xb0016010 bif dma bif dma r ch0 stat

0xb0016020 bif dma bif dma rw ch1 ctrl

0xb0016024 bif dma bif dma rw ch1 addr

0xb0016028 bif dma bif dma rw ch1 start

0xb001602c bif dma bif dma rw ch1 cnt

0xb0016030 bif dma bif dma r ch1 stat

0xb0016040 bif dma bif dma rw ch2 ctrl

0xb0016044 bif dma bif dma rw ch2 addr

0xb0016048 bif dma bif dma rw ch2 start

0xb001604c bif dma bif dma rw ch2 cnt

0xb0016050 bif dma bif dma r ch2 stat

0xb0016060 bif dma bif dma rw ch3 ctrl

0xb0016064 bif dma bif dma rw ch3 addr

0xb0016068 bif dma bif dma rw ch3 start

25.45. REGISTER ADDRESSES 1557

0xb001606c bif dma bif dma rw ch3 cnt

0xb0016070 bif dma bif dma r ch3 stat

0xb0016080 bif dma bif dma rw intr mask

0xb0016084 bif dma bif dma rw ack intr

0xb0016088 bif dma bif dma r intr

0xb001608c bif dma bif dma r maskedintr

0xb00160a0 bif dma bif dma rw pin0 cfg

0xb00160a4 bif dma bif dma rw pin1 cfg

0xb00160a8 bif dma bif dma rw pin2 cfg

0xb00160ac bif dma bif dma rw pin3 cfg

0xb00160b0 bif dma bif dma rw pin4 cfg

0xb00160b4 bif dma bif dma rw pin5 cfg

0xb00160b8 bif dma bif dma rw pin6 cfg

0xb00160bc bif dma bif dma rw pin7 cfg

0xb00160c0 bif dma bif dma r pin stat

0xb0018000 bif slave bif slave rw slavecfg

0xb0018004 bif slave bif slave r slavemode

0xb0018010 bif slave bif slave rw ch0 cfg

0xb0018014 bif slave bif slave rw ch1 cfg

0xb0018018 bif slave bif slave rw ch2 cfg

0xb001801c bif slave bif slave rw ch3 cfg

0xb0018020 bif slave bif slave rw arb cfg

0xb0018024 bif slave bif slave r arb stat

0xb0018040 bif slave bif slave rw intr mask

0xb0018044 bif slave bif slave rw ack intr

0xb0018048 bif slave bif slave r intr

0xb001804c bif slave bif slave r maskedintr

0xb001a000 gio gio rw pa dout

0xb001a004 gio gio r pa din

0xb001a008 gio gio rw pa oe

0xb001a00c gio gio rw intr cfg

0xb001a010 gio gio rw intr mask

0xb001a014 gio gio rw ack intr

0xb001a018 gio gio r intr

0xb001a01c gio gio r maskedintr

0xb001a020 gio gio rw pb dout

0xb001a024 gio gio r pb din

0xb001a028 gio gio rw pb oe

0xb001a030 gio gio rw pc dout

0xb001a034 gio gio r pc din

0xb001a038 gio gio rw pc oe

1558 CHAPTER 25. INTERNAL REGISTERS

0xb001a040 gio gio rw pd dout

0xb001a044 gio gio r pd din

0xb001a048 gio gio rw pd oe

0xb001a050 gio gio rw pe dout

0xb001a054 gio gio r pe din

0xb001a058 gio gio rw pe oe

0xb001c000 intr vect irq rw mask

0xb001c004 intr vect irq r vect

0xb001c008 intr vect irq r maskedvect

0xb001c00c intr vect irq r nmi

0xb001c010 intr vect irq r guru

0xb001e000 timer timer rw tmr0 div

0xb001e004 timer timer r tmr0 data

0xb001e008 timer timer rw tmr0 ctrl

0xb001e010 timer timer rw tmr1 div

0xb001e014 timer timer r tmr1 data

0xb001e018 timer timer rw tmr1 ctrl

0xb001e020 timer timer rs cnt data

0xb001e024 timer timer r cnt data

0xb001e028 timer timer rw cnt cfg

0xb001e030 timer timer rw trig

0xb001e034 timer timer rw trig cfg

0xb001e038 timer timer r time

0xb001e03c timer timer rw out

0xb001e040 timer timer rw wd ctrl

0xb001e044 timer timer r wd stat

0xb001e048 timer timer rw intr mask

0xb001e04c timer timer rw ack intr

0xb001e050 timer timer r intr

0xb001e054 timer timer r maskedintr

0xb001e058 timer timer rw test

0xb0020000 iop version iop version r version

0xb0020040 iop fifo in extra iop fifo in0 extra rw wr data

0xb0020044 iop fifo in extra iop fifo in0 extra r stat

0xb0020048 iop fifo in extra iop fifo in0 extra rw strb dif in

0xb002004c iop fifo in extra iop fifo in0 extra rw intr mask

0xb0020050 iop fifo in extra iop fifo in0 extra rw ack intr

0xb0020054 iop fifo in extra iop fifo in0 extra r intr

0xb0020058 iop fifo in extra iop fifo in0 extra r maskedintr

0xb0020080 iop fifo in extra iop fifo in1 extra rw wr data

0xb0020084 iop fifo in extra iop fifo in1 extra r stat

25.45. REGISTER ADDRESSES 1559

0xb0020088 iop fifo in extra iop fifo in1 extra rw strb dif in

0xb002008c iop fifo in extra iop fifo in1 extra rw intr mask

0xb0020090 iop fifo in extra iop fifo in1 extra rw ack intr

0xb0020094 iop fifo in extra iop fifo in1 extra r intr

0xb0020098 iop fifo in extra iop fifo in1 extra r maskedintr

0xb00200c0 iop fifo out extra iop fifo out0 extra rs rd data

0xb00200c4 iop fifo out extra iop fifo out0 extra r rd data

0xb00200c8 iop fifo out extra iop fifo out0 extra r stat

0xb00200cc iop fifo out extra iop fifo out0 extra rw strb dif out

0xb00200d0 iop fifo out extra iop fifo out0 extra rw intr mask

0xb00200d4 iop fifo out extra iop fifo out0 extra rw ack intr

0xb00200d8 iop fifo out extra iop fifo out0 extra r intr

0xb00200dc iop fifo out extra iop fifo out0 extra r maskedintr

0xb0020100 iop fifo out extra iop fifo out1 extra rs rd data

0xb0020104 iop fifo out extra iop fifo out1 extra r rd data

0xb0020108 iop fifo out extra iop fifo out1 extra r stat

0xb002010c iop fifo out extra iop fifo out1 extra rw strb dif out

0xb0020110 iop fifo out extra iop fifo out1 extra rw intr mask

0xb0020114 iop fifo out extra iop fifo out1 extra rw ack intr

0xb0020118 iop fifo out extra iop fifo out1 extra r intr

0xb002011c iop fifo out extra iop fifo out1 extra r maskedintr

0xb0020140 iop trigger grp iop trigger grp0 rw cfg

0xb0020144 iop trigger grp iop trigger grp0 rw cfg

0xb0020148 iop trigger grp iop trigger grp0 rw cfg

0xb002014c iop trigger grp iop trigger grp0 rw cfg

0xb0020150 iop trigger grp iop trigger grp0 rw cmd

0xb0020154 iop trigger grp iop trigger grp0 rw intr mask

0xb0020158 iop trigger grp iop trigger grp0 rw ack intr

0xb002015c iop trigger grp iop trigger grp0 r intr

0xb0020160 iop trigger grp iop trigger grp0 r maskedintr

0xb0020180 iop trigger grp iop trigger grp1 rw cfg

0xb0020184 iop trigger grp iop trigger grp1 rw cfg

0xb0020188 iop trigger grp iop trigger grp1 rw cfg

0xb002018c iop trigger grp iop trigger grp1 rw cfg

0xb0020190 iop trigger grp iop trigger grp1 rw cmd

0xb0020194 iop trigger grp iop trigger grp1 rw intr mask

0xb0020198 iop trigger grp iop trigger grp1 rw ack intr

0xb002019c iop trigger grp iop trigger grp1 r intr

0xb00201a0 iop trigger grp iop trigger grp1 r maskedintr

0xb00201c0 iop trigger grp iop trigger grp2 rw cfg

0xb00201c4 iop trigger grp iop trigger grp2 rw cfg

1560 CHAPTER 25. INTERNAL REGISTERS

0xb00201c8 iop trigger grp iop trigger grp2 rw cfg

0xb00201cc iop trigger grp iop trigger grp2 rw cfg

0xb00201d0 iop trigger grp iop trigger grp2 rw cmd

0xb00201d4 iop trigger grp iop trigger grp2 rw intr mask

0xb00201d8 iop trigger grp iop trigger grp2 rw ack intr

0xb00201dc iop trigger grp iop trigger grp2 r intr

0xb00201e0 iop trigger grp iop trigger grp2 r maskedintr

0xb0020200 iop trigger grp iop trigger grp3 rw cfg

0xb0020204 iop trigger grp iop trigger grp3 rw cfg

0xb0020208 iop trigger grp iop trigger grp3 rw cfg

0xb002020c iop trigger grp iop trigger grp3 rw cfg

0xb0020210 iop trigger grp iop trigger grp3 rw cmd

0xb0020214 iop trigger grp iop trigger grp3 rw intr mask

0xb0020218 iop trigger grp iop trigger grp3 rw ack intr

0xb002021c iop trigger grp iop trigger grp3 r intr

0xb0020220 iop trigger grp iop trigger grp3 r maskedintr

0xb0020240 iop trigger grp iop trigger grp4 rw cfg

0xb0020244 iop trigger grp iop trigger grp4 rw cfg

0xb0020248 iop trigger grp iop trigger grp4 rw cfg

0xb002024c iop trigger grp iop trigger grp4 rw cfg

0xb0020250 iop trigger grp iop trigger grp4 rw cmd

0xb0020254 iop trigger grp iop trigger grp4 rw intr mask

0xb0020258 iop trigger grp iop trigger grp4 rw ack intr

0xb002025c iop trigger grp iop trigger grp4 r intr

0xb0020260 iop trigger grp iop trigger grp4 r maskedintr

0xb0020280 iop trigger grp iop trigger grp5 rw cfg

0xb0020284 iop trigger grp iop trigger grp5 rw cfg

0xb0020288 iop trigger grp iop trigger grp5 rw cfg

0xb002028c iop trigger grp iop trigger grp5 rw cfg

0xb0020290 iop trigger grp iop trigger grp5 rw cmd

0xb0020294 iop trigger grp iop trigger grp5 rw intr mask

0xb0020298 iop trigger grp iop trigger grp5 rw ack intr

0xb002029c iop trigger grp iop trigger grp5 r intr

0xb00202a0 iop trigger grp iop trigger grp5 r maskedintr

0xb00202c0 iop trigger grp iop trigger grp6 rw cfg

0xb00202c4 iop trigger grp iop trigger grp6 rw cfg

0xb00202c8 iop trigger grp iop trigger grp6 rw cfg

0xb00202cc iop trigger grp iop trigger grp6 rw cfg

0xb00202d0 iop trigger grp iop trigger grp6 rw cmd

0xb00202d4 iop trigger grp iop trigger grp6 rw intr mask

0xb00202d8 iop trigger grp iop trigger grp6 rw ack intr

25.45. REGISTER ADDRESSES 1561

0xb00202dc iop trigger grp iop trigger grp6 r intr

0xb00202e0 iop trigger grp iop trigger grp6 r maskedintr

0xb0020300 iop trigger grp iop trigger grp7 rw cfg

0xb0020304 iop trigger grp iop trigger grp7 rw cfg

0xb0020308 iop trigger grp iop trigger grp7 rw cfg

0xb002030c iop trigger grp iop trigger grp7 rw cfg

0xb0020310 iop trigger grp iop trigger grp7 rw cmd

0xb0020314 iop trigger grp iop trigger grp7 rw intr mask

0xb0020318 iop trigger grp iop trigger grp7 rw ack intr

0xb002031c iop trigger grp iop trigger grp7 r intr

0xb0020320 iop trigger grp iop trigger grp7 r maskedintr

0xb0020380 iop crc par iop crc par0 rw cfg

0xb0020384 iop crc par iop crc par0 rw init crc

0xb0020388 iop crc par iop crc par0 rw correctcrc

0xb002038c iop crc par iop crc par0 rw ctrl

0xb0020390 iop crc par iop crc par0 rw set last

0xb0020394 iop crc par iop crc par0 rw wr1byte

0xb0020398 iop crc par iop crc par0 rw wr2byte

0xb002039c iop crc par iop crc par0 rw wr3byte

0xb00203a0 iop crc par iop crc par0 rw wr4byte

0xb00203a4 iop crc par iop crc par0 rw wr1byte last

0xb00203a8 iop crc par iop crc par0 rw wr2byte last

0xb00203ac iop crc par iop crc par0 rw wr3byte last

0xb00203b0 iop crc par iop crc par0 rw wr4byte last

0xb00203b4 iop crc par iop crc par0 r stat

0xb00203b8 iop crc par iop crc par0 r sh reg

0xb00203bc iop crc par iop crc par0 r crc

0xb00203c0 iop crc par iop crc par0 rw strb rec dif in

0xb0020400 iop crc par iop crc par1 rw cfg

0xb0020404 iop crc par iop crc par1 rw init crc

0xb0020408 iop crc par iop crc par1 rw correctcrc

0xb002040c iop crc par iop crc par1 rw ctrl

0xb0020410 iop crc par iop crc par1 rw set last

0xb0020414 iop crc par iop crc par1 rw wr1byte

0xb0020418 iop crc par iop crc par1 rw wr2byte

0xb002041c iop crc par iop crc par1 rw wr3byte

0xb0020420 iop crc par iop crc par1 rw wr4byte

0xb0020424 iop crc par iop crc par1 rw wr1byte last

0xb0020428 iop crc par iop crc par1 rw wr2byte last

0xb002042c iop crc par iop crc par1 rw wr3byte last

0xb0020430 iop crc par iop crc par1 rw wr4byte last

1562 CHAPTER 25. INTERNAL REGISTERS

0xb0020434 iop crc par iop crc par1 r stat

0xb0020438 iop crc par iop crc par1 r sh reg

0xb002043c iop crc par iop crc par1 r crc

0xb0020440 iop crc par iop crc par1 rw strb rec dif in

0xb0020480 iop dmc in iop dmc in0 rw cfg

0xb0020484 iop dmc in iop dmc in0 rw ctrl

0xb0020488 iop dmc in iop dmc in0 r stat

0xb002048c iop dmc in iop dmc in0 rw streamcmd

0xb0020490 iop dmc in iop dmc in0 rw streamwr data

0xb0020494 iop dmc in iop dmc in0 rw streamwr datalast

0xb0020498 iop dmc in iop dmc in0 rw streamctrl

0xb002049c iop dmc in iop dmc in0 r streamstat

0xb00204a0 iop dmc in iop dmc in0 r datadescr

0xb00204a4 iop dmc in iop dmc in0 r ctxt descr

0xb00204a8 iop dmc in iop dmc in0 r ctxt descrmd1

0xb00204ac iop dmc in iop dmc in0 r ctxt descrmd2

0xb00204b8 iop dmc in iop dmc in0 r groupdescr

0xb00204bc iop dmc in iop dmc in0 rw datadescr

0xb00204c0 iop dmc in iop dmc in0 rw ctxt descr

0xb00204c4 iop dmc in iop dmc in0 rw ctxt descrmd1

0xb00204c8 iop dmc in iop dmc in0 rw ctxt descrmd2

0xb00204d4 iop dmc in iop dmc in0 rw groupdescr

0xb00204d8 iop dmc in iop dmc in0 rw intr mask

0xb00204dc iop dmc in iop dmc in0 rw ack intr

0xb00204e0 iop dmc in iop dmc in0 r intr

0xb00204e4 iop dmc in iop dmc in0 r maskedintr

0xb0020500 iop dmc in iop dmc in1 rw cfg

0xb0020504 iop dmc in iop dmc in1 rw ctrl

0xb0020508 iop dmc in iop dmc in1 r stat

0xb002050c iop dmc in iop dmc in1 rw streamcmd

0xb0020510 iop dmc in iop dmc in1 rw streamwr data

0xb0020514 iop dmc in iop dmc in1 rw streamwr datalast

0xb0020518 iop dmc in iop dmc in1 rw streamctrl

0xb002051c iop dmc in iop dmc in1 r streamstat

0xb0020520 iop dmc in iop dmc in1 r datadescr

0xb0020524 iop dmc in iop dmc in1 r ctxt descr

0xb0020528 iop dmc in iop dmc in1 r ctxt descrmd1

0xb002052c iop dmc in iop dmc in1 r ctxt descrmd2

0xb0020538 iop dmc in iop dmc in1 r groupdescr

0xb002053c iop dmc in iop dmc in1 rw datadescr

0xb0020540 iop dmc in iop dmc in1 rw ctxt descr

25.45. REGISTER ADDRESSES 1563

0xb0020544 iop dmc in iop dmc in1 rw ctxt descrmd1

0xb0020548 iop dmc in iop dmc in1 rw ctxt descrmd2

0xb0020554 iop dmc in iop dmc in1 rw groupdescr

0xb0020558 iop dmc in iop dmc in1 rw intr mask

0xb002055c iop dmc in iop dmc in1 rw ack intr

0xb0020560 iop dmc in iop dmc in1 r intr

0xb0020564 iop dmc in iop dmc in1 r maskedintr

0xb0020580 iop dmc out iop dmc out0 rw cfg

0xb0020584 iop dmc out iop dmc out0 rw ctrl

0xb0020588 iop dmc out iop dmc out0 r stat

0xb002058c iop dmc out iop dmc out0 rw streamcmd

0xb0020590 iop dmc out iop dmc out0 rs streamdata

0xb0020594 iop dmc out iop dmc out0 r streamdata

0xb0020598 iop dmc out iop dmc out0 r streamstat

0xb002059c iop dmc out iop dmc out0 r datadescr

0xb00205a0 iop dmc out iop dmc out0 r ctxt descr

0xb00205a4 iop dmc out iop dmc out0 r ctxt descrmd1

0xb00205a8 iop dmc out iop dmc out0 r ctxt descrmd2

0xb00205b4 iop dmc out iop dmc out0 r groupdescr

0xb00205b8 iop dmc out iop dmc out0 rw datadescr

0xb00205bc iop dmc out iop dmc out0 rw ctxt descr

0xb00205c0 iop dmc out iop dmc out0 rw ctxt descrmd1

0xb00205c4 iop dmc out iop dmc out0 rw ctxt descrmd2

0xb00205d0 iop dmc out iop dmc out0 rw groupdescr

0xb00205d4 iop dmc out iop dmc out0 rw intr mask

0xb00205d8 iop dmc out iop dmc out0 rw ack intr

0xb00205dc iop dmc out iop dmc out0 r intr

0xb00205e0 iop dmc out iop dmc out0 r maskedintr

0xb0020600 iop dmc out iop dmc out1 rw cfg

0xb0020604 iop dmc out iop dmc out1 rw ctrl

0xb0020608 iop dmc out iop dmc out1 r stat

0xb002060c iop dmc out iop dmc out1 rw streamcmd

0xb0020610 iop dmc out iop dmc out1 rs streamdata

0xb0020614 iop dmc out iop dmc out1 r streamdata

0xb0020618 iop dmc out iop dmc out1 r streamstat

0xb002061c iop dmc out iop dmc out1 r datadescr

0xb0020620 iop dmc out iop dmc out1 r ctxt descr

0xb0020624 iop dmc out iop dmc out1 r ctxt descrmd1

0xb0020628 iop dmc out iop dmc out1 r ctxt descrmd2

0xb0020634 iop dmc out iop dmc out1 r groupdescr

0xb0020638 iop dmc out iop dmc out1 rw datadescr

1564 CHAPTER 25. INTERNAL REGISTERS

0xb002063c iop dmc out iop dmc out1 rw ctxt descr

0xb0020640 iop dmc out iop dmc out1 rw ctxt descrmd1

0xb0020644 iop dmc out iop dmc out1 rw ctxt descrmd2

0xb0020650 iop dmc out iop dmc out1 rw groupdescr

0xb0020654 iop dmc out iop dmc out1 rw intr mask

0xb0020658 iop dmc out iop dmc out1 rw ack intr

0xb002065c iop dmc out iop dmc out1 r intr

0xb0020660 iop dmc out iop dmc out1 r maskedintr

0xb0020680 iop fifo in iop fifo in0 rw cfg

0xb0020684 iop fifo in iop fifo in0 rw ctrl

0xb0020688 iop fifo in iop fifo in0 r stat

0xb002068c iop fifo in iop fifo in0 rs rd1byte

0xb0020690 iop fifo in iop fifo in0 r rd1byte

0xb0020694 iop fifo in iop fifo in0 rs rd2byte

0xb0020698 iop fifo in iop fifo in0 r rd2byte

0xb002069c iop fifo in iop fifo in0 rs rd3byte

0xb00206a0 iop fifo in iop fifo in0 r rd3byte

0xb00206a4 iop fifo in iop fifo in0 rs rd4byte

0xb00206a8 iop fifo in iop fifo in0 r rd4byte

0xb00206ac iop fifo in iop fifo in0 rw set last

0xb00206b0 iop fifo in iop fifo in0 rw strb dif in

0xb00206b4 iop fifo in iop fifo in0 rw intr mask

0xb00206b8 iop fifo in iop fifo in0 rw ack intr

0xb00206bc iop fifo in iop fifo in0 r intr

0xb00206c0 iop fifo in iop fifo in0 r maskedintr

0xb0020700 iop fifo in iop fifo in1 rw cfg

0xb0020704 iop fifo in iop fifo in1 rw ctrl

0xb0020708 iop fifo in iop fifo in1 r stat

0xb002070c iop fifo in iop fifo in1 rs rd1byte

0xb0020710 iop fifo in iop fifo in1 r rd1byte

0xb0020714 iop fifo in iop fifo in1 rs rd2byte

0xb0020718 iop fifo in iop fifo in1 r rd2byte

0xb002071c iop fifo in iop fifo in1 rs rd3byte

0xb0020720 iop fifo in iop fifo in1 r rd3byte

0xb0020724 iop fifo in iop fifo in1 rs rd4byte

0xb0020728 iop fifo in iop fifo in1 r rd4byte

0xb002072c iop fifo in iop fifo in1 rw set last

0xb0020730 iop fifo in iop fifo in1 rw strb dif in

0xb0020734 iop fifo in iop fifo in1 rw intr mask

0xb0020738 iop fifo in iop fifo in1 rw ack intr

0xb002073c iop fifo in iop fifo in1 r intr

25.45. REGISTER ADDRESSES 1565

0xb0020740 iop fifo in iop fifo in1 r maskedintr

0xb0020780 iop fifo out iop fifo out0 rw cfg

0xb0020784 iop fifo out iop fifo out0 rw ctrl

0xb0020788 iop fifo out iop fifo out0 r stat

0xb002078c iop fifo out iop fifo out0 rw wr1byte

0xb0020790 iop fifo out iop fifo out0 rw wr2byte

0xb0020794 iop fifo out iop fifo out0 rw wr3byte

0xb0020798 iop fifo out iop fifo out0 rw wr4byte

0xb002079c iop fifo out iop fifo out0 rw wr1byte last

0xb00207a0 iop fifo out iop fifo out0 rw wr2byte last

0xb00207a4 iop fifo out iop fifo out0 rw wr3byte last

0xb00207a8 iop fifo out iop fifo out0 rw wr4byte last

0xb00207ac iop fifo out iop fifo out0 rw set last

0xb00207b0 iop fifo out iop fifo out0 rs rd data

0xb00207b4 iop fifo out iop fifo out0 r rd data

0xb00207b8 iop fifo out iop fifo out0 rw strb dif out

0xb00207bc iop fifo out iop fifo out0 rw intr mask

0xb00207c0 iop fifo out iop fifo out0 rw ack intr

0xb00207c4 iop fifo out iop fifo out0 r intr

0xb00207c8 iop fifo out iop fifo out0 r maskedintr

0xb0020800 iop fifo out iop fifo out1 rw cfg

0xb0020804 iop fifo out iop fifo out1 rw ctrl

0xb0020808 iop fifo out iop fifo out1 r stat

0xb002080c iop fifo out iop fifo out1 rw wr1byte

0xb0020810 iop fifo out iop fifo out1 rw wr2byte

0xb0020814 iop fifo out iop fifo out1 rw wr3byte

0xb0020818 iop fifo out iop fifo out1 rw wr4byte

0xb002081c iop fifo out iop fifo out1 rw wr1byte last

0xb0020820 iop fifo out iop fifo out1 rw wr2byte last

0xb0020824 iop fifo out iop fifo out1 rw wr3byte last

0xb0020828 iop fifo out iop fifo out1 rw wr4byte last

0xb002082c iop fifo out iop fifo out1 rw set last

0xb0020830 iop fifo out iop fifo out1 rs rd data

0xb0020834 iop fifo out iop fifo out1 r rd data

0xb0020838 iop fifo out iop fifo out1 rw strb dif out

0xb002083c iop fifo out iop fifo out1 rw intr mask

0xb0020840 iop fifo out iop fifo out1 rw ack intr

0xb0020844 iop fifo out iop fifo out1 r intr

0xb0020848 iop fifo out iop fifo out1 r maskedintr

0xb0020880 iop scrc in iop scrc in0 rw cfg

0xb0020884 iop scrc in iop scrc in0 rw ctrl

1566 CHAPTER 25. INTERNAL REGISTERS

0xb0020888 iop scrc in iop scrc in0 r stat

0xb002088c iop scrc in iop scrc in0 rw init crc

0xb0020890 iop scrc in iop scrc in0 rs computedcrc

0xb0020894 iop scrc in iop scrc in0 r computedcrc

0xb0020898 iop scrc in iop scrc in0 rw crc

0xb002089c iop scrc in iop scrc in0 rw correctcrc

0xb00208a0 iop scrc in iop scrc in0 rw wr1bit

0xb0020900 iop scrc in iop scrc in1 rw cfg

0xb0020904 iop scrc in iop scrc in1 rw ctrl

0xb0020908 iop scrc in iop scrc in1 r stat

0xb002090c iop scrc in iop scrc in1 rw init crc

0xb0020910 iop scrc in iop scrc in1 rs computedcrc

0xb0020914 iop scrc in iop scrc in1 r computedcrc

0xb0020918 iop scrc in iop scrc in1 rw crc

0xb002091c iop scrc in iop scrc in1 rw correctcrc

0xb0020920 iop scrc in iop scrc in1 rw wr1bit

0xb0020980 iop scrcout iop scrcout0 rw cfg

0xb0020984 iop scrcout iop scrcout0 rw ctrl

0xb0020988 iop scrcout iop scrcout0 rw init crc

0xb002098c iop scrcout iop scrcout0 rw crc

0xb0020990 iop scrcout iop scrcout0 rw data

0xb0020994 iop scrcout iop scrcout0 r computedcrc

0xb0020a00 iop scrcout iop scrcout1 rw cfg

0xb0020a04 iop scrcout iop scrcout1 rw ctrl

0xb0020a08 iop scrcout iop scrcout1 rw init crc

0xb0020a0c iop scrcout iop scrcout1 rw crc

0xb0020a10 iop scrcout iop scrcout1 rw data

0xb0020a14 iop scrcout iop scrcout1 r computedcrc

0xb0020a80 iop timer grp iop timer grp0 rw cfg

0xb0020a84 iop timer grp iop timer grp0 rw half period

0xb0020a88 iop timer grp iop timer grp0 rw half period len

0xb0020a8c iop timer grp iop timer grp0 rw tmr cfg

0xb0020a90 iop timer grp iop timer grp0 rw tmr cfg

0xb0020a94 iop timer grp iop timer grp0 rw tmr cfg

0xb0020a98 iop timer grp iop timer grp0 rw tmr cfg

0xb0020aac iop timer grp iop timer grp0 rw tmr len

0xb0020ab0 iop timer grp iop timer grp0 rw tmr len

0xb0020ab4 iop timer grp iop timer grp0 rw tmr len

0xb0020ab8 iop timer grp iop timer grp0 rw tmr len

0xb0020abc iop timer grp iop timer grp0 rw cmd

0xb0020ac0 iop timer grp iop timer grp0 r clk gencnt

25.45. REGISTER ADDRESSES 1567

0xb0020ac4 iop timer grp iop timer grp0 rs tmr cnt

0xb0020acc iop timer grp iop timer grp0 rs tmr cnt

0xb0020ad4 iop timer grp iop timer grp0 rs tmr cnt

0xb0020adc iop timer grp iop timer grp0 rs tmr cnt

0xb0020ae0 iop timer grp iop timer grp0 r tmr cnt

0xb0020ae4 iop timer grp iop timer grp0 rw intr mask

0xb0020ae8 iop timer grp iop timer grp0 rw ack intr

0xb0020aec iop timer grp iop timer grp0 r intr

0xb0020af0 iop timer grp iop timer grp0 r maskedintr

0xb0020b00 iop timer grp iop timer grp1 rw cfg

0xb0020b04 iop timer grp iop timer grp1 rw half period

0xb0020b08 iop timer grp iop timer grp1 rw half period len

0xb0020b0c iop timer grp iop timer grp1 rw tmr cfg

0xb0020b10 iop timer grp iop timer grp1 rw tmr cfg

0xb0020b14 iop timer grp iop timer grp1 rw tmr cfg

0xb0020b18 iop timer grp iop timer grp1 rw tmr cfg

0xb0020b2c iop timer grp iop timer grp1 rw tmr len

0xb0020b30 iop timer grp iop timer grp1 rw tmr len

0xb0020b34 iop timer grp iop timer grp1 rw tmr len

0xb0020b38 iop timer grp iop timer grp1 rw tmr len

0xb0020b3c iop timer grp iop timer grp1 rw cmd

0xb0020b40 iop timer grp iop timer grp1 r clk gencnt

0xb0020b44 iop timer grp iop timer grp1 rs tmr cnt

0xb0020b4c iop timer grp iop timer grp1 rs tmr cnt

0xb0020b54 iop timer grp iop timer grp1 rs tmr cnt

0xb0020b5c iop timer grp iop timer grp1 rs tmr cnt

0xb0020b60 iop timer grp iop timer grp1 r tmr cnt

0xb0020b64 iop timer grp iop timer grp1 rw intr mask

0xb0020b68 iop timer grp iop timer grp1 rw ack intr

0xb0020b6c iop timer grp iop timer grp1 r intr

0xb0020b70 iop timer grp iop timer grp1 r maskedintr

0xb0020b80 iop timer grp iop timer grp2 rw cfg

0xb0020b84 iop timer grp iop timer grp2 rw half period

0xb0020b88 iop timer grp iop timer grp2 rw half period len

0xb0020b8c iop timer grp iop timer grp2 rw tmr cfg

0xb0020b90 iop timer grp iop timer grp2 rw tmr cfg

0xb0020b94 iop timer grp iop timer grp2 rw tmr cfg

0xb0020b98 iop timer grp iop timer grp2 rw tmr cfg

0xb0020bac iop timer grp iop timer grp2 rw tmr len

0xb0020bb0 iop timer grp iop timer grp2 rw tmr len

0xb0020bb4 iop timer grp iop timer grp2 rw tmr len

1568 CHAPTER 25. INTERNAL REGISTERS

0xb0020bb8 iop timer grp iop timer grp2 rw tmr len

0xb0020bbc iop timer grp iop timer grp2 rw cmd

0xb0020bc0 iop timer grp iop timer grp2 r clk gencnt

0xb0020bc4 iop timer grp iop timer grp2 rs tmr cnt

0xb0020bcc iop timer grp iop timer grp2 rs tmr cnt

0xb0020bd4 iop timer grp iop timer grp2 rs tmr cnt

0xb0020bdc iop timer grp iop timer grp2 rs tmr cnt

0xb0020be0 iop timer grp iop timer grp2 r tmr cnt

0xb0020be4 iop timer grp iop timer grp2 rw intr mask

0xb0020be8 iop timer grp iop timer grp2 rw ack intr

0xb0020bec iop timer grp iop timer grp2 r intr

0xb0020bf0 iop timer grp iop timer grp2 r maskedintr

0xb0020c00 iop timer grp iop timer grp3 rw cfg

0xb0020c04 iop timer grp iop timer grp3 rw half period

0xb0020c08 iop timer grp iop timer grp3 rw half period len

0xb0020c0c iop timer grp iop timer grp3 rw tmr cfg

0xb0020c10 iop timer grp iop timer grp3 rw tmr cfg

0xb0020c14 iop timer grp iop timer grp3 rw tmr cfg

0xb0020c18 iop timer grp iop timer grp3 rw tmr cfg

0xb0020c2c iop timer grp iop timer grp3 rw tmr len

0xb0020c30 iop timer grp iop timer grp3 rw tmr len

0xb0020c34 iop timer grp iop timer grp3 rw tmr len

0xb0020c38 iop timer grp iop timer grp3 rw tmr len

0xb0020c3c iop timer grp iop timer grp3 rw cmd

0xb0020c40 iop timer grp iop timer grp3 r clk gencnt

0xb0020c44 iop timer grp iop timer grp3 rs tmr cnt

0xb0020c4c iop timer grp iop timer grp3 rs tmr cnt

0xb0020c54 iop timer grp iop timer grp3 rs tmr cnt

0xb0020c5c iop timer grp iop timer grp3 rs tmr cnt

0xb0020c60 iop timer grp iop timer grp3 r tmr cnt

0xb0020c64 iop timer grp iop timer grp3 rw intr mask

0xb0020c68 iop timer grp iop timer grp3 rw ack intr

0xb0020c6c iop timer grp iop timer grp3 r intr

0xb0020c70 iop timer grp iop timer grp3 r maskedintr

0xb0020d00 iop sapin iop sapin rw bus0sync

0xb0020d04 iop sapin iop sapin rw bus1sync

0xb0020d08 iop sapin iop sapin rw gio

0xb0020d0c iop sapin iop sapin rw gio

0xb0020d10 iop sapin iop sapin rw gio

0xb0020d14 iop sapin iop sapin rw gio

0xb0020d18 iop sapin iop sapin rw gio

25.45. REGISTER ADDRESSES 1569

0xb0020d1c iop sapin iop sapin rw gio

0xb0020d20 iop sapin iop sapin rw gio

0xb0020d24 iop sapin iop sapin rw gio

0xb0020d28 iop sapin iop sapin rw gio

0xb0020d2c iop sapin iop sapin rw gio

0xb0020d30 iop sapin iop sapin rw gio

0xb0020d34 iop sapin iop sapin rw gio

0xb0020d38 iop sapin iop sapin rw gio

0xb0020d3c iop sapin iop sapin rw gio

0xb0020d40 iop sapin iop sapin rw gio

0xb0020d44 iop sapin iop sapin rw gio

0xb0020d48 iop sapin iop sapin rw gio

0xb0020d4c iop sapin iop sapin rw gio

0xb0020d50 iop sapin iop sapin rw gio

0xb0020d54 iop sapin iop sapin rw gio

0xb0020d58 iop sapin iop sapin rw gio

0xb0020d5c iop sapin iop sapin rw gio

0xb0020d60 iop sapin iop sapin rw gio

0xb0020d64 iop sapin iop sapin rw gio

0xb0020d68 iop sapin iop sapin rw gio

0xb0020d6c iop sapin iop sapin rw gio

0xb0020d70 iop sapin iop sapin rw gio

0xb0020d74 iop sapin iop sapin rw gio

0xb0020d78 iop sapin iop sapin rw gio

0xb0020d7c iop sapin iop sapin rw gio

0xb0020d80 iop sapin iop sapin rw gio

0xb0020d84 iop sapin iop sapin rw gio

0xb0020e00 iop sapout iop sapout rw gengated

0xb0020e04 iop sapout iop sapout rw bus0

0xb0020e08 iop sapout iop sapout rw bus1

0xb0020e0c iop sapout iop sapout rw bus0lo oe

0xb0020e10 iop sapout iop sapout rw bus0hi oe

0xb0020e14 iop sapout iop sapout rw bus1lo oe

0xb0020e18 iop sapout iop sapout rw bus1hi oe

0xb0020e1c iop sapout iop sapout rw gio

0xb0020e20 iop sapout iop sapout rw gio

0xb0020e24 iop sapout iop sapout rw gio

0xb0020e28 iop sapout iop sapout rw gio

0xb0020e2c iop sapout iop sapout rw gio

0xb0020e30 iop sapout iop sapout rw gio

0xb0020e34 iop sapout iop sapout rw gio

1570 CHAPTER 25. INTERNAL REGISTERS

0xb0020e38 iop sapout iop sapout rw gio

0xb0020e3c iop sapout iop sapout rw gio

0xb0020e40 iop sapout iop sapout rw gio

0xb0020e44 iop sapout iop sapout rw gio

0xb0020e48 iop sapout iop sapout rw gio

0xb0020e4c iop sapout iop sapout rw gio

0xb0020e50 iop sapout iop sapout rw gio

0xb0020e54 iop sapout iop sapout rw gio

0xb0020e58 iop sapout iop sapout rw gio

0xb0020e5c iop sapout iop sapout rw gio

0xb0020e60 iop sapout iop sapout rw gio

0xb0020e64 iop sapout iop sapout rw gio

0xb0020e68 iop sapout iop sapout rw gio

0xb0020e6c iop sapout iop sapout rw gio

0xb0020e70 iop sapout iop sapout rw gio

0xb0020e74 iop sapout iop sapout rw gio

0xb0020e78 iop sapout iop sapout rw gio

0xb0020e7c iop sapout iop sapout rw gio

0xb0020e80 iop sapout iop sapout rw gio

0xb0020e84 iop sapout iop sapout rw gio

0xb0020e88 iop sapout iop sapout rw gio

0xb0020e8c iop sapout iop sapout rw gio

0xb0020e90 iop sapout iop sapout rw gio

0xb0020e94 iop sapout iop sapout rw gio

0xb0020e98 iop sapout iop sapout rw gio

0xb0020f00 iop spu iop spu0 rw r

0xb0020f04 iop spu iop spu0 rw r

0xb0020f08 iop spu iop spu0 rw r

0xb0020f0c iop spu iop spu0 rw r

0xb0020f10 iop spu iop spu0 rw r

0xb0020f14 iop spu iop spu0 rw r

0xb0020f18 iop spu iop spu0 rw r

0xb0020f1c iop spu iop spu0 rw r

0xb0020f20 iop spu iop spu0 rw r

0xb0020f24 iop spu iop spu0 rw r

0xb0020f28 iop spu iop spu0 rw r

0xb0020f2c iop spu iop spu0 rw r

0xb0020f30 iop spu iop spu0 rw r

0xb0020f34 iop spu iop spu0 rw r

0xb0020f38 iop spu iop spu0 rw r

0xb0020f3c iop spu iop spu0 rw r

25.45. REGISTER ADDRESSES 1571

0xb0020f40 iop spu iop spu0 rw seqpc

0xb0020f44 iop spu iop spu0 rw fsm pc

0xb0020f48 iop spu iop spu0 rw ctrl

0xb0020f4c iop spu iop spu0 rw fsm inputs30

0xb0020f50 iop spu iop spu0 rw fsm inputs74

0xb0020f54 iop spu iop spu0 rw gio out

0xb0020f58 iop spu iop spu0 rw bus0out

0xb0020f5c iop spu iop spu0 rw bus1out

0xb0020f60 iop spu iop spu0 r gio in

0xb0020f64 iop spu iop spu0 r bus0in

0xb0020f68 iop spu iop spu0 r bus1in

0xb0020f6c iop spu iop spu0 rw gio out set

0xb0020f70 iop spu iop spu0 rw gio out clr

0xb0020f74 iop spu iop spu0 rs wr stat

0xb0020f78 iop spu iop spu0 r wr stat

0xb0020f7c iop spu iop spu0 r reg indexedby bus0in

0xb0020f80 iop spu iop spu0 r stat in

0xb0020f84 iop spu iop spu0 r trigger in

0xb0020f88 iop spu iop spu0 r specialstat

0xb0020f8c iop spu iop spu0 rw reg access

0xb0020f90 iop spu iop spu0 rw eventcfg

0xb0020f94 iop spu iop spu0 rw eventcfg

0xb0020f98 iop spu iop spu0 rw eventcfg

0xb0020f9c iop spu iop spu0 rw eventcfg

0xb0020fa0 iop spu iop spu0 rw eventmask

0xb0020fa4 iop spu iop spu0 rw eventmask

0xb0020fa8 iop spu iop spu0 rw eventmask

0xb0020fac iop spu iop spu0 rw eventmask

0xb0020fb0 iop spu iop spu0 rw eventval

0xb0020fb4 iop spu iop spu0 rw eventval

0xb0020fb8 iop spu iop spu0 rw eventval

0xb0020fbc iop spu iop spu0 rw eventval

0xb0020fc0 iop spu iop spu0 rw eventret

0xb0020fc4 iop spu iop spu0 r trace

0xb0020fc8 iop spu iop spu0 r fsm trace

0xb0020fcc iop spu iop spu0 rw brp

0xb0020fd0 iop spu iop spu0 rw brp

0xb0020fd4 iop spu iop spu0 rw brp

0xb0020fd8 iop spu iop spu0 rw brp

0xb0021000 iop spu iop spu1 rw r

0xb0021004 iop spu iop spu1 rw r

1572 CHAPTER 25. INTERNAL REGISTERS

0xb0021008 iop spu iop spu1 rw r

0xb002100c iop spu iop spu1 rw r

0xb0021010 iop spu iop spu1 rw r

0xb0021014 iop spu iop spu1 rw r

0xb0021018 iop spu iop spu1 rw r

0xb002101c iop spu iop spu1 rw r

0xb0021020 iop spu iop spu1 rw r

0xb0021024 iop spu iop spu1 rw r

0xb0021028 iop spu iop spu1 rw r

0xb002102c iop spu iop spu1 rw r

0xb0021030 iop spu iop spu1 rw r

0xb0021034 iop spu iop spu1 rw r

0xb0021038 iop spu iop spu1 rw r

0xb002103c iop spu iop spu1 rw r

0xb0021040 iop spu iop spu1 rw seqpc

0xb0021044 iop spu iop spu1 rw fsm pc

0xb0021048 iop spu iop spu1 rw ctrl

0xb002104c iop spu iop spu1 rw fsm inputs30

0xb0021050 iop spu iop spu1 rw fsm inputs74

0xb0021054 iop spu iop spu1 rw gio out

0xb0021058 iop spu iop spu1 rw bus0out

0xb002105c iop spu iop spu1 rw bus1out

0xb0021060 iop spu iop spu1 r gio in

0xb0021064 iop spu iop spu1 r bus0in

0xb0021068 iop spu iop spu1 r bus1in

0xb002106c iop spu iop spu1 rw gio out set

0xb0021070 iop spu iop spu1 rw gio out clr

0xb0021074 iop spu iop spu1 rs wr stat

0xb0021078 iop spu iop spu1 r wr stat

0xb002107c iop spu iop spu1 r reg indexedby bus0in

0xb0021080 iop spu iop spu1 r stat in

0xb0021084 iop spu iop spu1 r trigger in

0xb0021088 iop spu iop spu1 r specialstat

0xb002108c iop spu iop spu1 rw reg access

0xb0021090 iop spu iop spu1 rw eventcfg

0xb0021094 iop spu iop spu1 rw eventcfg

0xb0021098 iop spu iop spu1 rw eventcfg

0xb002109c iop spu iop spu1 rw eventcfg

0xb00210a0 iop spu iop spu1 rw eventmask

0xb00210a4 iop spu iop spu1 rw eventmask

0xb00210a8 iop spu iop spu1 rw eventmask

25.45. REGISTER ADDRESSES 1573

0xb00210ac iop spu iop spu1 rw eventmask

0xb00210b0 iop spu iop spu1 rw eventval

0xb00210b4 iop spu iop spu1 rw eventval

0xb00210b8 iop spu iop spu1 rw eventval

0xb00210bc iop spu iop spu1 rw eventval

0xb00210c0 iop spu iop spu1 rw eventret

0xb00210c4 iop spu iop spu1 r trace

0xb00210c8 iop spu iop spu1 r fsm trace

0xb00210cc iop spu iop spu1 rw brp

0xb00210d0 iop spu iop spu1 rw brp

0xb00210d4 iop spu iop spu1 rw brp

0xb00210d8 iop spu iop spu1 rw brp

0xb0021100 iop sw cfg iop sw cfg rw crc par0owner

0xb0021104 iop sw cfg iop sw cfg rw crc par1owner

0xb0021108 iop sw cfg iop sw cfg rw dmc in0 owner

0xb002110c iop sw cfg iop sw cfg rw dmc in1 owner

0xb0021110 iop sw cfg iop sw cfg rw dmc out0 owner

0xb0021114 iop sw cfg iop sw cfg rw dmc out1 owner

0xb0021118 iop sw cfg iop sw cfg rw fifo in0 owner

0xb002111c iop sw cfg iop sw cfg rw fifo in0 extraowner

0xb0021120 iop sw cfg iop sw cfg rw fifo in1 owner

0xb0021124 iop sw cfg iop sw cfg rw fifo in1 extraowner

0xb0021128 iop sw cfg iop sw cfg rw fifo out0 owner

0xb002112c iop sw cfg iop sw cfg rw fifo out0 extraowner

0xb0021130 iop sw cfg iop sw cfg rw fifo out1 owner

0xb0021134 iop sw cfg iop sw cfg rw fifo out1 extraowner

0xb0021138 iop sw cfg iop sw cfg rw sapin owner

0xb002113c iop sw cfg iop sw cfg rw sapout owner

0xb0021140 iop sw cfg iop sw cfg rw scrc in0 owner

0xb0021144 iop sw cfg iop sw cfg rw scrc in1 owner

0xb0021148 iop sw cfg iop sw cfg rw scrcout0 owner

0xb002114c iop sw cfg iop sw cfg rw scrcout1 owner

0xb0021150 iop sw cfg iop sw cfg rw spu0owner

0xb0021154 iop sw cfg iop sw cfg rw spu1owner

0xb0021158 iop sw cfg iop sw cfg rw timer grp0 owner

0xb002115c iop sw cfg iop sw cfg rw timer grp1 owner

0xb0021160 iop sw cfg iop sw cfg rw timer grp2 owner

0xb0021164 iop sw cfg iop sw cfg rw timer grp3 owner

0xb0021168 iop sw cfg iop sw cfg rw trigger grp0 owner

0xb002116c iop sw cfg iop sw cfg rw trigger grp1 owner

0xb0021170 iop sw cfg iop sw cfg rw trigger grp2 owner

1574 CHAPTER 25. INTERNAL REGISTERS

0xb0021174 iop sw cfg iop sw cfg rw trigger grp3 owner

0xb0021178 iop sw cfg iop sw cfg rw trigger grp4 owner

0xb002117c iop sw cfg iop sw cfg rw trigger grp5 owner

0xb0021180 iop sw cfg iop sw cfg rw trigger grp6 owner

0xb0021184 iop sw cfg iop sw cfg rw trigger grp7 owner

0xb0021188 iop sw cfg iop sw cfg rw bus0mask

0xb002118c iop sw cfg iop sw cfg rw bus0oe mask

0xb0021190 iop sw cfg iop sw cfg rw bus1mask

0xb0021194 iop sw cfg iop sw cfg rw bus1oe mask

0xb0021198 iop sw cfg iop sw cfg rw gio mask

0xb002119c iop sw cfg iop sw cfg rw gio oe mask

0xb00211a0 iop sw cfg iop sw cfg rw pinmapping

0xb00211a4 iop sw cfg iop sw cfg rw busout cfg

0xb00211a8 iop sw cfg iop sw cfg rw gio out grp0 cfg

0xb00211ac iop sw cfg iop sw cfg rw gio out grp1 cfg

0xb00211b0 iop sw cfg iop sw cfg rw gio out grp2 cfg

0xb00211b4 iop sw cfg iop sw cfg rw gio out grp3 cfg

0xb00211b8 iop sw cfg iop sw cfg rw gio out grp4 cfg

0xb00211bc iop sw cfg iop sw cfg rw gio out grp5 cfg

0xb00211c0 iop sw cfg iop sw cfg rw gio out grp6 cfg

0xb00211c4 iop sw cfg iop sw cfg rw gio out grp7 cfg

0xb00211c8 iop sw cfg iop sw cfg rw spu0cfg

0xb00211cc iop sw cfg iop sw cfg rw spu1cfg

0xb00211d0 iop sw cfg iop sw cfg rw timer grp0 cfg

0xb00211d4 iop sw cfg iop sw cfg rw timer grp1 cfg

0xb00211d8 iop sw cfg iop sw cfg rw timer grp2 cfg

0xb00211dc iop sw cfg iop sw cfg rw timer grp3 cfg

0xb00211e0 iop sw cfg iop sw cfg rw trigger grpscfg

0xb00211e4 iop sw cfg iop sw cfg rw pdp0cfg

0xb00211e8 iop sw cfg iop sw cfg rw pdp1cfg

0xb00211ec iop sw cfg iop sw cfg rw sdpcfg

0xb0021200 iop sw cpu iop sw cpu rw mc ctrl

0xb0021204 iop sw cpu iop sw cpu rw mc data

0xb0021208 iop sw cpu iop sw cpu rw mc addr

0xb002120c iop sw cpu iop sw cpu rs mc data

0xb0021210 iop sw cpu iop sw cpu r mc data

0xb0021214 iop sw cpu iop sw cpu r mc stat

0xb0021218 iop sw cpu iop sw cpu rw bus0clr mask

0xb002121c iop sw cpu iop sw cpu rw bus0setmask

0xb0021220 iop sw cpu iop sw cpu rw bus0oe clr mask

0xb0021224 iop sw cpu iop sw cpu rw bus0oe setmask

25.45. REGISTER ADDRESSES 1575

0xb0021228 iop sw cpu iop sw cpu r bus0in

0xb002122c iop sw cpu iop sw cpu rw bus1clr mask

0xb0021230 iop sw cpu iop sw cpu rw bus1setmask

0xb0021234 iop sw cpu iop sw cpu rw bus1oe clr mask

0xb0021238 iop sw cpu iop sw cpu rw bus1oe setmask

0xb002123c iop sw cpu iop sw cpu r bus1in

0xb0021240 iop sw cpu iop sw cpu rw gio clr mask

0xb0021244 iop sw cpu iop sw cpu rw gio setmask

0xb0021248 iop sw cpu iop sw cpu rw gio oe clr mask

0xb002124c iop sw cpu iop sw cpu rw gio oe setmask

0xb0021250 iop sw cpu iop sw cpu r gio in

0xb0021254 iop sw cpu iop sw cpu rw intr0 mask

0xb0021258 iop sw cpu iop sw cpu rw ack intr0

0xb002125c iop sw cpu iop sw cpu r intr0

0xb0021260 iop sw cpu iop sw cpu r maskedintr0

0xb0021264 iop sw cpu iop sw cpu rw intr1 mask

0xb0021268 iop sw cpu iop sw cpu rw ack intr1

0xb002126c iop sw cpu iop sw cpu r intr1

0xb0021270 iop sw cpu iop sw cpu r maskedintr1

0xb0021274 iop sw cpu iop sw cpu rw intr2 mask

0xb0021278 iop sw cpu iop sw cpu rw ack intr2

0xb002127c iop sw cpu iop sw cpu r intr2

0xb0021280 iop sw cpu iop sw cpu r maskedintr2

0xb0021284 iop sw cpu iop sw cpu rw intr3 mask

0xb0021288 iop sw cpu iop sw cpu rw ack intr3

0xb002128c iop sw cpu iop sw cpu r intr3

0xb0021290 iop sw cpu iop sw cpu r maskedintr3

0xb0021300 iop sw mpu iop sw mpu rw sw cfg owner

0xb0021304 iop sw mpu iop sw mpu rw mc ctrl

0xb0021308 iop sw mpu iop sw mpu rw mc data

0xb002130c iop sw mpu iop sw mpu rw mc addr

0xb0021310 iop sw mpu iop sw mpu rs mc data

0xb0021314 iop sw mpu iop sw mpu r mc data

0xb0021318 iop sw mpu iop sw mpu r mc stat

0xb002131c iop sw mpu iop sw mpu rw bus0clr mask

0xb0021320 iop sw mpu iop sw mpu rw bus0setmask

0xb0021324 iop sw mpu iop sw mpu rw bus0oe clr mask

0xb0021328 iop sw mpu iop sw mpu rw bus0oe setmask

0xb002132c iop sw mpu iop sw mpu r bus0in

0xb0021330 iop sw mpu iop sw mpu rw bus1clr mask

0xb0021334 iop sw mpu iop sw mpu rw bus1setmask

1576 CHAPTER 25. INTERNAL REGISTERS

0xb0021338 iop sw mpu iop sw mpu rw bus1oe clr mask

0xb002133c iop sw mpu iop sw mpu rw bus1oe setmask

0xb0021340 iop sw mpu iop sw mpu r bus1in

0xb0021344 iop sw mpu iop sw mpu rw gio clr mask

0xb0021348 iop sw mpu iop sw mpu rw gio setmask

0xb002134c iop sw mpu iop sw mpu rw gio oe clr mask

0xb0021350 iop sw mpu iop sw mpu rw gio oe setmask

0xb0021354 iop sw mpu iop sw mpu r gio in

0xb0021358 iop sw mpu iop sw mpu rw cpu intr

0xb002135c iop sw mpu iop sw mpu r cpu intr

0xb0021360 iop sw mpu iop sw mpu rw intr grp0 mask

0xb0021364 iop sw mpu iop sw mpu rw ack intr grp0

0xb0021368 iop sw mpu iop sw mpu r intr grp0

0xb002136c iop sw mpu iop sw mpu r maskedintr grp0

0xb0021370 iop sw mpu iop sw mpu rw intr grp1 mask

0xb0021374 iop sw mpu iop sw mpu rw ack intr grp1

0xb0021378 iop sw mpu iop sw mpu r intr grp1

0xb002137c iop sw mpu iop sw mpu r maskedintr grp1

0xb0021380 iop sw mpu iop sw mpu rw intr grp2 mask

0xb0021384 iop sw mpu iop sw mpu rw ack intr grp2

0xb0021388 iop sw mpu iop sw mpu r intr grp2

0xb002138c iop sw mpu iop sw mpu r maskedintr grp2

0xb0021390 iop sw mpu iop sw mpu rw intr grp3 mask

0xb0021394 iop sw mpu iop sw mpu rw ack intr grp3

0xb0021398 iop sw mpu iop sw mpu r intr grp3

0xb002139c iop sw mpu iop sw mpu r maskedintr grp3

0xb0021400 iop sw spu iop sw spu0 rw mc ctrl

0xb0021404 iop sw spu iop sw spu0 rw mc data

0xb0021408 iop sw spu iop sw spu0 rw mc addr

0xb002140c iop sw spu iop sw spu0 rs mc data

0xb0021410 iop sw spu iop sw spu0 r mc data

0xb0021414 iop sw spu iop sw spu0 r mc stat

0xb0021418 iop sw spu iop sw spu0 rw bus0clr mask

0xb002141c iop sw spu iop sw spu0 rw bus0setmask

0xb0021420 iop sw spu iop sw spu0 rw bus0oe clr mask

0xb0021424 iop sw spu iop sw spu0 rw bus0oe setmask

0xb0021428 iop sw spu iop sw spu0 r bus0in

0xb002142c iop sw spu iop sw spu0 rw bus1clr mask

0xb0021430 iop sw spu iop sw spu0 rw bus1setmask

0xb0021434 iop sw spu iop sw spu0 rw bus1oe clr mask

0xb0021438 iop sw spu iop sw spu0 rw bus1oe setmask

25.45. REGISTER ADDRESSES 1577

0xb002143c iop sw spu iop sw spu0 r bus1in

0xb0021440 iop sw spu iop sw spu0 rw gio clr mask

0xb0021444 iop sw spu iop sw spu0 rw gio setmask

0xb0021448 iop sw spu iop sw spu0 rw gio oe clr mask

0xb002144c iop sw spu iop sw spu0 rw gio oe setmask

0xb0021450 iop sw spu iop sw spu0 r gio in

0xb0021454 iop sw spu iop sw spu0 rw bus0clr masklo

0xb0021458 iop sw spu iop sw spu0 rw bus0clr maskhi

0xb002145c iop sw spu iop sw spu0 rw bus0setmasklo

0xb0021460 iop sw spu iop sw spu0 rw bus0setmaskhi

0xb0021464 iop sw spu iop sw spu0 rw bus1clr masklo

0xb0021468 iop sw spu iop sw spu0 rw bus1clr maskhi

0xb002146c iop sw spu iop sw spu0 rw bus1setmasklo

0xb0021470 iop sw spu iop sw spu0 rw bus1setmaskhi

0xb0021474 iop sw spu iop sw spu0 rw gio clr masklo

0xb0021478 iop sw spu iop sw spu0 rw gio clr maskhi

0xb002147c iop sw spu iop sw spu0 rw gio setmasklo

0xb0021480 iop sw spu iop sw spu0 rw gio setmaskhi

0xb0021484 iop sw spu iop sw spu0 rw gio oe clr masklo

0xb0021488 iop sw spu iop sw spu0 rw gio oe clr maskhi

0xb002148c iop sw spu iop sw spu0 rw gio oe setmasklo

0xb0021490 iop sw spu iop sw spu0 rw gio oe setmaskhi

0xb0021494 iop sw spu iop sw spu0 rw cpu intr

0xb0021498 iop sw spu iop sw spu0 r cpu intr

0xb002149c iop sw spu iop sw spu0 r hw intr

0xb00214a0 iop sw spu iop sw spu0 rw mpu intr

0xb00214a4 iop sw spu iop sw spu0 r mpu intr

0xb0021500 iop sw spu iop sw spu1 rw mc ctrl

0xb0021504 iop sw spu iop sw spu1 rw mc data

0xb0021508 iop sw spu iop sw spu1 rw mc addr

0xb002150c iop sw spu iop sw spu1 rs mc data

0xb0021510 iop sw spu iop sw spu1 r mc data

0xb0021514 iop sw spu iop sw spu1 r mc stat

0xb0021518 iop sw spu iop sw spu1 rw bus0clr mask

0xb002151c iop sw spu iop sw spu1 rw bus0setmask

0xb0021520 iop sw spu iop sw spu1 rw bus0oe clr mask

0xb0021524 iop sw spu iop sw spu1 rw bus0oe setmask

0xb0021528 iop sw spu iop sw spu1 r bus0in

0xb002152c iop sw spu iop sw spu1 rw bus1clr mask

0xb0021530 iop sw spu iop sw spu1 rw bus1setmask

0xb0021534 iop sw spu iop sw spu1 rw bus1oe clr mask

1578 CHAPTER 25. INTERNAL REGISTERS

0xb0021538 iop sw spu iop sw spu1 rw bus1oe setmask

0xb002153c iop sw spu iop sw spu1 r bus1in

0xb0021540 iop sw spu iop sw spu1 rw gio clr mask

0xb0021544 iop sw spu iop sw spu1 rw gio setmask

0xb0021548 iop sw spu iop sw spu1 rw gio oe clr mask

0xb002154c iop sw spu iop sw spu1 rw gio oe setmask

0xb0021550 iop sw spu iop sw spu1 r gio in

0xb0021554 iop sw spu iop sw spu1 rw bus0clr masklo

0xb0021558 iop sw spu iop sw spu1 rw bus0clr maskhi

0xb002155c iop sw spu iop sw spu1 rw bus0setmasklo

0xb0021560 iop sw spu iop sw spu1 rw bus0setmaskhi

0xb0021564 iop sw spu iop sw spu1 rw bus1clr masklo

0xb0021568 iop sw spu iop sw spu1 rw bus1clr maskhi

0xb002156c iop sw spu iop sw spu1 rw bus1setmasklo

0xb0021570 iop sw spu iop sw spu1 rw bus1setmaskhi

0xb0021574 iop sw spu iop sw spu1 rw gio clr masklo

0xb0021578 iop sw spu iop sw spu1 rw gio clr maskhi

0xb002157c iop sw spu iop sw spu1 rw gio setmasklo

0xb0021580 iop sw spu iop sw spu1 rw gio setmaskhi

0xb0021584 iop sw spu iop sw spu1 rw gio oe clr masklo

0xb0021588 iop sw spu iop sw spu1 rw gio oe clr maskhi

0xb002158c iop sw spu iop sw spu1 rw gio oe setmasklo

0xb0021590 iop sw spu iop sw spu1 rw gio oe setmaskhi

0xb0021594 iop sw spu iop sw spu1 rw cpu intr

0xb0021598 iop sw spu iop sw spu1 r cpu intr

0xb002159c iop sw spu iop sw spu1 r hw intr

0xb00215a0 iop sw spu iop sw spu1 rw mpu intr

0xb00215a4 iop sw spu iop sw spu1 r mpu intr

0xb0021600 iop mpu iop mpu rw r

0xb0021604 iop mpu iop mpu rw r

0xb0021608 iop mpu iop mpu rw r

0xb002160c iop mpu iop mpu rw r

0xb0021610 iop mpu iop mpu rw r

0xb0021614 iop mpu iop mpu rw r

0xb0021618 iop mpu iop mpu rw r

0xb002161c iop mpu iop mpu rw r

0xb0021620 iop mpu iop mpu rw r

0xb0021624 iop mpu iop mpu rw r

0xb0021628 iop mpu iop mpu rw r

0xb002162c iop mpu iop mpu rw r

0xb0021630 iop mpu iop mpu rw r

25.45. REGISTER ADDRESSES 1579

0xb0021634 iop mpu iop mpu rw r

0xb0021638 iop mpu iop mpu rw r

0xb002163c iop mpu iop mpu rw r

0xb0021680 iop mpu iop mpu rw ctrl

0xb0021684 iop mpu iop mpu r pc

0xb0021688 iop mpu iop mpu r stat

0xb002168c iop mpu iop mpu rw instr

0xb0021690 iop mpu iop mpu rw immediate

0xb0021694 iop mpu iop mpu r trace

0xb0021698 iop mpu iop mpu r wr stat

0xb002169c iop mpu iop mpu rw thread

0xb00216a0 iop mpu iop mpu rw thread

0xb00216a4 iop mpu iop mpu rw thread

0xb00216a8 iop mpu iop mpu rw thread

0xb00216c4 iop mpu iop mpu rw intr

0xb00216c8 iop mpu iop mpu rw intr

0xb00216cc iop mpu iop mpu rw intr

0xb00216d0 iop mpu iop mpu rw intr

0xb00216d4 iop mpu iop mpu rw intr

0xb00216d8 iop mpu iop mpu rw intr

0xb00216dc iop mpu iop mpu rw intr

0xb00216e0 iop mpu iop mpu rw intr

0xb00216e4 iop mpu iop mpu rw intr

0xb00216e8 iop mpu iop mpu rw intr

0xb00216ec iop mpu iop mpu rw intr

0xb00216f0 iop mpu iop mpu rw intr

0xb00216f4 iop mpu iop mpu rw intr

0xb00216f8 iop mpu iop mpu rw intr

0xb00216fc iop mpu iop mpu rw intr

0xb0021700 iop mpu iop mpu rw intr

0xb0022000 sser sser0 rw cfg

0xb0022004 sser sser0 rw frm cfg

0xb0022008 sser sser0 rw tr cfg

0xb002200c sser sser0 rw rec cfg

0xb0022010 sser sser0 rw tr data

0xb0022014 sser sser0 r rec data

0xb0022018 sser sser0 rw extra

0xb002201c sser sser0 rw intr mask

0xb0022020 sser sser0 rw ack intr

0xb0022024 sser sser0 r intr

0xb0022028 sser sser0 r maskedintr

1580 CHAPTER 25. INTERNAL REGISTERS

0xb0024000 sser sser1 rw cfg

0xb0024004 sser sser1 rw frm cfg

0xb0024008 sser sser1 rw tr cfg

0xb002400c sser sser1 rw rec cfg

0xb0024010 sser sser1 rw tr data

0xb0024014 sser sser1 r rec data

0xb0024018 sser sser1 rw extra

0xb002401c sser sser1 rw intr mask

0xb0024020 sser sser1 rw ack intr

0xb0024024 sser sser1 r intr

0xb0024028 sser sser1 r maskedintr

0xb0026000 ser ser0 rw tr ctrl

0xb0026004 ser ser0 rw tr dmaen

0xb0026008 ser ser0 rw rec ctrl

0xb002600c ser ser0 rw tr bauddiv

0xb0026010 ser ser0 rw rec bauddiv

0xb0026014 ser ser0 rw xoff

0xb0026018 ser ser0 rw xoff clr

0xb002601c ser ser0 rw dout

0xb0026020 ser ser0 rs statdin

0xb0026024 ser ser0 r statdin

0xb0026028 ser ser0 rw rec eop

0xb002602c ser ser0 rw intr mask

0xb0026030 ser ser0 rw ack intr

0xb0026034 ser ser0 r intr

0xb0026038 ser ser0 r maskedintr

0xb0028000 ser ser1 rw tr ctrl

0xb0028004 ser ser1 rw tr dmaen

0xb0028008 ser ser1 rw rec ctrl

0xb002800c ser ser1 rw tr bauddiv

0xb0028010 ser ser1 rw rec bauddiv

0xb0028014 ser ser1 rw xoff

0xb0028018 ser ser1 rw xoff clr

0xb002801c ser ser1 rw dout

0xb0028020 ser ser1 rs statdin

0xb0028024 ser ser1 r statdin

0xb0028028 ser ser1 rw rec eop

0xb002802c ser ser1 rw intr mask

0xb0028030 ser ser1 rw ack intr

0xb0028034 ser ser1 r intr

0xb0028038 ser ser1 r maskedintr

25.45. REGISTER ADDRESSES 1581

0xb002a000 ser ser2 rw tr ctrl

0xb002a004 ser ser2 rw tr dmaen

0xb002a008 ser ser2 rw rec ctrl

0xb002a00c ser ser2 rw tr bauddiv

0xb002a010 ser ser2 rw rec bauddiv

0xb002a014 ser ser2 rw xoff

0xb002a018 ser ser2 rw xoff clr

0xb002a01c ser ser2 rw dout

0xb002a020 ser ser2 rs statdin

0xb002a024 ser ser2 r statdin

0xb002a028 ser ser2 rw rec eop

0xb002a02c ser ser2 rw intr mask

0xb002a030 ser ser2 rw ack intr

0xb002a034 ser ser2 r intr

0xb002a038 ser ser2 r maskedintr

0xb002c000 ser ser3 rw tr ctrl

0xb002c004 ser ser3 rw tr dmaen

0xb002c008 ser ser3 rw rec ctrl

0xb002c00c ser ser3 rw tr bauddiv

0xb002c010 ser ser3 rw rec bauddiv

0xb002c014 ser ser3 rw xoff

0xb002c018 ser ser3 rw xoff clr

0xb002c01c ser ser3 rw dout

0xb002c020 ser ser3 rs statdin

0xb002c024 ser ser3 r statdin

0xb002c028 ser ser3 rw rec eop

0xb002c02c ser ser3 rw intr mask

0xb002c030 ser ser3 rw ack intr

0xb002c034 ser ser3 r intr

0xb002c038 ser ser3 r maskedintr

0xb0030000 strcop strcop rw cfg

0xb0032000 ata ata rw ctrl2

0xb0032004 ata ata rs statdata

0xb0032008 ata ata r statdata

0xb003200c ata ata rw ctrl0

0xb0032010 ata ata rw ctrl1

0xb0032014 ata ata rw trf cnt

0xb0032018 ata ata r statmisc

0xb003201c ata ata rw intr mask

0xb0032020 ata ata rw ack intr

0xb0032024 ata ata r intr

1582 CHAPTER 25. INTERNAL REGISTERS

0xb0032028 ata ata r maskedintr

0xb0034000 eth eth0 rw ma0 lo

0xb0034004 eth eth0 rw ma0hi

0xb0034008 eth eth0 rw ma1 lo

0xb003400c eth eth0 rw ma1hi

0xb0034010 eth eth0 rw ga lo

0xb0034014 eth eth0 rw ga hi

0xb0034018 eth eth0 rw genctrl

0xb003401c eth eth0 rw rec ctrl

0xb0034020 eth eth0 rw tr ctrl

0xb0034024 eth eth0 rw clr err

0xb0034028 eth eth0 rw mgm ctrl

0xb003402c eth eth0 r stat

0xb0034030 eth eth0 rs rec cnt

0xb0034034 eth eth0 r rec cnt

0xb0034038 eth eth0 rs tr cnt

0xb003403c eth eth0 r tr cnt

0xb0034040 eth eth0 rs phy cnt

0xb0034044 eth eth0 r phy cnt

0xb0034048 eth eth0 rw test ctrl

0xb003404c eth eth0 rw intr mask

0xb0034050 eth eth0 rw ack intr

0xb0034054 eth eth0 r intr

0xb0034058 eth eth0 r maskedintr

0xb0036000 eth eth1 rw ma0 lo

0xb0036004 eth eth1 rw ma0hi

0xb0036008 eth eth1 rw ma1 lo

0xb003600c eth eth1 rw ma1hi

0xb0036010 eth eth1 rw ga lo

0xb0036014 eth eth1 rw ga hi

0xb0036018 eth eth1 rw genctrl

0xb003601c eth eth1 rw rec ctrl

0xb0036020 eth eth1 rw tr ctrl

0xb0036024 eth eth1 rw clr err

0xb0036028 eth eth1 rw mgm ctrl

0xb003602c eth eth1 r stat

0xb0036030 eth eth1 rs rec cnt

0xb0036034 eth eth1 r rec cnt

0xb0036038 eth eth1 rs tr cnt

0xb003603c eth eth1 r tr cnt

0xb0036040 eth eth1 rs phy cnt

25.45. REGISTER ADDRESSES 1583

0xb0036044 eth eth1 r phy cnt

0xb0036048 eth eth1 rw test ctrl

0xb003604c eth eth1 rw intr mask

0xb0036050 eth eth1 rw ack intr

0xb0036054 eth eth1 r intr

0xb0036058 eth eth1 r maskedintr

0xb0038000 pinmux pinmux rw pa

0xb0038004 pinmux pinmux rw hwprot

0xb0038008 pinmux pinmux rw pb gio

0xb003800c pinmux pinmux rw pb iop

0xb0038010 pinmux pinmux rw pc gio

0xb0038014 pinmux pinmux rw pc iop

0xb0038018 pinmux pinmux rw pd gio

0xb003801c pinmux pinmux rw pd iop

0xb0038020 pinmux pinmux rw pe gio

0xb0038024 pinmux pinmux rw pe iop

0xb0038028 pinmux pinmux rw usbphy

0xb003a000 strmux strmux rw cfg

0xb003c000 config config r bootsel

0xb003c004 config config rw clk ctrl

0xb003c008 config config rw padctrl

0xb003e000 marb marb rw int slots

0xb003e004 marb marb rw int slots

0xb003e008 marb marb rw int slots

0xb003e00c marb marb rw int slots

0xb003e010 marb marb rw int slots

0xb003e014 marb marb rw int slots

0xb003e018 marb marb rw int slots

0xb003e01c marb marb rw int slots

0xb003e020 marb marb rw int slots

0xb003e024 marb marb rw int slots

0xb003e028 marb marb rw int slots

0xb003e02c marb marb rw int slots

0xb003e030 marb marb rw int slots

0xb003e034 marb marb rw int slots

0xb003e038 marb marb rw int slots

0xb003e03c marb marb rw int slots

0xb003e040 marb marb rw int slots

0xb003e044 marb marb rw int slots

0xb003e048 marb marb rw int slots

0xb003e04c marb marb rw int slots

1584 CHAPTER 25. INTERNAL REGISTERS

0xb003e050 marb marb rw int slots

0xb003e054 marb marb rw int slots

0xb003e058 marb marb rw int slots

0xb003e05c marb marb rw int slots

0xb003e060 marb marb rw int slots

0xb003e064 marb marb rw int slots

0xb003e068 marb marb rw int slots

0xb003e06c marb marb rw int slots

0xb003e070 marb marb rw int slots

0xb003e074 marb marb rw int slots

0xb003e078 marb marb rw int slots

0xb003e07c marb marb rw int slots

0xb003e080 marb marb rw int slots

0xb003e084 marb marb rw int slots

0xb003e088 marb marb rw int slots

0xb003e08c marb marb rw int slots

0xb003e090 marb marb rw int slots

0xb003e094 marb marb rw int slots

0xb003e098 marb marb rw int slots

0xb003e09c marb marb rw int slots

0xb003e0a0 marb marb rw int slots

0xb003e0a4 marb marb rw int slots

0xb003e0a8 marb marb rw int slots

0xb003e0ac marb marb rw int slots

0xb003e0b0 marb marb rw int slots

0xb003e0b4 marb marb rw int slots

0xb003e0b8 marb marb rw int slots

0xb003e0bc marb marb rw int slots

0xb003e0c0 marb marb rw int slots

0xb003e0c4 marb marb rw int slots

0xb003e0c8 marb marb rw int slots

0xb003e0cc marb marb rw int slots

0xb003e0d0 marb marb rw int slots

0xb003e0d4 marb marb rw int slots

0xb003e0d8 marb marb rw int slots

0xb003e0dc marb marb rw int slots

0xb003e0e0 marb marb rw int slots

0xb003e0e4 marb marb rw int slots

0xb003e0e8 marb marb rw int slots

0xb003e0ec marb marb rw int slots

0xb003e0f0 marb marb rw int slots

25.45. REGISTER ADDRESSES 1585

0xb003e0f4 marb marb rw int slots

0xb003e0f8 marb marb rw int slots

0xb003e0fc marb marb rw int slots

0xb003e100 marb marb rw ext slots

0xb003e104 marb marb rw ext slots

0xb003e108 marb marb rw ext slots

0xb003e10c marb marb rw ext slots

0xb003e110 marb marb rw ext slots

0xb003e114 marb marb rw ext slots

0xb003e118 marb marb rw ext slots

0xb003e11c marb marb rw ext slots

0xb003e120 marb marb rw ext slots

0xb003e124 marb marb rw ext slots

0xb003e128 marb marb rw ext slots

0xb003e12c marb marb rw ext slots

0xb003e130 marb marb rw ext slots

0xb003e134 marb marb rw ext slots

0xb003e138 marb marb rw ext slots

0xb003e13c marb marb rw ext slots

0xb003e140 marb marb rw ext slots

0xb003e144 marb marb rw ext slots

0xb003e148 marb marb rw ext slots

0xb003e14c marb marb rw ext slots

0xb003e150 marb marb rw ext slots

0xb003e154 marb marb rw ext slots

0xb003e158 marb marb rw ext slots

0xb003e15c marb marb rw ext slots

0xb003e160 marb marb rw ext slots

0xb003e164 marb marb rw ext slots

0xb003e168 marb marb rw ext slots

0xb003e16c marb marb rw ext slots

0xb003e170 marb marb rw ext slots

0xb003e174 marb marb rw ext slots

0xb003e178 marb marb rw ext slots

0xb003e17c marb marb rw ext slots

0xb003e180 marb marb rw ext slots

0xb003e184 marb marb rw ext slots

0xb003e188 marb marb rw ext slots

0xb003e18c marb marb rw ext slots

0xb003e190 marb marb rw ext slots

0xb003e194 marb marb rw ext slots

1586 CHAPTER 25. INTERNAL REGISTERS

0xb003e198 marb marb rw ext slots

0xb003e19c marb marb rw ext slots

0xb003e1a0 marb marb rw ext slots

0xb003e1a4 marb marb rw ext slots

0xb003e1a8 marb marb rw ext slots

0xb003e1ac marb marb rw ext slots

0xb003e1b0 marb marb rw ext slots

0xb003e1b4 marb marb rw ext slots

0xb003e1b8 marb marb rw ext slots

0xb003e1bc marb marb rw ext slots

0xb003e1c0 marb marb rw ext slots

0xb003e1c4 marb marb rw ext slots

0xb003e1c8 marb marb rw ext slots

0xb003e1cc marb marb rw ext slots

0xb003e1d0 marb marb rw ext slots

0xb003e1d4 marb marb rw ext slots

0xb003e1d8 marb marb rw ext slots

0xb003e1dc marb marb rw ext slots

0xb003e1e0 marb marb rw ext slots

0xb003e1e4 marb marb rw ext slots

0xb003e1e8 marb marb rw ext slots

0xb003e1ec marb marb rw ext slots

0xb003e1f0 marb marb rw ext slots

0xb003e1f4 marb marb rw ext slots

0xb003e1f8 marb marb rw ext slots

0xb003e1fc marb marb rw ext slots

0xb003e200 marb marb rw regsslots

0xb003e204 marb marb rw regsslots

0xb003e208 marb marb rw regsslots

0xb003e20c marb marb rw regsslots

0xb003e210 marb marb rw intr mask

0xb003e214 marb marb rw ack intr

0xb003e218 marb marb r intr

0xb003e21c marb marb r maskedintr

0xb003e220 marb marb rw stopmask

0xb003e224 marb marb r stopped

0xb003e240 marbbp marbbp0 rw first addr

0xb003e244 marbbp marbbp0 rw last addr

0xb003e248 marbbp marbbp0 rw op

0xb003e24c marbbp marbbp0 rw clients

0xb003e250 marbbp marbbp0 rw options

25.45. REGISTER ADDRESSES 1587

0xb003e254 marbbp marbbp0 r brk addr

0xb003e258 marbbp marbbp0 r brk op

0xb003e25c marbbp marbbp0 r brk clients

0xb003e260 marbbp marbbp0 r brk first client

0xb003e264 marbbp marbbp0 r brk size

0xb003e268 marbbp marbbp0 rw ack

0xb003e280 marbbp marbbp1 rw first addr

0xb003e284 marbbp marbbp1 rw last addr

0xb003e288 marbbp marbbp1 rw op

0xb003e28c marbbp marbbp1 rw clients

0xb003e290 marbbp marbbp1 rw options

0xb003e294 marbbp marbbp1 r brk addr

0xb003e298 marbbp marbbp1 r brk op

0xb003e29c marbbp marbbp1 r brk clients

0xb003e2a0 marbbp marbbp1 r brk first client

0xb003e2a4 marbbp marbbp1 r brk size

0xb003e2a8 marbbp marbbp1 rw ack

0xb003e2c0 marbbp marbbp2 rw first addr

0xb003e2c4 marbbp marbbp2 rw last addr

0xb003e2c8 marbbp marbbp2 rw op

0xb003e2cc marbbp marbbp2 rw clients

0xb003e2d0 marbbp marbbp2 rw options

0xb003e2d4 marbbp marbbp2 r brk addr

0xb003e2d8 marbbp marbbp2 r brk op

0xb003e2dc marbbp marbbp2 r brk clients

0xb003e2e0 marbbp marbbp2 r brk first client

0xb003e2e4 marbbp marbbp2 r brk size

0xb003e2e8 marbbp marbbp2 rw ack

0xb003e300 marbbp marbbp3 rw first addr

0xb003e304 marbbp marbbp3 rw last addr

0xb003e308 marbbp marbbp3 rw op

0xb003e30c marbbp marbbp3 rw clients

0xb003e310 marbbp marbbp3 rw options

0xb003e314 marbbp marbbp3 r brk addr

0xb003e318 marbbp marbbp3 r brk op

0xb003e31c marbbp marbbp3 r brk clients

0xb003e320 marbbp marbbp3 r brk first client

0xb003e324 marbbp marbbp3 r brk size

0xb003e328 marbbp marbbp3 rw ack

0xb003e340 marb marb rw no snoop

0xb003e344 marb marb rw no snooprq

1588 CHAPTER 25. INTERNAL REGISTERS

0xb0040000 rt trace trace rw cfg

0xb0040004 rt trace trace rw tap ctrl

0xb0040008 rt trace trace r tap stat

0xb004000c rt trace trace rw tap data

0xb0040010 rt trace trace rw tap hdata

0xb0040014 rt trace trace r redir

List of Tables

2.1 CPU references. 47
2.2 Special registers. 48
2.3 Available support function register banks. 49
2.4 Condition Code Stack. 50
2.5 Condition codes. 51
2.6 Flag behavior . 52
2.7 Data types supported by the CRIS v32 CPU. 52
2.8 The mode field of the general instruction format. 54
2.9 The size field of the general instruction format. 54
2.10 Defined vector numbers. 69
2.11 ERP fields. 70
2.12 EXS fields . 71
2.13 Hardware breakpoint support function registers. 83
2.14 BP CTRL register layout. 84
2.16 CRIS Version register. 88
2.17 Instruction description definitions. 89
2.18 How flags are affected . 89
2.19 Size modifiers. 90
2.20 Addressing modes. 90
2.21 Address calculation instructions. 91
2.22 Arithmetic instructions . 91
2.23 Bit test instructions . 92
2.24 Cache manipulation instructions. 92
2.25 Condition code manipulation instructions. 93
2.26 Data transfer instructions. 94
2.27 Flag operation for jump and branch instructions. 94
2.28 Logical instructions. 95
2.30 Miscellaneous data operations. 95
2.31 Shift instructions . 96
2.32 Quick immediate mode instructions. 96
2.33 Instruction sizes. 96
2.34 Register instructions with variable size. 97
2.35 Register instructions with fixed size. 98
2.36 Instruction modes. 98
2.37 Instruction sizes. 98
2.38 Indirect instructions with variable size. 98
2.39 Instruction modes. 99
2.40 Indirect instructions with fixed size. 99
2.78 Removed ETRAX 100LX special registers. 214

1589

1590 LIST OF TABLES

2.79 New ETRAX FS special registers. 214
2.80 Renamed or modified ETRAX 100LX special registers. 215
2.81 Removed ETRAX 100LX instructions. 215
2.82 Modified ETRAX 100LX instructions. 216
2.83 New ETRAX FS instructions. 216
2.84 New ETRAX FS instructions. 217

3.1 References. 219

4.1 References. 227
4.2 Memory map . 229
4.3 Memory bank groups. 230
4.4 Signal to pin mapping in common write enable mode. 234
4.5 SDRAM interface signal to bus interface pin mapping. 237
4.6 Address shift in 16-bit mode. 238
4.7 Example values. 241
4.8 Bus release timing. 247
4.9 Bus acquirement timing. 248
4.10 Request forward timing. 248
4.11 Initial master start up timing . 249
4.23 SRAM/Flash/peripheral read timing. 265
4.24 SRAM/Flash/peripheral write timing. 266
4.25 SRAM/Flash/peripheral extended write timing. 267
4.26 External wait input timing . 268
4.27 SDRAM read timing. 269
4.28 SDRAM write timing . 270
4.29 External DMA read timing . 271
4.30 External DMA write timing. 272
4.31 External DMA tcout timing . 273
4.32 Slave mode read timing. 274
4.33 Slave mode write timing. 275

5.1 References. 277
5.2 Software development references. 277
5.3 Definitions. 278
5.4 DMA List Pointer Registers. 285
5.5 DMA Interrupt Registers. 288
5.6 DMA Interrupt Signals . 288
5.7 Summary of Stream Commands. 289
5.8 Stream Command Options. 291
5.9 General Stream Command. 291
5.10 Group Level Stream Commands. 292
5.11 Context Level Stream Commands. 293
5.12 Data Level Stream Commands. 294
5.13 Abbreviations for Stream Command Ready table. 295
5.14 Stream Command Ready. 296
5.15 Data Descriptor Format . 297
5.16 Data Descriptor ctrl Field Format 297
5.17 Data Descriptor status Field Format: 297
5.18 General Context Descriptor Format. 298

LIST OF TABLES 1591

5.19 General context descriptor ctrl field format. 299
5.20 General Context Descriptor status Field Format. 299
5.21 Group descriptor format . 300
5.22 Group Descriptor ctrl Field Format 300
5.23 Group descriptor status field format. 300

6.1 Overview of the Bootstrap Methods. 311
6.3 NAND flash connection. 313
6.6 Network bootstrap Ethernet header. 314
6.7 Network boot transmitted Ethernet header. 314
6.8 Network duplex selection. 315

7.2 Possible virtual address positions in the TLB. 321

8.1 References. 329
8.2 Internal clocks . 331
8.3 Clock and reset pins. 332
8.4 Clock and reset timing . 333

9.1 References. 335
9.2 Definitions. 336
9.3 CA submodules. 337
9.4 DMA channel meta data field sources. 342
9.5 DMA out channel meta data field. 342
9.6 out channel descriptor field abbreviations. 345
9.7 in channel descriptor field abbreviations. 345
9.8 Descriptor name abbreviations. 345
9.9 Maximum throughputs . 354

10.1 References. 355
10.2 DMA channel to I/O interface connection alternatives. 356

12.1 References. 359

13.1 References. 365
13.2 References to register descriptions. 365
13.3 Definitions. 366
13.4 Module Ownership . 367
13.5 Parallel data path modules. 369
13.6 Maximum speed on the parallel data path. 369
13.7 MPU, Special registers. 371
13.8 MPU, Instruction set definitions. 377
13.26SPU, Special registers. 437
13.27SPU, Event registers . 438
13.29SPU, ALU mask ctr[2] field. 447
13.30SPU, ALU mask ctr[1] field. 447
13.31SPU, ALU mask ctr[0] field. 447
13.32SPU, FSM instruction. 502
13.33SPU, FSM mode instruction selinputs and seloutputs fields 503
13.34SPU, FSM mode, instruction field selinputs 503
13.35SPU, FSM mode, instruction field seloutputs[7:6] 504

1592 LIST OF TABLES

13.36SPU, FSM mode, instruction field seloutputs[5:4] 504
13.37SPU, FSM mode, instruction field seloutputs[3:2] 504
13.38SPU, FSM mode, instruction field seloutputs[1:0] 504
13.39SPU, FSM mode, special seloutputs values. 504
13.41SPU, FSM mode, TIMERINSTR . 505
13.42SPU, FSM mode, TRANSINSTR . 506
13.43Switch, CPU interrupt sources. 513
13.44Switch, CPU interrupt vectors. 513
13.45Switch, MPU interrupt sources. 514
13.46Switch, MPU interrupt vectors 0-3, group 0. 515
13.47Switch, MPU interrupt vectors 4-7, group 1. 515
13.48Switch, MPU interrupt vectors 8-11, group 2. 515
13.49Switch, MPU interrupt vectors 12-15, group 3. 515
13.50Switch, BUS0 mapping. 517
13.51Switch, BUS1 mapping. 517
13.52Switch, GIO mapping. 517
13.53Switch, Pin mapping . 518
13.54Switch, Registers for buses. 518
13.55Switch, SPU input buses. 521
13.56Switch, SPU0 Statusin signals . 521
13.57Switch, SPU1 Statusin signals . 522
13.58Switch, Timer Group clock source configuration. 522
13.59Switch, Trigger Group, Group 0 disable selection. 523
13.61FIFO, Access mechanisms and their relations to the in and out FIF Os537
13.62FIFO, Output bus modes and byte ordering mechanism. 539

14.1 References. 559
14.2 Definitions. 559
14.5 Breakpoint Setup . 562
14.6 Breakpoint Setup Examples. 562
14.7 Breakpoint Status. 562

15.3 Message types. 574
15.5 Real time trace port timing. 578
15.7 Debug data register operation codes.. 579

16.2 3.3 V Power pins . 582
16.3 1.5 V Power pins . 582
16.4 Ground pins. 583
16.5 Miscellaneous pins. 583
16.6 Boot select pins. 583
16.7 Test access port pins. 583
16.8 Data bus pins . 584
16.9 Address bus pins . 585
16.10Chip select pins. 585
16.11Bus interface control pins. 586
16.12External DMA/slave mode handshake pins. 586
16.13Bus arbitration pins. 586
16.14Ethernet interface 0 pins. 587
16.15Asynchronous serial port 0 pins. 587

LIST OF TABLES 1593

16.16USB pins . 587
16.17Configurable I/O port pa pins. 587
16.18Configurable I/O port pb pins. 588
16.19Configurable I/O port pc pins. 588
16.20Configurable I/O port pd pins. 589
16.21Configurable I/O port pe pins. 589
16.22Chip selects shared with General I/O. 592
16.23Handshake signals shared with General I/O. 592
16.24General I/O signals. 593
16.25I/O processor signals. 593
16.26Asynchronous serial port 1 signals. 594
16.27Asynchronous serial port 2 signals. 594
16.28Asynchronous serial port 3 signals. 594
16.29External serial port clock signal. 594
16.30Synchronous serial port 0 signals. 595
16.31Synchronous serial port 1 signals. 595
16.32External serial port clock signal. 595
16.33General ATA signals . 596
16.34ATA bus 0 signals. 596
16.35ATA bus 1 signals. 596
16.36ATA bus 2 signals. 596
16.37ATA bus 3 signals. 597
16.38Ethernet interface 1 signals. 597
16.39Ethernet interface 1 transceiver management signals. 597
16.40Timer signals . 598
16.41Mapping enabled by enusb0.. 598
16.42Mapping enabled by enusb1.. 599

17.3 Debug functions and sub-op codes.. 602

18.2 Timer States. 606
18.3 Watchdog Commands. 608
18.4 Timer Input Clock. 609
18.5 Timer Ouput. 610

19.1 References. 613
19.2 Asynchronous serial port registers. 614
19.3 Baud rates and divide factors. 615
19.4 Serial port signals. 620
19.5 Asynchronous serial timing. 621

20.1 References. 623
20.2 Definitions. 623
20.3 General signals. 627
20.4 Address/data signals. 627
20.5 Control signals . 628

21.1 References. 631
21.2 Definitions. 631
21.3 Transmit frame source . 633

21.4 Receiver frame format . 635
21.5 Ethernet interrupts . 638
21.6 Transmitter signals . 640
21.7 Receiver signals. 640
21.8 Network status signals. 640
21.9 Transceiver management signals. 641
21.10Ethernet interface timing. 642
21.11rw genctrl configuration example. 643
21.12rw rec ctrl configuration example 644
21.13rw tr ctrl configuration example. 644
21.14rw test ctrl configuration example. 645

22.1 References. 647
22.2 Configurable I/O Ports . 649
22.3 Data Outputs . 649
22.4 Data Inputs . 650
22.5 Interrupt Inputs . 650

23.2 IEC60958 ext clock frequencies, MHz. 661
23.3 IEC60958 preambles. 662
23.4 IEC60958 uilen values. 663
23.5 SSI external pins . 675
23.6 Timing figures, internal clock output. 676
23.7 Timing figures, external clock input. 677
23.8 Receiver data organization example. 678
23.9 Transmitter data organization example. 679
23.10Metadata codes and their effect. 685

24.1 Absolute maximum ratings. 695
24.3 Recommended operating conditions. 696
24.4 DC Electrical characteristics. 697
24.5 PLL loop filter value . 697
24.6 Operating conditions for timing information. 698
24.7 IR re-flow profile for Pb-free package. 702
24.8 IR re-flow profile for conventional package. 703

List of Figures

1.1 ETRAX FS interface. 43

2.1 General registers . 48
2.2 Special registers. 49
2.3 Condition Code Stack. 50

1594

LIST OF FIGURES 1595

2.4 General instruction format. 53
2.5 Quick immediate addressing mode instruction format. 55
2.6 Indirect addressing mode. 56
2.7 Autoincrement addressing mode. 56
2.8 Register form of the JASC instruction. 60
2.9 Immediate form of the JAS/BAS and JASC/BASC instructions. 61
2.10 Exception vector address calculation. 67
2.11 Exception return pointer format . 70
2.12 Exception status format. 70
2.13 CPU pipeline stages . 200
2.14 32-bit floating point number . 211
2.15 64-bit floating point number . 211
2.16 Stack frame layout . 213

4.1 Data bus width . 229
4.2 Gated chip select. 230
4.3 Write cycle . 232
4.4 External wait input example. 233
4.5 Read burst cycle. 233
4.6 Write burst cycle . 234
4.7 Early read complete. 235
4.8 NAND flash to bus interface connection. 236
4.9 2 rows x 16-bit SDRAMs. 238
4.10 2 rows 64-bit wide modules with 16-bit SDRAMs. 238
4.11 SDRAM address output example. 241
4.12 SDRAM self refresh mode. 243
4.13 Read burst, CAS latency 2. 243
4.14 Activating a bank and a read to that bank, CAS latency 2. 244
4.15 Activating a bank, two reads to that bank then precharge that bank,

CAS latency 3. 244
4.16 SDRAM write . 244
4.17 Four units sharing the same system bus. 245
4.18 Bus release timing. 247
4.19 Bus acquirement timing. 247
4.20 Bus request forward timing. 248
4.21 Initial master start up timing . 249
4.22 Slave mode operation overview. 256
4.23 SRAM/Flash/peripheral read timing. 265
4.24 SRAM/Flash/peripheral write timing. 266
4.25 SRAM/Flash/peripheral extended write timing. 267
4.26 External wait input timing . 268
4.27 SDRAM read timing. 269
4.28 SDRAM write timing . 270
4.29 External DMA read timing . 271
4.30 External DMA write timing. 272
4.31 External DMA tcout timing . 273
4.32 Slave mode read timing. 274
4.33 Slave mode write timing. 275

5.1 Data descriptor list . 280

1596 LIST OF FIGURES

5.2 Context descriptor list. 282
5.3 USB Example. 283
5.4 Pointer registers. 285
5.5 Data descriptor format . 296
5.6 Data descriptor control field . 297
5.7 Data descriptor status field. 297
5.8 General Context Descriptor Format. 298
5.9 General context descriptor ctrl field format. 298
5.10 General context descriptor status field format. 299
5.11 Group descriptor format . 299
5.12 Group descriptor ctrl field format 300
5.13 Group descriptor status field format. 300

7.1 Kernel/User virtual memory area. 319
7.2 TLB Address translation . 320
7.3 Kernel virtual memory area . 320
7.4 Linear segment address translation. 321
7.5 TLB entry select index format. 322
7.6 TLB entry format . 322
7.7 TLB Lookup mechanism. 323
7.8 Kernel virtual memory configuration example. 326

8.1 Clock and reset timing . 333

9.1 System overview. 336
9.2 System overview. 337
9.3 CA usage of the DMA meta data field. 343
9.4 Key download. 346
9.5 DES CBC encryption. 347
9.6 SHA-1 hashing . 348
9.7 AES-192 ECB encryption. 349
9.8 AES-192 CBC decryption. 350
9.9 AES-256 CBC encryption. 351
9.10 Memory-to-memory copying. 352
9.11 3DES ECB decryption . 353

12.1 Interrupt masks . 360

13.1 Block diagram over the I/O Processor. 366
13.2 Block diagram of the parallel data path. 370
13.3 MPU, Unaligned instruction in memory. 372
13.4 SPU, FSM event. 445
13.5 SPU, FSM instruction format. 502
13.6 SPU, FSM mode, SEQ instruction format. 505
13.7 SPU, FSM mode, TIMERINSTR format 505
13.8 SPU, FSM mode, TRANSINSTR format 506
13.9 SPU, Example of FSM Code in memory. 508
13.10Memory Controller location in the I/O Processor architecture. 509
13.11Switch, MPU interrupt generation, group 0. 516
13.12Switch, Creating BUS0out . 519

LIST OF FIGURES 1597

13.13Switch, Input Parallel Data Path 0. 523
13.14Switch, Output Parallel Data Paths. 524
13.15Timer group, Overview. 526
13.16Timer group, Difference between pulse and toggle mode. 527
13.17Timer group, Enable and disable at the same time. 528
13.18Timer group, Clock Generator example. 529
13.19Trigger group, Overview . 532
13.20Trigger group, Edge detection. 533
13.21DMA Communicator In, Overview. 534
13.22DMA Communicator Out, Overview. 535
13.23FIFO, Overview. 537
13.24FIFO, Byte ordering mechanism. 539
13.25Parallel CRC, Overview. 541
13.26Serial CRC In, Overview. 543
13.27Serial CRC Out, Overview. 543
13.28SAPin, Overview . 545
13.29SAPin, Synchronization method twoclk 200 545
13.30SAPin, Synchronization method timerclk 200 546
13.31SAPin, Synchronization method extclk 200 546
13.32SAPin, Synchronization method nodel ext clk 200 546
13.33SAPin, BUS delay stage. 547
13.34SAPin, GIO logic stage . 548
13.35SAPout, Overview . 548
13.36SAPout, Generating gated clock 0. 549
13.37SAPout, Bus out synchronization, byte0 of BUS0. 550
13.38SAPout, Bus output enable configuration, byte 0 of BUS0. 551
13.39SAPout, Bus output enable logic stage, byte 0 of BUS0. 553
13.40SAPout, GIO out synchronization, GIOout 0 554
13.41SAPout, GIO output enable configuration, GIOoe 0 555
13.42SAPout, GIO output enable logic stage. 557

14.1 Logic for one beakpoint and interrupts. 561

15.1 Real time trace port timing. 578

16.1 Port pa to pe pin mapping alternatives. 590
16.2 AND-OR structure for output signals. 592
16.3 USB pin mapping. 598
16.4 Multiplexing of internal USB transceiver inputs. 599

18.1 Timer input . 609
18.2 Timer output. 610

19.1 Signal timing . 621

21.1 OCI and IEEE 802.3 model comparison. 632
21.2 Frame format . 632
21.3 System overview. 633
21.4 Network interface timing. 641

22.1 Data Outputs . 649

1598 LIST OF FIGURES

22.2 Data Inputs . 649
22.3 Interrupt Inputs . 650

23.1 SSI connection . 655
23.2 Typical unidirectional synchronous serial protocol. 655
23.3 Data format . 661
23.4 Typical frame signals. 663
23.5 Effect of tr delay and recdelay on frame output. 665
23.6 Effect of tr delay and recdelay on frame input. 666
23.7 Effect of tr delay and recdelay in bulk mode. 668
23.8 External timing . 676
23.9 Early data . 681
23.10Normal data. 681
23.11Connection to an I2C device. 689
23.12Connection to an SPI slave. 692

24.1 The ETRAX FS pinout. 699
24.2 The ETRAX FS Plastic Ball Grid Array. 700
24.3 ETRAX FS marking information. 701
24.4 Soldering profile for Pb-free package. 702
24.5 Soldering profile for conventional package. 703

	Introduction
	Functional Block Diagram
	Overview of the AXIS ETRAX FS
	Technical Specifications for the ETRAX FS

	CPU
	Architectural description
	References
	Registers
	Support function registers

	Flags and condition codes
	Data organization in memory
	General instruction format
	The Opcode field
	The Operand1 field
	The Operand2 field
	The Mode field
	The size field

	Addressing modes
	General
	Quick immediate addressing mode
	Register addressing mode
	General register addressing mode
	Special register addressing mode
	Support function register addressing mode

	Indirect addressing mode
	Autoincrement addressing mode
	Immediate addressing mode

	Branches jumps and subroutines
	Conditional branch
	Unconditional branch
	Jump instructions
	Jump and branch with context
	Return instructions
	Switches and table jumps
	Subroutines

	Address calculation instructions
	PC Relative addressing
	Exceptions
	Exception examples
	Exception vectors
	Exception priority
	Exception status registers
	ERP - Exception return pointer
	EXS - Exception status
	EDA - Exception data address
	SPC - Single Step PC

	Non Maskable Interrupts (NMI)
	Guru mode
	Entering guru mode
	Leaving guru mode
	Protected resources in guru mode

	MMU support
	Overview
	Protected resources
	Transitions between operation modes
	MMU registers

	Multiply and divide
	General
	Multiply
	Divide

	Extended arithmetic
	Integral read-write operations
	Single step
	Single step examples

	Hardware breakpoints and watchpoints
	Support function registers
	Triggering condition
	Exceptions
	Examples

	Version identification
	Reset

	Instruction set description
	General
	Definitions
	Size modifiers
	Addressing modes

	Instruction function summary
	Address calculation instructions
	Arithmetic instructions
	Bit test instructions
	Cache manipulation instructions
	Condition code manipulation instructions
	Data transfers
	Jump and Branch Instructions
	Logical Instructions
	Miscellaneous data operations
	Shift instructions

	Instruction format summary
	Quick immediate mode instructions
	Register instructions with variable size
	Summary of register instructions with fixed size
	Summary of indirect instructions with variable size
	Summary of indirect instructions with fixed size

	Instructions in alphabetical order
	Introduction
	ABS - Absolute Value
	ADD - Add
	ADDC - Add with Carry
	ADDI - Add Index
	ADDI - Add Index (to ACR)
	ADDO - Add Offset
	ADDOQ - Add Offset Quick
	ADDQ - Add Quick
	ADDS - Add with Sign Extend
	ADDU - Add with Zero Extend
	AND - Logical AND
	ANDQ - Logical AND Quick
	ASR - Arithmetic Shift Right
	ASRQ - Arithmetic Shift Right Quick
	AX - Arithmetic Extension
	BA - Branch Always
	BAS - Branch And Save
	BASC - Branch And Save with Context Information
	Bcc - Branch Conditionally
	BOUND - Adjust Index to Bound
	BREAK - Software Breakpoint
	BSR - Branch to Subroutine
	BSRC - Branch to Subroutine with Context Information
	BTST - Bit Test
	BTSTQ - Bit Test Quick
	CLEAR - Clear
	CLEARF - Clear Flags
	CMP - Compare
	CMPQ - Compare Quick
	CMPS - Compare with Sign Extend
	CMPU - Compare with Zero Extend
	DI - Disable Interrupts
	DSTEP - Divide Step
	EI - Enable Interrupt
	FIDXD - Flush Data Cache Line by Index
	FIDXI - Flush Instruction Cache Line by Index
	FTAGD - Flush Data Cache Line by Address
	FTAGI - Flush Instruction Cache Line by Address
	HALT - Stop and Wait for Exceptions
	JAS - Jump and Save
	JASC - Jump and Save with Context Information
	JSR - Jump to Subroutine
	JSRC - Jump to Subroutine with Context Information
	JUMP - Jump to Absolute Address
	JUMP - Jump to Special Register
	LAPC - Load PC Relative Address
	LAPCQ - Load PC Relative Address Quick
	LSL - Logical Shift Left
	LSLQ - Logical Shift Left Quick
	LSR - Logical Shift Right
	LSRQ - Logical Shift Right Quick
	LZ - Leading Zeros
	MCP - Multiply Carry Propagation
	MOVE - Move to General Register
	MOVE - Move from General Register to Memory
	MOVE - Move to Special Register
	MOVE - Move from Special Register to General Register
	MOVE - Move from Special Register to Memory
	MOVE - Move to Support Function Register
	MOVE - Move from Support Function Register
	MOVEM - Move Multiple Registers to Memory
	MOVEM - Move Multiple register from Memory
	MOVEQ - Move Quick
	MOVS - Move to General Register with Sign Extend
	MOVU - Move to General Register with Zero Extend
	MULS - Signed Multiply
	MULU - Unsigned Multiply
	NEG - Negate
	NOP - No Operation
	NOT - Logical Complement
	OR - Logical OR
	ORQ - Logical OR Quick
	RET - Return From Subroutine
	RETE - Return From Exception
	RETN - Return from NMI Exception
	RFE - Restore from Exception
	RFG - Restore from Guru Mode Exception
	RFN - Restore from NMI Exception
	Scc - Set Conditional
	SETF - Set Flags
	SFE - Save for Exception
	SUB - Subtract
	SUBQ - Subtract Quick
	SUBS - Subtract with Sign Extend
	SUBU - Subtract with Zero Extend
	SWAP - Swap Bits
	TEST - Compare with Zero
	XOR - Logical Exclusive OR

	CRIS CPU Cycle behavior
	References
	Pipeline Overview
	Prefetch Unit
	Branch Prediction Unit
	Memory Unit
	Pipelined Multiplier Unit

	Pipeline Hazards
	Addresses
	Multiplication
	Jump with Register Operand
	Unaligned Data Accesses
	Restarting After Data Cache Stalls
	MOVEM
	Jump Targets

	Self modifying code in the pipeline

	Assembly language syntax
	Assembly language syntax

	CRIS v32 Compiler specifics
	GCC Compiler options
	C Preprocessor macros
	The ABI
	Introduction
	Fundamental C data types
	C Object memory layout
	C Calling conventions
	Stack frame layout

	ETRAX FS and ETRAX 100LX CPU comparison
	Introduction
	Registers
	General registers
	Special registers
	Removed special registers
	New special registers
	Renamed or modified special registers

	Support function registers

	Addressing modes (Prefixes)
	Instructions
	Removed instructions
	Modified instructions
	New instructions
	Address mode prefix replacements

	Exception handling

	Cache
	References
	Overview
	Functional description
	Cache organization
	Cache coherence
	Cache hits
	Cache misses
	Non-cached accesses
	Conditional write operation
	Flush operations
	Flush index
	Flush tag
	Flushing other caches

	Enable/disable the cache
	Initialization
	Disabling the cache

	Software examples
	Initialize instruction cache (while disabled)
	Flush whole data cache
	Flush specific address region in data cache
	Flush specific address in data cache

	Bus interface
	References
	Overview
	Master mode
	Slave mode

	Functional description
	General
	Data bus
	Address and chip selects
	Gated chip select

	Internal priority in master mode
	Bus width
	Bus states
	Early wait state (ew)
	Late wait state (lw)
	Turn-off wait state (zw)
	Address recovery wait state (aw)
	Data setup wait state (dw)
	Early wait state burst (ewb)
	External wait input

	SRAM/Flash/peripheral timing
	Read and write modes
	Common write enable and bytewise write enable modes
	Normal and extended write modes
	Normal and early read complete modes

	NAND flash
	SDRAM interface
	Connecting the SDRAM
	Address shift in 16-bit mode

	SDRAM timing parameters
	SDRAM configuration
	16-bit mode

	SDRAM Power up and initialization commands
	Power up and initialization
	SDRAM self refresh mode
	PLL bypass mode

	SDRAM timing
	Bus arbitration interface
	Overview
	Bus arbitration interface mode registers
	Arbitration signals
	Arbitration protocol
	Bus request
	Bus grant
	Start-up
	Bus release timing
	Bus acquirement timing
	Request forward timing
	Initial master start up timing

	Bus release modes
	Arbitration settle time and bus acquirement time
	Bus acquirement modes
	SDRAM control in slave mode
	Bus release and acquirement detection

	External DMA
	General
	External DMA bus width
	External DMA burst length
	External DMA handshake signals
	External DMA address
	Transfer counter
	Bus burst behavior in 8-cycle burst mode
	Start and stop of external DMA transfers
	Continuous transfer mode
	Interrupts
	Priority between external DMA channels
	Rate control

	Slave mode operation
	Overview
	Slave channels
	External slave mode registers
	Internal slave mode registers
	Slave chip selects
	Address register mode
	DMA mode
	External handshake pins
	Slave identification
	Boot methods
	Loop back mode and slave mode disable

	Hardware interface
	Interface signals
	Data bus
	Address bus
	Chip selects signals
	Read signal
	Write signals
	SDRAM signals
	Handshake signals
	Wait signal
	Bus arbitration signals

	Reset behavior
	Detailed timing
	SRAM/Flash/peripheral timing
	Read cycle
	Write cycle
	Extended write cycle
	External wait input timing

	SDRAM timing
	SDRAM read timing
	SDRAM write timing

	External DMA timing
	External DMA read timing
	External DMA write timing
	External DMA tc_out timing

	Slave mode timing
	Slave mode read timing
	Slave mode write timing

	Software interface
	Bus interface general registers
	External DMA
	Slave mode and master/slave arbitration
	Internal mode registers
	External slave mode registers

	Programming considerations
	Race avoidance between mode registers and external bus cycles

	DMA
	References
	Definitions
	Overview
	Functional Description
	Data Level
	Out Channel
	In Channel

	Context Level
	Group Level
	A USB Example

	Software Interface
	Pointer Registers and Descriptors
	DMA List Pointers
	DMA List Pointer Registers
	DMA List Pointer Configuration

	General DMA Operation
	General DMA Operation Registers
	rw_cmd
	rw_cfg
	rw_stat
	Setup and Start a Data Level DMA List

	Interrupt
	Interrupt Registers
	Interrupt Signals

	Stream Commands Controlling the DMA List Operation
	rw_stream_cmd
	Summary of Stream Commands
	Stream Command Option Descriptions
	General Stream Commands
	Pointer registers

	Group Level Stream Commands
	Context Level Stream Commands
	Data Level Stream Commands
	Stream command ready
	ack_pkt and mdv

	rw_stream_cmd MACRO

	Descriptor Format
	Data Descriptor
	Context Descriptor
	Group Descriptor
	Examples
	Data Level List Setup
	Data List Modification
	Data List Modification and Multiple Contexts
	Context Level List Setup
	Context List Modification
	Group Level List Setup
	Group List Modification

	Boot Methods
	Bootstrap Methods
	Initialization
	Flash
	Empty flash
	NOR flash
	Bus width

	NAND flash
	NAND flash connection
	Address burst length
	Read command end

	Network
	Initialization
	Network rx
	Network tx/rx
	Duplex

	Serial
	Master chip boots slave
	Slave chip boots master
	No boot and JTAG boot
	PLL mode

	MMU
	References
	Overview
	Functional description
	Non-protected mode
	Physical memory
	Virtual memory
	Kernel/User area
	Kernel area

	Translation lookaside buffer
	TLB Memory sets
	TLB Entries
	TLB Lookup mechanism
	MMU exceptions

	Software interface
	Support function registers
	Example of virtual memory configuration

	Differences compared to the ETRAX 100LX MMU

	Clock generation and reset
	References
	Overview
	Functional description
	Clock generation
	Input clock
	PLL
	PLL bypass mode
	Internal clock distribution and configuration
	Turning off clocks

	Reset
	Reset input
	Boot mode selection
	External reset output
	USB transceiver suspend

	Hardware interface
	Clock and reset pins
	Clock and reset timing

	Software interface

	Crypto Accelerator
	References
	Definitions
	Overview
	Functional description
	Byte order, memory layout and block sizes
	ECB/CBC modes and IV's
	DES/3DES specific usage
	AES specific usage
	SHA-1 specific usage
	MD-5 specific usage
	Hash IV's
	IP-checksum specific usage

	Software interface
	DMA descriptor controlled configuration
	DMA out channel meta data
	DMA in channel meta data

	Register controlled configuration
	Downloading keys into the keystore

	Configuration examples
	Data descriptor definitions
	Downloading a key
	DES CBC encryption
	SHA-1 hashing
	AES-192 ECB encryption with SHA-1 hashing of the ciphertext
	AES-192 CBC decryption with SHA-1 hashing of the ciphertext
	AES-256 CBC encryption with MD-5 hashing of the plaintext
	Memory-to-memory copying with parallel IP checksumming
	3DES ECB decryption in DED mode

	Performance Issues

	DMA Connection
	References
	Functional description
	Software interface

	Internal Memory
	References
	Definitions
	Functional Description
	General
	ROM content

	Interrupts
	References
	Overview
	Functional Description
	Interrupt masks
	Interrupt status
	Individual interrupts
	Interrupt vectors
	Non maskable interrupts
	Guru mode exceptions

	Vector generation
	Interrupt vector numbers
	Interrupt acknowledge
	Non maskable interrupts
	Guru mode exceptions

	I/O Processor
	References
	Definitions
	Overview
	The concept of ownership
	MPU Characteristics
	SPU Characteristics
	The Memory Controller (MC)
	The Switch
	SAP
	Trigger
	Timer
	The parallel data path

	Master Processing Unit
	Architectural description
	Registers
	Data organization in memory
	Branches, jumps and subroutines
	Interrupts
	The MPU executes instructions from the CPU
	Register write and read
	Memory instructions
	Threads

	Instruction set description
	Definitions
	Instructions in alphabetical order
	ADD - Add
	ADDQ - ADD Quick
	ADDX - ADD Extended
	AND - Logical AND
	ANDQ - Logical AND Quick
	ANDX - Logical AND Extended
	BA - Branch Always
	BAR - Branch Always Register
	BBC - Branch Bit Clear
	BBS - Branch Bit Set
	BMI - Branch Minus
	BNZ - Branch Not Zero
	BPL - Branch Plus
	BZ - Branch Zero
	DI - Disable Interrupts
	EI - Enable Interrupts
	HALT - Halt the MPU
	JIR - Jump to Interrupt Routine (Address is an immediate)
	JIR - Jump to Interrupt Routine (Address is a register)
	JNT - Jump Next Thread
	JSR - Jump to Subroutine (Address is an immediate)
	JSR - Jump to Subroutine (Address is a register)
	LSL - Logical Shift Left
	LSLQ - Logical Shift Left Quick
	LSR - Logical Shift Right
	LSRQ - Logical Shift Right Quick
	LW - Load 32-bit data to register (Address is an immediate)
	LW - Load 32-bit data to register (Address is a register)
	MOVE - Move to Register
	MOVEQ - Move Quick
	MOVEX - Move Extended
	NOP - No Operation
	NOT - Logical Complement
	OR - Logical OR
	ORQ - Logical OR Quick
	ORX - Logical OR Extended
	RET - Return from Subroutine
	RETI - Return from Interrupt
	RR - Register Read (Address is an immediate)
	RR - Register Read (Address is a register)
	RW - Register Write (Address is an immediate)
	RW - Register Write (Address is a register)
	RWQ - Register Write Quick (Address is an immediate)
	RWQ - Register Write Quick (Address is a register)
	RWX - Register Write Extended (Address is an immediate)
	RWX - Register Write Extended (Address is a register)
	SUB - Subtract
	SUBQ - Subtract Quick
	SUBX - Subtract Extended
	SW - Store 32-bit data to memory (Address is an immediate)
	SW - Store 32-bit data to memory (Address is a register)
	SWX - Store 32-bit data to memory (Address is an immediate)
	SWX - Store 32-bit data to memory (Address is a register)
	XOR - Logical Exclusive OR
	XOR - Register Exclusive OR
	XORQ - Logical Exclusive OR Quick
	XORX - Logical Exclusive OR Extended

	Slave Processing Unit
	Architectural description
	Enabling and disabling SPU modes from owner
	Registers
	General registers
	Special registers
	Event registers

	Instruction formats
	Branches
	Switching between SEQ and FSM mode
	From Sequential mode to FSM mode
	From FSM mode to Sequential mode

	Register operations
	32 bit ALU operations using IMMHI
	ALU mask operations
	ALU flags
	Inputs
	Outputs
	State transitions
	FSM mode inputs
	FSM events
	Configuring an event

	Breakpoints
	Trace registers

	Instruction set description
	Definitions
	ALU mask fields
	Sequential instructions in alphabetical order
	ADD - Add
	ADDQ - Add Quick
	AND - Logical AND
	ANDQ - Logical AND Quick
	ANDQH - Logical AND Quick High
	BA - Branch Always
	BAR - Branch Always Register
	BBC - Branch Bit Clear
	BBS - Branch Bit Set
	BMI - Branch Minus
	BNZ - Branch Not Zero
	BPL - Branch Plus
	BZ - Branch Zero
	FSM - Start FSM mode
	FSMQ - Start FSM mode Quick
	HALT - Halt the SPU
	LSL - Logical Shift Left
	LSLQ - Logical Shift Left Quick
	LSR - Logical Shift Right
	LSRQ - Logical Shift Right Quick
	MOVE - Move to Register
	MOVE - Move from Event Register
	MOVE - Move to Event Register
	MOVEH - Move High
	MOVEL - Move Low
	MOVEQ - Move Quick
	NOP - No Operation
	NOT - Logical Complement
	OR - Logical OR
	ORQ - Logical OR Quick
	RR - Register Read (Address is an immediate)
	RR - Register Read (Address in REGA register)
	RRM - Register Read with Mask (Address is an immediate)
	RRM - Register Read with Mask (Address in REGA register)
	RRMH - Register Read with Mask High (Address is an immediate)
	RRMH - Register Read with Mask High (Address in REGA register)
	RRMQ - Register Read with Mask Quick (Address is an immediate)
	RRMQ - Register Read with Mask Quick (Address in REGA register)
	RW - Register Write (Address is an immediate)
	RW - Register Write (Address in REGA register)
	RWQ - Register Write Quick (Address is an immediate)
	RWQ - Register Write Quick (Address in REGA register)
	SSL - Set Shift Left
	SSLQ - Set Shift Left Quick
	SSR - Set Shift Right
	SSRQ - Set Shift Right Quick
	SUB - Subtract
	SUBQ - Subtract Quick
	SWAP - Swap
	SWSRQ - Swap and Shift Right Quick
	XOR - Logical Exclusive OR
	XOR - Register Exclusive OR
	XORQ - Logical Exclusive OR Quick

	FSM instructions
	sel_inputs description
	sel_outputs description
	Sequential instruction
	Timer instruction
	Transition instruction
	FSM Instructions, memory use

	Memory Controller
	Functional description
	Ownership
	Request ownership

	Write data from system memory to I/O Processor SPU memory
	Read data from system memory to the r_mc_data register
	Write data from the rw_mc_data register to system memory
	Write data from the rw_mc_data register to I/O Processor SPU memory

	Switch
	Functional description
	Register access
	Interrupts to CPU from the I/O Processor
	Interrupts to MPU
	MPU Interrupts from I/O Processor modules
	MPU Interrupts from CPU software

	Pin multiplexing
	Mapping I/O Processor buses onto the pa to pe ports
	Controlling I/O Processor buses
	BUS0 out
	BUS1 out
	GIO out bus

	Connecting I/O Processor modules
	SPU
	Timer Groups
	Trigger Groups
	Parallel Data Path in
	Parallel Data Path out
	Serial CRC in
	Serial CRC out

	Timer group
	Functional description
	Timer
	Toggle or pulse mode
	Run modes
	Enable or disable a Timer

	Clock Generator
	Configuring the Clock Generator

	Interrupts

	Trigger group
	Functional description
	Enable and disable a Trigger
	Trigger configuration
	Edge detection
	Output strobe configuration

	Interrupts

	DMA Communicator In
	Functional description
	Interrupts

	DMA Communicator Out
	Functional description
	Interrupts

	FIFO
	Functional description
	The FIFO byte order
	FIFO Output bus mode
	Software interface
	Interrupts

	Parallel CRC
	Functional description
	Data interfaces
	CRC Configuration
	Error detection

	Serial CRC In
	Functional description
	Configuration
	CRC Validation

	Serial CRC Out
	Functional description
	Configuration
	Data interface

	Synchronization and Asynchronous Paths
	SAP_in Functional description
	Buses (in), synchronization
	byte0_sel ... byte3_sel
	byte0_ext_src ... byte3_ext_src
	byte0_edge ... byte3_edge
	byte0_delay ... byte3_delay

	GIO:s (in)
	Synchronization
	Logic stage

	SAP_out Functional description
	Gated clocks
	Buses (out)
	byte0_clk_sel ... byte3_clk_sel
	byte0_gated_clk ... byte3_gated_clk
	byte0_clk_inv ... byte3_clk_inv

	Bus output enables
	byte0_clk_sel ... byte3_clk_sel
	byte0_clk_ext ... byte3_clk_ext
	byte0_gated_clk ... byte3_gated_clk
	byte0_clk_inv ... byte3_clk_inv
	byte0_logic ... byte3_logic

	GIO:s (out)
	out_clk_sel
	out_clk_ext
	out_gated_clk
	out_clk_inv
	out_logic

	GIO output enables
	oe_clk_sel
	oe_clk_ext
	oe_gated_clk
	oe_clk_inv
	oe_logic

	Memory Arbiter
	References
	Definitions
	Overview
	Functional description
	Memory arbitration scheme
	Cache coherence
	Breakpoints
	Setting up breakpoints
	Breakpoint status
	Acknowledging a breakpoint
	Interrupts
	Stopping clients
	Writes

	Software interface
	Allocation of arbitration slots
	Registers
	Bandwidth versus latency
	Examples
	Setting an allocation vector

	Breakpoints
	Setting up a breakpoint
	To tell if a breakpoint has been triggered
	Get information from a triggered breakpoint
	Reset a breakpoint
	Stopping clients
	Examples

	Cache coherence
	Cache coherence considerations
	Controlling cache coherency
	Examples
	Telling a client to avoid snooping
	Telling a cache not to snoop

	Real Time Trace
	References
	Definitions
	Overview
	Functional description
	Real time tracing
	Configuration
	PC tracing
	Overflow situations

	Watchpoint tracing
	Ownership tracing
	Starting and stopping tracing

	Real time trace messages
	Message start and end
	Message types
	owner - process ownership change
	sjmp - jumps with static target address
	djmp - jump with dynamic target address
	error
	sync - synchronization
	exception - jump to exception routine
	wp - watchpoint trigger

	TAP controller interface

	Hardware interface
	TAP interface
	Real time trace interface
	Timing

	Software interface
	TAP debug data register

	Pinout and pin multiplexing
	References
	Overview
	Pinout
	Power and ground pins
	3.3 V Power pins
	1.5 V Power pins
	Ground pins

	Miscellaneous pins
	Boot select pins
	Test access port (TAP)
	Bus interface pins
	Data bus pins
	Address bus pins
	Chip select pins
	Bus interface control pins
	External DMA/slave mode handshake pins
	Bus arbitration pins

	Ethernet interface 0
	Asynchronous serial port 0
	USB pins
	Configurable I/O pins
	Port pa
	Port pb
	Port pc
	Port pd
	Port pe

	Multiplexing of configurable I/O pins
	Overview
	Principles for signal multiplexing
	Input signals
	Output signals
	Reset behavior

	Pin mapping
	Bus interface signals on port pa
	General I/O
	I/O processor
	Fixed protocol I/O blocks
	Asynchronous serial ports
	Synchronous serial ports
	ATA
	Ethernet interface 1
	timer

	USB pin mapping

	Stubless Debugging
	Introduction
	Entering guru mode
	Debug functions
	Read/write register
	Read register
	Write register

	Read/write memory
	Read
	Write

	Return from guru mode

	Timers
	References
	Overview
	Functional Description
	Programmable Timers
	Timer Operation
	Timer Clock Frequency
	Timer Output
	Reset Behavior

	Counter
	Counter Operation
	Reading the Counter
	Reset Behavior

	Continuous Read-Only Timer
	Test Mode

	Timer Trig Point
	Trig Point Operation
	Reset Behavior

	Watchdog Timer
	Watchdog Operation
	Configuring and reading the Watchdog
	Reset Behavior

	Interrupts

	Hardware Interface
	Timer Input Clock
	Timer Output

	Software Interface
	Timer and counter
	Trig point

	Asynchronous serial port
	References
	Overview
	Functional Description
	Asynchronous serial port registers
	Baud rate selection
	Serial protocol operation modes
	Character format
	Handshake signals
	Automatic xoff handling
	RS 485 operation
	Stop transmitter
	Internal loop back

	CPU controlled operation
	Transmitter
	Receiver

	DMA controlled operation
	DMA channel connections
	Transmitter
	Receiver

	Interrupts

	Hardware Interface
	Input and output signals
	Signal timing

	Software Interface
	General
	DMA operation

	ATA Interface
	References
	Definitions
	Overview
	Functional description
	Transfer parameters
	Host transfer method
	Address counter
	Interrupts
	Handling timeouts and errors

	Hardware interface
	Software interface
	Configuration registers
	DMA descriptors
	Transfer modes
	Software reset

	Ethernet Interface
	References
	Definitions
	Overview
	Functional description
	Transmitter
	Error handling

	Receiver
	Address recognition
	Received frame length check
	Error handling

	Duplex and flow control
	MDIO interface
	Error and statistics counters
	Interrupts
	Loop back mode
	Handshake protocol
	Phyclk pin
	25MHz clock output
	Transmit error
	Address recognized output

	Hardware Interface
	External pin description
	Transmitter signals
	Receiver signals
	Network status signals
	Transceiver management signals

	Reset behavior
	Signal timing

	Software Interface
	Configuration registers
	DMA and pin configuration
	DMA descriptors
	Transmitter
	Receiver

	Software reset
	Configuration example
	rw_gen_ctrl
	rw_rec_ctrl
	rw_tr_ctrl
	rw_ma0_lo
	rw_ma0_hi
	rw_ma1_lo
	rw_ma1_hi
	rw_ga_lo
	rw_ga_hi
	rw_test_ctrl

	General I/O
	References
	Overview
	Functional description
	General I/O ports
	Interrupts on port pa
	Reset behavior

	Hardware interface
	General I/O signals
	Data output timing
	Data input timing
	Interrupt input timing

	Software interface
	Programming considerations
	Port read after write
	Acknowledge of level triggered interrupts

	Synchronous Serial Interface
	References
	Definitions
	Overview
	Functional description
	Operating modes
	Lowspeed mode
	SPI
	OKI MSM7731 microprocessor interface
	MAX1202 A/D converter interface
	I2C

	Highspeed mode
	Special output clock gating feature
	Fast SPI master mode

	Wiresave mode
	Mode of operation
	Metadata use

	IEC60958 mode
	Data format
	IEC60958 receiver data rate detection

	Frame events and frame signals
	Frame events and their sources
	Frame output signal
	Frame cycle timing
	Isochronous mode with frame output signal
	Frame input signal
	Transmitter bulk mode and frame output

	Special cases
	Simultaneous master and slave
	No frame signal
	Frame signals in 'highspeed' and 'wiresave' modes

	Flow control
	Highspeed and lowspeed modes
	Flow control in wiresave mode

	Clocking
	Internal clock
	External clock

	Reset behavior
	Interrupts

	Hardware Interface
	External pins
	Reset behavior
	Timing

	Software Interface
	Data organization in memory
	Examples

	Transferring data
	Mode register driven mode
	Allowed interrupt latency

	DMA mode

	Starting and stopping
	Enable procedure
	Continuous clock or internal clock
	Gated external clock

	Stopping the SSI

	Error conditions and recovery
	Wiresave mode metadata codes

	Configuration examples
	I2S
	SPI
	MAX1202
	Initial configuration
	Starting communication

	I2C
	Electrical connection
	Data formatting
	Initial configuration
	Communication

	Atmel flash memory (fast SPI)
	Hardware connection
	Initial configuration
	Communication

	Electrical and Mechanical Information
	DC Electrical specifications
	Absolute maximum ratings
	ESD protection and latch-up
	Recommended operating conditions
	DC Electrical characteristics
	Notes on supply current specifications

	PLL loop filter
	Power up sequence

	AC Electrical specifications
	Conditions

	MTBF
	Pinout
	Mechanical specifications
	Physical dimensions
	Marking
	RoHS conformance

	Soldering
	Recommended soldering profile for Pb-free package
	Recommended soldering profile for conventional package

	Delivery and storage
	Delivery package
	Storage time
	Factory floor life and rebake procedure

	Internal Registers
	Introduction
	Notation
	ata
	rw_ctrl2
	rs_stat_data/r_stat_data
	rw_ctrl0
	rw_ctrl1
	rw_trf_cnt
	r_stat_misc
	rw_intr_mask
	rw_ack_intr
	r_intr
	r_masked_intr

	bif_core
	rw_grp1_cfg
	rw_grp2_cfg
	rw_grp3_cfg
	rw_grp4_cfg
	rw_sdram_cfg_grp0
	rw_sdram_cfg_grp1
	rw_sdram_timing
	rw_sdram_cmd
	rs_sdram_ref_stat/r_sdram_ref_stat

	bif_dma
	rw_ch0_ctrl
	rw_ch0_addr
	rw_ch0_start
	rw_ch0_cnt
	r_ch0_stat
	rw_ch1_ctrl
	rw_ch1_addr
	rw_ch1_start
	rw_ch1_cnt
	r_ch1_stat
	rw_ch2_ctrl
	rw_ch2_addr
	rw_ch2_start
	rw_ch2_cnt
	r_ch2_stat
	rw_ch3_ctrl
	rw_ch3_addr
	rw_ch3_start
	rw_ch3_cnt
	r_ch3_stat
	rw_intr_mask
	rw_ack_intr
	r_intr
	r_masked_intr
	rw_pin0_cfg
	rw_pin1_cfg
	rw_pin2_cfg
	rw_pin3_cfg
	rw_pin4_cfg
	rw_pin5_cfg
	rw_pin6_cfg
	rw_pin7_cfg
	r_pin_stat

	bif_slave
	rw_slave_cfg
	r_slave_mode
	rw_ch0_cfg
	rw_ch1_cfg
	rw_ch2_cfg
	rw_ch3_cfg
	rw_arb_cfg
	r_arb_stat
	rw_intr_mask
	rw_ack_intr
	r_intr
	r_masked_intr

	bif_slave_ext
	r_ch0_seq_data
	r_ch0_data
	rw_ch0_addr
	r_ch0_stat
	rw_ch0_ctrl
	rw_ch1_seq_data
	rw_ch1_data
	rw_ch1_addr
	rw_ch1_ctrl
	r_ch1_stat
	r_ch2_seq_data
	r_ch2_data
	rw_ch2_addr
	r_ch2_stat
	rw_ch2_ctrl
	rw_ch3_seq_data
	rw_ch3_data
	rw_ch3_addr
	r_ch3_stat
	rw_ch3_ctrl

	config
	r_bootsel
	rw_clk_ctrl
	rw_pad_ctrl

	cris
	rw_gc_cfg
	rw_gc_ccs
	rw_gc_srs
	rw_gc_nrp
	rw_gc_exs
	rw_gc_eda
	rw_gc_r0
	rw_gc_r1
	rw_gc_r2
	rw_gc_r3

	cris_bp
	rw_bp_ctrl
	rw_bp_i0_start
	rw_bp_i0_end
	rw_bp_d0_start
	rw_bp_d0_end
	rw_bp_d1_start
	rw_bp_d1_end
	rw_bp_d2_start
	rw_bp_d2_end
	rw_bp_d3_start
	rw_bp_d3_end
	rw_bp_d4_start
	rw_bp_d4_end
	rw_bp_d5_start
	rw_bp_d5_end

	dma
	rw_data
	rw_data_next
	rw_data_buf
	rw_data_ctrl
	rw_data_stat
	rw_data_md
	rw_data_md_s
	rw_data_after
	rw_ctxt
	rw_ctxt_next
	rw_ctxt_ctrl
	rw_ctxt_stat
	rw_ctxt_md0
	rw_ctxt_md0_s
	rw_ctxt_md1
	rw_ctxt_md1_s
	rw_ctxt_md2
	rw_ctxt_md2_s
	rw_ctxt_md3
	rw_ctxt_md3_s
	rw_ctxt_md4
	rw_ctxt_md4_s
	rw_saved_data
	rw_saved_data_buf
	rw_group
	rw_group_next
	rw_group_ctrl
	rw_group_stat
	rw_group_md
	rw_group_md_s
	rw_group_up
	rw_group_down
	rw_cmd
	rw_cfg
	rw_stat
	rw_intr_mask
	rw_ack_intr
	r_intr
	r_masked_intr
	rw_stream_cmd

	eth
	rw_ma0_lo
	rw_ma0_hi
	rw_ma1_lo
	rw_ma1_hi
	rw_ga_lo
	rw_ga_hi
	rw_gen_ctrl
	rw_rec_ctrl
	rw_tr_ctrl
	rw_clr_err
	rw_mgm_ctrl
	r_stat
	rs_rec_cnt/r_rec_cnt
	rs_tr_cnt/r_tr_cnt
	rs_phy_cnt/r_phy_cnt
	rw_test_ctrl
	rw_intr_mask
	rw_ack_intr
	r_intr
	r_masked_intr

	gio
	rw_pa_dout
	r_pa_din
	rw_pa_oe
	rw_intr_cfg
	rw_intr_mask
	rw_ack_intr
	r_intr
	r_masked_intr
	rw_pb_dout
	r_pb_din
	rw_pb_oe
	rw_pc_dout
	r_pc_din
	rw_pc_oe
	rw_pd_dout
	r_pd_din
	rw_pd_oe
	rw_pe_dout
	r_pe_din
	rw_pe_oe

	intr_vect
	rw_mask
	r_vect
	r_masked_vect
	r_nmi
	r_guru

	iop_crc_par
	rw_cfg
	rw_init_crc
	rw_correct_crc
	rw_ctrl
	rw_set_last
	rw_wr1byte
	rw_wr2byte
	rw_wr3byte
	rw_wr4byte
	rw_wr1byte_last
	rw_wr2byte_last
	rw_wr3byte_last
	rw_wr4byte_last
	r_stat
	r_sh_reg
	r_crc
	rw_strb_rec_dif_in

	iop_dmc_in
	rw_cfg
	rw_ctrl
	r_stat
	rw_stream_cmd
	rw_stream_wr_data
	rw_stream_wr_data_last
	rw_stream_ctrl
	r_stream_stat
	r_data_descr
	r_ctxt_descr
	r_ctxt_descr_md1
	r_ctxt_descr_md2
	r_group_descr
	rw_data_descr
	rw_ctxt_descr
	rw_ctxt_descr_md1
	rw_ctxt_descr_md2
	rw_group_descr
	rw_intr_mask
	rw_ack_intr
	r_intr
	r_masked_intr

	iop_dmc_out
	rw_cfg
	rw_ctrl
	r_stat
	rw_stream_cmd
	rs_stream_data/r_stream_data
	r_stream_stat
	r_data_descr
	r_ctxt_descr
	r_ctxt_descr_md1
	r_ctxt_descr_md2
	r_group_descr
	rw_data_descr
	rw_ctxt_descr
	rw_ctxt_descr_md1
	rw_ctxt_descr_md2
	rw_group_descr
	rw_intr_mask
	rw_ack_intr
	r_intr
	r_masked_intr

	iop_fifo_out
	rw_cfg
	rw_ctrl
	r_stat
	rw_wr1byte
	rw_wr2byte
	rw_wr3byte
	rw_wr4byte
	rw_wr1byte_last
	rw_wr2byte_last
	rw_wr3byte_last
	rw_wr4byte_last
	rw_set_last
	rs_rd_data/r_rd_data
	rw_strb_dif_out
	rw_intr_mask
	rw_ack_intr
	r_intr
	r_masked_intr

	iop_fifo_in
	rw_cfg
	rw_ctrl
	r_stat
	rs_rd1byte/r_rd1byte
	rs_rd2byte/r_rd2byte
	rs_rd3byte/r_rd3byte
	rs_rd4byte/r_rd4byte
	rw_set_last
	rw_strb_dif_in
	rw_intr_mask
	rw_ack_intr
	r_intr
	r_masked_intr

	iop_fifo_out_extra
	rs_rd_data/r_rd_data
	r_stat
	rw_strb_dif_out
	rw_intr_mask
	rw_ack_intr
	r_intr
	r_masked_intr

	iop_fifo_in_extra
	rw_wr_data
	r_stat
	rw_strb_dif_in
	rw_intr_mask
	rw_ack_intr
	r_intr
	r_masked_intr

	iop_mpu
	rw_r
	rw_ctrl
	r_pc
	r_stat
	rw_instr
	rw_immediate
	r_trace
	r_wr_stat
	rw_thread
	rw_intr

	iop_sap_in
	rw_bus0_sync
	rw_bus1_sync
	rw_gio

	iop_sap_out
	rw_gen_gated
	rw_bus0
	rw_bus1
	rw_bus0_lo_oe
	rw_bus0_hi_oe
	rw_bus1_lo_oe
	rw_bus1_hi_oe
	rw_gio

	iop_spu
	rw_r
	rw_seq_pc
	rw_fsm_pc
	rw_ctrl
	rw_fsm_inputs3_0
	rw_fsm_inputs7_4
	rw_gio_out
	rw_bus0_out
	rw_bus1_out
	r_gio_in
	r_bus0_in
	r_bus1_in
	rw_gio_out_set
	rw_gio_out_clr
	rs_wr_stat/r_wr_stat
	r_reg_indexed_by_bus0_in
	r_stat_in
	r_trigger_in
	r_special_stat
	rw_reg_access
	rw_event_cfg
	rw_event_mask
	rw_event_val
	rw_event_ret
	r_trace
	r_fsm_trace
	rw_brp

	iop_sw_cfg
	rw_crc_par0_owner
	rw_crc_par1_owner
	rw_dmc_in0_owner
	rw_dmc_in1_owner
	rw_dmc_out0_owner
	rw_dmc_out1_owner
	rw_fifo_in0_owner
	rw_fifo_in0_extra_owner
	rw_fifo_in1_owner
	rw_fifo_in1_extra_owner
	rw_fifo_out0_owner
	rw_fifo_out0_extra_owner
	rw_fifo_out1_owner
	rw_fifo_out1_extra_owner
	rw_sap_in_owner
	rw_sap_out_owner
	rw_scrc_in0_owner
	rw_scrc_in1_owner
	rw_scrc_out0_owner
	rw_scrc_out1_owner
	rw_spu0_owner
	rw_spu1_owner
	rw_timer_grp0_owner
	rw_timer_grp1_owner
	rw_timer_grp2_owner
	rw_timer_grp3_owner
	rw_trigger_grp0_owner
	rw_trigger_grp1_owner
	rw_trigger_grp2_owner
	rw_trigger_grp3_owner
	rw_trigger_grp4_owner
	rw_trigger_grp5_owner
	rw_trigger_grp6_owner
	rw_trigger_grp7_owner
	rw_bus0_mask
	rw_bus0_oe_mask
	rw_bus1_mask
	rw_bus1_oe_mask
	rw_gio_mask
	rw_gio_oe_mask
	rw_pinmapping
	rw_bus_out_cfg
	rw_gio_out_grp0_cfg
	rw_gio_out_grp1_cfg
	rw_gio_out_grp2_cfg
	rw_gio_out_grp3_cfg
	rw_gio_out_grp4_cfg
	rw_gio_out_grp5_cfg
	rw_gio_out_grp6_cfg
	rw_gio_out_grp7_cfg
	rw_spu0_cfg
	rw_spu1_cfg
	rw_timer_grp0_cfg
	rw_timer_grp1_cfg
	rw_timer_grp2_cfg
	rw_timer_grp3_cfg
	rw_trigger_grps_cfg
	rw_pdp0_cfg
	rw_pdp1_cfg
	rw_sdp_cfg

	iop_sw_cpu
	rw_mc_ctrl
	rw_mc_data
	rw_mc_addr
	rs_mc_data/r_mc_data
	r_mc_stat
	rw_bus0_clr_mask
	rw_bus0_set_mask
	rw_bus0_oe_clr_mask
	rw_bus0_oe_set_mask
	r_bus0_in
	rw_bus1_clr_mask
	rw_bus1_set_mask
	rw_bus1_oe_clr_mask
	rw_bus1_oe_set_mask
	r_bus1_in
	rw_gio_clr_mask
	rw_gio_set_mask
	rw_gio_oe_clr_mask
	rw_gio_oe_set_mask
	r_gio_in
	rw_intr0_mask
	rw_ack_intr0
	r_intr0
	r_masked_intr0
	rw_intr1_mask
	rw_ack_intr1
	r_intr1
	r_masked_intr1
	rw_intr2_mask
	rw_ack_intr2
	r_intr2
	r_masked_intr2
	rw_intr3_mask
	rw_ack_intr3
	r_intr3
	r_masked_intr3

	iop_sw_mpu
	rw_sw_cfg_owner
	rw_mc_ctrl
	rw_mc_data
	rw_mc_addr
	rs_mc_data/r_mc_data
	r_mc_stat
	rw_bus0_clr_mask
	rw_bus0_set_mask
	rw_bus0_oe_clr_mask
	rw_bus0_oe_set_mask
	r_bus0_in
	rw_bus1_clr_mask
	rw_bus1_set_mask
	rw_bus1_oe_clr_mask
	rw_bus1_oe_set_mask
	r_bus1_in
	rw_gio_clr_mask
	rw_gio_set_mask
	rw_gio_oe_clr_mask
	rw_gio_oe_set_mask
	r_gio_in
	rw_cpu_intr
	r_cpu_intr
	rw_intr_grp0_mask
	rw_ack_intr_grp0
	r_intr_grp0
	r_masked_intr_grp0
	rw_intr_grp1_mask
	rw_ack_intr_grp1
	r_intr_grp1
	r_masked_intr_grp1
	rw_intr_grp2_mask
	rw_ack_intr_grp2
	r_intr_grp2
	r_masked_intr_grp2
	rw_intr_grp3_mask
	rw_ack_intr_grp3
	r_intr_grp3
	r_masked_intr_grp3

	iop_sw_spu
	rw_mc_ctrl
	rw_mc_data
	rw_mc_addr
	rs_mc_data/r_mc_data
	r_mc_stat
	rw_bus0_clr_mask
	rw_bus0_set_mask
	rw_bus0_oe_clr_mask
	rw_bus0_oe_set_mask
	r_bus0_in
	rw_bus1_clr_mask
	rw_bus1_set_mask
	rw_bus1_oe_clr_mask
	rw_bus1_oe_set_mask
	r_bus1_in
	rw_gio_clr_mask
	rw_gio_set_mask
	rw_gio_oe_clr_mask
	rw_gio_oe_set_mask
	r_gio_in
	rw_bus0_clr_mask_lo
	rw_bus0_clr_mask_hi
	rw_bus0_set_mask_lo
	rw_bus0_set_mask_hi
	rw_bus1_clr_mask_lo
	rw_bus1_clr_mask_hi
	rw_bus1_set_mask_lo
	rw_bus1_set_mask_hi
	rw_gio_clr_mask_lo
	rw_gio_clr_mask_hi
	rw_gio_set_mask_lo
	rw_gio_set_mask_hi
	rw_gio_oe_clr_mask_lo
	rw_gio_oe_clr_mask_hi
	rw_gio_oe_set_mask_lo
	rw_gio_oe_set_mask_hi
	rw_cpu_intr
	r_cpu_intr
	r_hw_intr
	rw_mpu_intr
	r_mpu_intr

	iop_timer_grp
	rw_cfg
	rw_half_period
	rw_half_period_len
	rw_tmr_cfg
	rw_tmr_len
	rw_cmd
	r_clk_gen_cnt
	rs_tmr_cnt/r_tmr_cnt
	rw_intr_mask
	rw_ack_intr
	r_intr
	r_masked_intr

	iop_trigger_grp
	rw_cfg
	rw_cmd
	rw_intr_mask
	rw_ack_intr
	r_intr
	r_masked_intr

	iop_scrc_in
	rw_cfg
	rw_ctrl
	r_stat
	rw_init_crc
	rs_computed_crc/r_computed_crc
	rw_crc
	rw_correct_crc
	rw_wr1bit

	iop_scrc_out
	rw_cfg
	rw_ctrl
	rw_init_crc
	rw_crc
	rw_data
	r_computed_crc

	iop_version
	r_version

	marb_bp
	rw_first_addr
	rw_last_addr
	rw_op
	rw_clients
	rw_options
	r_brk_addr
	r_brk_op
	r_brk_clients
	r_brk_first_client
	r_brk_size
	rw_ack

	marb
	rw_int_slots
	rw_ext_slots
	rw_regs_slots
	rw_intr_mask
	rw_ack_intr
	r_intr
	r_masked_intr
	rw_stop_mask
	r_stopped
	rw_no_snoop
	rw_no_snoop_rq

	mmu
	rw_mm_cfg
	rw_mm_kbase_lo
	rw_mm_kbase_hi
	r_mm_cause
	rw_mm_tlb_sel
	rw_mm_tlb_lo
	rw_mm_tlb_hi

	pinmux
	rw_pa
	rw_hwprot
	rw_pb_gio
	rw_pb_iop
	rw_pc_gio
	rw_pc_iop
	rw_pd_gio
	rw_pd_iop
	rw_pe_gio
	rw_pe_iop
	rw_usb_phy

	rt_trace
	rw_cfg
	rw_tap_ctrl
	r_tap_stat
	rw_tap_data
	rw_tap_hdata
	r_redir

	ser
	rw_tr_ctrl
	rw_tr_dma_en
	rw_rec_ctrl
	rw_tr_baud_div
	rw_rec_baud_div
	rw_xoff
	rw_xoff_clr
	rw_dout
	rs_stat_din/r_stat_din
	rw_rec_eop
	rw_intr_mask
	rw_ack_intr
	r_intr
	r_masked_intr

	sser
	rw_cfg
	rw_frm_cfg
	rw_tr_cfg
	rw_rec_cfg
	rw_tr_data
	r_rec_data
	rw_extra
	rw_intr_mask
	rw_ack_intr
	r_intr
	r_masked_intr

	strcop
	rw_cfg

	strmux
	rw_cfg

	timer
	rw_tmr0_div
	r_tmr0_data
	rw_tmr0_ctrl
	rw_tmr1_div
	r_tmr1_data
	rw_tmr1_ctrl
	rs_cnt_data/r_cnt_data
	rw_cnt_cfg
	rw_trig
	rw_trig_cfg
	r_time
	rw_out
	rw_wd_ctrl
	r_wd_stat
	rw_intr_mask
	rw_ack_intr
	r_intr
	r_masked_intr
	rw_test

	Register addresses

